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Abstract. Using superpixels instead of pixels has become a popular
pre-processing step in computer vision. However, there are few adap-
tive methods able to automatically find the best comprise between
boundary adherence and superpixel number. Moreover, no algorithm
producing color and texture homogeneous superpixels keeps competi-
tive execution time. In this article we suggest a new graph-based region
merging method, called Adaptive Superpixel Algorithm with Rich Infor-
mation (ASARI) to solve these two difficulties. We will show that ASARI
achieves results similar to the state-of-the-art methods on the exist-
ing benchmarks and outperforms these methods when dealing with big
images.

Keywords: Graph-based oversegmentation · Superpixels · Local
Ternary Patterns

1 Introduction

The idea and definition of superpixel is given for the first time by Ren et al.,
in [9]. The two authors describe a segmentation method including an overseg-

mentation pre-processing grouping pixels into small homogeneous and regular
regions called superpixels. Currently, oversegmentation is an active research field,
with steady publication of new methods [1,2,6]. Some examples of oversegmen-
tation results are given in Fig. 1. A good oversegmentation method must satisfy
five properties: validity (an oversegmentation must be an image partition into
connected components), boundary adherence (superpixels must not overlap
different objects of the image), conciseness (an oversegmentation must give
as few superpixels as possible), simplicity (the number of neighbors of each
superpixel must be as small as possible, to avoid a complex adjacency graph),
efficiency (an oversegmentation algorithm must have an execution time as low
as possible). We call adaptivity, the fact that an algorithm is able to find the
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best compromise between these two properties, reducing the number of super-
pixels in wide homogeneous regions and increasing it to segment correctly thin
details.

Oversegmentation algorithms may be region-based [1,5], when clustering pix-
els, or boundary-based [2,3], when focusing on edge evidence. The review of Stutz
[12] shows that five methods achieve similar results and outperform other algo-
rithms: the Felzenszwalb et al. algorithm (FZ) [3], Quick Shift (QS) [14], Entropy
Rate Superpixels (ERS) [5], Simple Linear Iterative Clustering (SLIC) [1] and
Contour Relaxed Superpixel [2]. The FZ [3] and ERS [5] algorithms use a graph-
based representation of the image G < V,E >, where V is the set of elements
to be grouped (i.e. the pixels) and E, the set of edges linking pairs of neigh-
boring elements. Each edge is weighted using a dissimilarity measure. FZ uses a
predicate checking that the dissimilarity between elements along the boundary
of two components is greater than the dissimilarity between neighboring ele-
ments within each of the two components, to produce a partition of G into K

connected components corresponding to superpixels. ERS is a greedy algorithm
selecting a subset A ⊂ E and removing these edges. The result is a partition of
G, which maximizes an entropy rate. The QS method [14] is a modification of the
medoid-shift algorithm to efficiently find modes of a Parzen density estimate P .
Color and location of each pixel are used as feature vectors that are clustered by
linking each vector to its nearest neighbor which increases P . The SLIC method
[1] is an adaptation of the k-means algorithm. Starting from an image overseg-
mentation into a regular grid, the average color and location features of each
superpixel are computed. Then, each pixel is re-assigned to the most similar
superpixel and the average features of superpixels are re-computed. The CRS
algorithm [2] finds a partition S into superpixels, which has a high likelihood of
having generated the observed image. Starting from an initial segmentation into
rectangular superpixels, CRS maximizes the probability function by reallocating
some boundary pixels to another superpixel. In our evaluation, we add to these
five state-of-the-art methods, WP, a watershed transformation based algorithm
recently suggested by Machairas et al. [6].

The main contribution of this article is a graph-based oversegmentation
method (Sect. 2), called Adaptive Superpixel Algorithm with Rich Information
(ASARI). As its name suggest, ASARI is able to adjust the size and the number
of superpixels to fit the image complexity, partitioning uniform objects (like the
sky) in a few large superpixels and producing a lot of thin superpixels to match
with small details. In addition, ASARI groups pixels using both color and tex-
ture information, without dramatically increasing the computation time. The
only oversegmentation algorithm using texture has been proposed by Ren et al.

in [9]. Unfortunately, its high execution time discouraged its usage in practi-
cal applications. Using Stutz benchmark [12], we show in Sect. 3 that ASARI is
competitive with the state-of-the-art methods. However, the benefit of this new
algorithm is more significant on a new dataset, that we recently made available:
Heterogeneous Size Image Dataset (HSID). Contrary to other oversegmentation
evaluation datasets, HSID contains photographs having extremely different sizes



(from some thousand to several millions of pixels) and a majority of big images.
This leads us to an interesting application of ASARI, as a preprocessing step in
the Superpixel Classification based Interactive Segmentation (SCIS) method [8].

