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Biodiversity has always been predominantly microbial and the scarcity of fossils from bacteria, archaea 
and microbial eukaryotes has prevented a comprehensive dating of the tree of life. Here we show that 
patterns of lateral gene transfer deduced from the analysis of modern genomes encode a novel and abundant 
source of information about the temporal coexistence of lineages throughout the history of life. We use new 
phylogenetic methods to reconstruct the history of thousands of gene families and demonstrate that dates 
implied by gene transfers are consistent with estimates from relaxed molecular clocks in Bacteria, Archaea 
and Eukaryotes. An inspection of discrepancies between transfers and clocks and a comparison with 
mammal fossils show that gene transfer in microbes is potentially as informative for dating the tree of life 
as the geological record in macroorganisms. 

Until Zuckerkandl and Pauling put forth the “molecular clock”1 hypothesis, the geological record alone
provided the timescale for evolutionary history. Their demonstration that distances between amino acid 
sequences correlate with divergence times estimated from fossils demonstrated that information in DNA can be 
used to date the Tree of Life. Since then, the theory and methodology of the molecular clock have been 
developed extensively, and inferences from clock analyses (such as the diversification of placentals before the 
demise of dinosaurs2,3) hotly debated. Despite these controversies, combining information from rocks and 
clocks is now widely accepted to be indispensable3,4,5: state-of-the-art estimates of divergence times rely on 
sequence based relaxed molecular clocks anchored by multiple fossil calibrations. This approach provides 
information on both the absolute timescale and the relative variation of the evolutionary rates across the 
phylogeny (Fig.1a). Yet, because most life is microbial, and most microbes do not fossilize, major uncertainties 
remain about the ages of microbial groups and the timing of some of the earliest and most important events in 
life's evolutionary history6,7. 

In addition to leaving only a faint trail in the geological record, the evolution of microbial life has also left a 
tangled phylogenetic signal due to extensive lateral gene transfer (LGT). LGT, the acquisition of genetic 
material potentially from distant relatives, has long been considered an obstacle for reconstructing the history of 
life8, because different genetic markers can yield conflicting estimates of the species phylogeny. However, it has 
been previously shown that transfers identified using appropriate phylogenetic methods carry information that 
can be harnessed to reconstruct species history9–14. This is possible because different hypotheses of species 
relationships yield different LGT scenarios and can thus be evaluated using phylogenetic models of genome 
evolution15–19. But in addition to carrying information about the relationships among species, transfers should 
also carry a record of the timing of species diversification because they have occurred between species that 
existed at the same time20–22. As a consequence, a transfer event can be used to establish a relative age 
constraint between nodes in a phylogeny independently of any molecular clock hypothesis: the ancestor node of 
the donor lineage must predate the descendant node of the receiving lineage (Fig.1b, Fig.S8). Below we show 
that the dating information carried by transfers is consistent with molecular clock based estimates of relative 
divergence times in representative groups from the three domains of life. 
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Figure 1. Gene transfers, like fossils, carry information on the timing of species divergence: a) The geological record 
provides the only source of information concerning absolute time: the age of the oldest fossil representative of a clade 
provides direct evidence on its minimum age, but inferring maximum age constraints (e.g. dashed line for the red clade), 
and by extension the relative age of speciation nodes, must rely on indirect evidence on the absence of fossils in the 
geological record5,23–25. b) Gene transfers, in contrast, do not carry information on absolute time, but they do define relative 
node age constraints by providing direct evidence for the relative age of speciation events: the gene transfer depicted by the 
black arrow implies that the diversification of the blue donor clade predates the diversification of the red clade (i.e. node D 
is necessarily older than node R). c) Sequence divergence (here measured in units of expected number of nucleotide 
substitutions along a strict molecular clock time tree, see supplementary materials) for 36 mammals2 is correlated 
(Pearson’s R2=0.664, p<10-2) with age estimates based on the fossil record (ages corresponding to the time of divergence in 
million years). d) A similar relationship can be seen for gene transfer based relative ages by plotting the sequence 
divergence (measured similar to part c) against the relative age of ancestral nodes for 40 cyanobacterial genomes 
(Spearman’s rank correlation rho=0.741, p<10-6) inferred by the MaxTiC (maximal time consistency) algorithm26. 

We examined genome-scale datasets consisting of homologous gene families from complete genomes in 
Cyanobacteria (40 genomes27), Archaea (60 genomes28) and Fungi (60 genomes29). For each gene family we 
used the species tree-aware probabilistic gene tree inference method ALE undated27,30 to sample evolutionary 
scenarios involving events of duplication, transfer and loss of genes conditional on a rooted species phylogeny 
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and the multiple sequence alignment of the family. The undated reconciliation method does not impose any 
constraint on possible donor-recipient branch pairs aside from forbidding transfers to go from descendants to 
parents (Fig. S9). For putative gene transfer events, we recorded the donor and recipient branches and used the 
frequency with which they occurred among the sampled scenarios to filter transfers and weigh the relative age 
information they imply. Because the reference species tree is not dated, individual transfers can imply 
conflicting information about the relative age of speciation nodes (Fig. S11). To extract a maximal subset of 
transfers consistent with each other, we used the newly developed optimization method MaxTiC26 (maximal 
time consistency, see also supplementary text). A maximal subset of consistent transfers specifies a time order 
of speciation events in the species tree. For instance, using MaxTiC on the 4816 transfers that correspond to 
relative age constraints (see Figs 1b, S8, S10) in the 5322 gene families considered for Cyanobacteria, we 
identified a maximal subset of 3322 (69%) transfers that are consistent (Table S1). This maximal subset of 
transfers implies a time order of speciations that correlates with the distance between amino acid sequences of 
extant organisms (Spearman’s ρ = 0.741; p < 10-6; Fig. 1d, S9). A similar correlation (Fig. 1c) can be observed 
if, following Zuckerkandl and Pauling1, we compare fossil dates and sequence divergence in mammals2 (10 
time points, Pearson’s R2=0.664; p = 0.0025 and Spearman’s ρ = 0.83; p = 0.0056). 

We observed a strong correlation between time estimates from MaxTiC and molecular clocks in all our 
datasets (p<10-3 - Fig S14-S16). This suggests that LGT indeed carries information on the relative age of nodes 
in all three domains of life. However, it is not conclusive because part of the correlation trivially results from 
the fact that parent nodes are necessarily both older and more distant to extant sequences than their direct 
descendants31. To control for this effect, we compared the relative time orders of speciation events inferred from 
transfers to dates obtained using molecular clocks in the absence of calibrations. We used Phylobayes32 on a 
concatenate of nearly universal gene family alignments to sample chronograms (i.e., dated trees) under four 
different uncalibrated molecular clock models33 (the strict molecular clock, the autocorrelated lognormal, the 
uncorrelated gamma and the white-noise model). As a control for the shape of the tree, we measured the random 
expectation by sampling chronograms from the prior on divergence times but keeping the species phylogeny 
fixed (without any sequence information). To compare the dating information from transfers to the information 
conveyed by fossils, we used the same uncalibrated approach on the same mammalian dataset as above2,34 and 
derived relative node age constraints from fossil calibrations (see supplementary text). For the prokaryotic and 
fungi datasets, we derived relative node age constraints from the maximal consistent subsets of transfers 
obtained using MaxTiC26. For both fossil- and transfer-based constraints, we then measured the fraction of 
constraints that are in agreement with each chronogram. As Fig. 2 shows, both fossil- and transfer-based 
constraints agree with uncalibrated molecular clocks significantly more than expected by chance. The observed 
agreement is robust to the choice of different clock models (Fig. 2), priors on divergence time and models of 
protein evolution (Figs. S17-S19). This result demonstrates the presence of genuine and substantial dating 
signal in gene transfers. 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/193813doi: bioRxiv preprint first posted online Sep. 27, 2017; 

https://paperpile.com/c/pT3f8g/vepus
https://paperpile.com/c/pT3f8g/VAJ9v
https://paperpile.com/c/pT3f8g/fEjQK
https://paperpile.com/c/pT3f8g/n6HDF
https://paperpile.com/c/pT3f8g/K9hYA
https://paperpile.com/c/pT3f8g/gpXvD
https://paperpile.com/c/pT3f8g/mUgJz+fEjQK
https://paperpile.com/c/pT3f8g/vepus
http://dx.doi.org/10.1101/193813
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Agreement between transfer based relative ages and molecular clocks: a) Relative ages derived from 12 
fossil calibrations from a phylogeny of 36 extant mammals were compared with node ages sampled from four different 
relaxed molecular clock models implemented in Phylobayes and with node ages derived from random chronograms, 
keeping the species phylogeny fixed. b-d) Relative ages derived from gene transfers using the MaxTiC algorithm were 
compared with estimates from the same 5 models as in a). For each model and each sampled chronogram we calculated the 
fraction of relative age constraints that are satisfied. On each plot, we show the distribution of the fraction of relative age 
constraints satisfied by 5000 sampled chronograms. The blue distribution corresponds to chronograms drawn from the 
prior with the 95% confidence interval denoted by dashed lines, orange to the strict molecular clock, purple to the 
autocorrelated lognormal, green to the uncorrelated gamma and grey to the white-noise models.  

Interestingly, molecular clock models show differences in their agreement with relative time constraints. As 
expected, the strict molecular clock model generally explores a narrow range of dated trees compared to relaxed 
clocks. However, on average, chronograms based on the strict molecular clock agree less with relative time 
constraints than those based on relaxed clock models. This is particularly clear in mammals, where the median 
fraction of satisfied constraints falls within the 95% confidence interval of the random control (Fig. 2a). This is 
caused, in large part, by the accelerated evolutionary rate in rodents being interpreted (in the absence of fossil 
calibrations) as evidence for an age older than that implied by fossils (Fig. S4). The lognormal model is best 
suited to recover such autocorrelated (e.g. clade specific) rate variations along the tree, and indeed exhibits a 
median of 100% agreement with fossil based relative age constraints. The uncorrelated gamma model performs 
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second best, perhaps because it is, in fact, autocorrelated along each branch34. Consistent with this idea, the 
completely uncorrelated white noise model fares worst (Fig. 2a-d). This is in agreement with previous model 
comparisons in eukaryotes, vertebrates and mammals34. A similar pattern is apparent when considering LGT-
derived relative age constraints in Cyanobacteria, Archaea and Fungi, suggesting strong autocorrelated variation 
of evolutionary rates in these groups that are best recovered by the lognormal model (Fig. 2b-d). 

The motivating principle of the MaxTiC algorithm is that transfers from the maximum consistent set carry a 
robust and genuine dating signal, while conflicting transfers are likely artefactual. Two lines of evidence suggest 
that this is indeed the case: first, the agreement of relative time constraints derived from transfers excluded by 
MaxTiC with the node ranking inferred by uncalibrated molecular clocks tends to be lower than random (Fig. 
S12). Second, while the average sequence divergences for donor clades tend to be higher than for corresponding 
recipient clades in the set of self-consistent transfers (p < 10-8 one sided T-test for difference greater than zero, 
see Fig. 3.), they are lower for those discarded by MaxTiC (p < 10-8 one sided T-test for difference lower than 
zero, cf. Fig. 3). 

Figure 3. For genuine LGTs, the donor lineage must be at least as old as the recipient. As one proxy to investigate 
whether this was the case for transfers retained by our MaxTiC algorithm, we calculated clade-to-tip distances (see 
methods) for the inferred donor and recipient clades for LGTs that were retained and discarded by MaxTiC. (a) In all three 
datasets, transfers retained by MaxTiC (in red above) have the property that donor clades are further from the tips of the 
tree than recipient clades, but the opposite pattern is observed for conflicting transfers rejected by MaxTiC (green above), 
consistent with the idea that MaxTiC distinguishes genuine LGTs from phylogenetic artifacts.  

One obvious difference between fossil- and transfer-based relative ages in Fig. 2 is that the level of agreement 
is patently lower for the latter. While in mammals approximately half of the chronograms proposed by the 
lognormal model agree with 100% of relative constraints, for other datasets no model reaches 80% agreement. 
This means that some relative constraints derived from LGT consistently disagree with uncalibrated molecular 
clock estimates. These disagreements are difficult to interpret because both molecular clocks and our transfer-
based inferences may be subject to error; simulations suggest that spurious gene transfer inferences do occur 
with ALE, albeit at a low rate (Chauve et al.35, Fig. S23). Nonetheless this low error rate on simulations 
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suggests that at least some transfers contradicting the molecular clocks are genuine. This yields the exciting idea 
of a new source of dating information, independent of and complementary to the molecular clock.  

To gain further insight into the robustness of these transfer-based estimates, we evaluated their statistical 
support from the data. Since MaxTiC yields a fully ordered species tree, the relative age constraints derived 
from its output are potentially overspecified and include constraints with relatively low statistical support. To 
ascertain the extent of overspecification, we evaluated the statistical support of relative constraints by taking 
random samples of 50% of gene families and reconstructing the corresponding MaxTiC 1000 times (Figs. S20-
S22). We then counted the number of times a constraint was observed. In all datasets, a large majority of 
constraints were highly supported (found in at least 95% of the replicates) and among these, a significant 
number (between 20% and 32%) consistently disagreed with molecular clock estimates (see Table S2). These 
strongly-supported transfer-based constraints that disagree with the clocks could result from the inability of 
uncalibrated molecular clock estimates to recover the correct timing of speciations in groups with large 
variations in the substitution rate over time. 

Specifically, LGTs provide strong support for the relatively recent emergence of the Prochlorococcus - 
Synechococcus clade in Cyanobacteria (blue clade in Fig. 4a), irrespective of uncertainty in the root of 
Cyanobacteria (see Supp. Mat.). Although the Prochlorococcus - Synechococcus clade is inferred to be ancient 
by three of the four uncalibrated molecular clock models in our study, previous analyses using relaxed 
molecular clock methods with more extensive species sampling and several fossil calibrations, including fossils 
dating akinete forming cyanobacteria at ~2.1 Gya36 (green in Fig. 4.a) have consistently dated this clade as 
younger than most of the rest of cyanobacterial diversity37,38. Prochlorococcus have a known history of genome 
reduction and evolutionary rate acceleration23, which may lead to artifactually ancient age inferences under 
uncalibrated molecular clock models, as for rodents above. This demonstrates that relative time orders implied 
by LGT can, like fossils, provide a consistent dating signal that is independent of the rate of sequence evolution. 

Figure 4. The order of speciations according to LGT. 5000 chronograms with a speciation time order compatible with 
LGT-based constraints were sampled per data set (a: Cyanobacteria, b: Archaea, c: Fungi). The black line corresponds to 
the consensus chronogram. Red shading represents the spread of node orders within the sample: nodes are in bright red if 
there is little or no uncertainty on their order according to LGT, in a light red smear if there is high uncertainty on their 
order. Clades discussed in the text are labelled and shaded. Supplementary Figures S1, S2 and S3 provide the same 
consensus chronograms with species names at the tips. 
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In Archaea, patterns of LGT suggest that several nodes within the Euryarchaeota including cluster 1 and 2 
methanogens (blue and purple clades in Fig. 4) are older than both the TACK+Lokiarchaeum clade (red clade in 
Fig. 4, the clade uniting Thaumarchaeota, Crenarchaeota, Aigarchaeota, Korarchaeota and Lokiarchaeum) and 
the DPANN Archaea (grey in Fig. 4, a genomically diverse group with small cells and genomes, with reduced 
metabolism suggestive of symbiont or parasite lifestyles). The relative antiquity of methanogens is consistent 
with evidence of biogenic methane at a very early stage of the geological record (~3.5 Gya39), and with another 
recent analysis that used a single LGT to place the origin of methanogens before the radiation of 
Cyanobacteria14. These relationships are not recovered by any of the molecular clock models, and suggest that 
LGT-derived constraints may be highly informative for future dating studies.  

The relative order of appearance of archaeal energy metabolisms corresponds to increasing energy yield, with 
methanogenesis evolving before sulphate reduction, and the oxidative metabolisms of Thaumarchaeota and 
Haloarchaea evolving most recently. In addition, we find that Ignicoccus hospitalis branches before its obligate 
parasite Nanoarchaeum (cf. Fig. S2), despite the early divergence of the DPANN clade from other Archaea. 

In Fungi, we recover LGTs that provide information on the order of some of the deepest splits. In particular, 
among crown groups, LGTs indicate that Zoopagomycota40 (blue in Fig. 4) diverged earlier than 
Mucoromycotina, Basidiomycota and Ascomycota (purple, grey and green in Fig. 4). Note that some inferred 
LGTs could result from processes such as hybridisation or allopolyploidisation, and that these processes 
contribute dating information that can be treated in the same way as LGTs. On a wider scale, between 
Eukaryotic groups, LGTs suggest that Amoebozoa (the outgroup, yellow in Fig. 4) diversified earlier than 
Opisthokonta and Apusozoa (the ingroup). This indicates that LGTs could strongly reduce the uncertainty 
associated with the divergence of the major eukaryotic clades41.  

Our demonstration that clocks and transfers contain complementary and compatible dating signals casts the 
phylogenetic discord of LGT in a new light. This calls for the development of new methods to combine relative 
age constraints derived from transfers with molecular clocks and fossils calibrations. In principle, such a 
method can be developed by extending current Bayesian relaxed molecular clocks to include a prior on relative 
age constraints, as is now done with fossil calibration priors. An alternative approach would be to jointly infer a 
dated species tree together with thousands of dated and reconciled gene trees in the context of a hierarchical 
probabilistic model47; this approach would be theoretically superior, but likely computationally prohibitive at 
the present time47. 

The geological record of microbial life is sparse, and its interpretation is fraught with difficulty. Our results 
show that there is abundant information in extant genomes on dating the Tree of Life waiting to be harvested 
from the reconstruction of genome evolution. This signal mostly contains information on the relative timing of 
diversification of groups that have exchanged genes through LGT, but we foresee several strategies to relate this 
relative timing to the broader history of life on Earth. First, gene transfers between bacteria and multicellular 
organisms that have left a trace in the fossil record will allow the propagation of absolute time calibrations to 
the microbial part of the Tree of Life42. Similarly, the signal of coevolution between hosts and their symbionts, 
such as in the gut microbiome of mammals43, could also be used to propagate absolute dating information from 
the host to the symbiont phylogeny. Finally, geochemistry can provide major constraints on early evolution44,45: 
for example, LGT events to the ancestors of bacteria capable of oxygenic photosynthesis, i.e. 
Oxyphotobacteria46, imply that the donor lineages must be older than the oxygenation of Earth’s atmosphere at 
approximately 2.3 Gya44,45. Phylogenetic models of genome evolution have the potential to turn the 
phylogenetic discord caused by gene transfer into an invaluable source of information on dating the tree of life. 
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