2 ASARI: A Region Merging Algorithm

ASARI is a region-merging algorithm, following the approach of Salembier
et al. [10], which is still the base of successful works in image analysis [4,15].
Let G0 =< V0, E0 > be a graph related to an image I, where V0 is the set of
vertices and EO the set of edges connecting them. Each vertex vi corresponds
to a pixel or a small group of pixels and there is an edge (vi, vj) between each
pair of neighboring pixels or regions. A region merging algorithm with G0 as
input, produces a graph GK =< VK , EK >, where VK is a partition of V0 into
connected components and EK is a subset of E0. More concretely, some vertices
of G0 are merged and edges linking them are removed. Salembier et al. [10] show
that such an algorithm can be defined by a merging order (the order in which
the edges are processed), a merging criterion (how to decide if an edge must be
removed) and a region model (how to represent the union of two vertices).

Merging order - Merging order in the case of an oversegmentation algo-
rithm must ensure that visually similar regions will be merged, while maintaining
regions with reasonably similar areas. We associate to each vertex vi a variable
∆i referring to the number of times vi has been previously selected. At the
beginning of each iteration, the algorithm selects the vertex with the smallest
∆i (when several vertices have the same ∆i value, one is arbitrary chosen).
ASARI merging order keeps among the set of edges linking vi to its neighbors,
the one maximizing a similarity measure fsim. Whether vi and its most similar
neighbor are merged or not1, ∆i is incremented.

Similarity measure - When designing ASARI, one of our objectives was to
propose a similarity measure using both color and texture features and keeping
reasonable execution times (a few seconds on a desktop computer, for images of
size 3000 × 4000). So, we chose the Local Ternary Patterns (LTP) [13] largely for
their rapidity. The LTP of a pixel p is a pair of identifiers, (LTPN , LTPP ), cor-
responding to gray level variations of its 8-neighborhood. Let T = {g0, · · · , g7}
be the set the gray levels of the 8 neighbors of p. The identifiers are given by:

LTPN (p) =
7

∑

n=0

2nδ(p − gn) and LTPP (p) =
7

∑

n=0

2nδ(gn − p) (1)

where δ is a threshold function, returning 1 if its input is greater than a threshold
ωLTP , 0 otherwise. In the binary representation of LTPN and LTPP , digits equal
to 0 correspond to neighbors with gray levels similar to the center gray level.
So, pixels with a pair of LTP identifiers equals to (0, 0), have a neighborhood
with similar gray levels. The ratio between the number of this kind of pixels

1 The decision to merge or not vi and its most similar neighbor is related to the
merging criterion.



and the total number of pixels in a region gives the probability for the region to
be textured or not. If this probability is lower than a threshold ωtex, the region
is textured. We assume that a similarity measure must give a low value when
comparing a textured region to an untextured region. Let fc(i, j) be a color-
based similarity measure between regions vi and vj , ft(i, j) be a texture-based
similarity measure, and h be a binary function, returning 1 for a textured region,
0 otherwise. The similarity function is the following:

fsim(i, j) =















fc(i, j) if h(i) + h(j) = 2
ft(i, j) + fc(i, j)

2
if h(i) + h(j) = 0

0 otherwise.

(2)

Let ci be a vector containing the normalized average color of vi:

fc(i, j) = exp(−
1

Nc

||ci − cj ||
2) (3)

where Nc is the length of ci. Let ti be the concatenation of the normalized
histograms of LTPN and of LTPP , for the region vi. We have:

ft(i, j) = exp(−
1

Nt

∑ (tki − tkj )2

tki + tkj
) (4)

where Nt is the number of strictly positive bins in ti or tj and the superscript
k denotes the k-th element of the vector. Notice that ft is derived from the χ2

measure. Distinguishing between textured and untextured regions reduces the
execution time of ASARI, the computation time for fc being significantly lower
than for ft.

Merging criterion - A merging criterion g(i, j) must ensure both visual
consistency and regularity of the region and can be expressed by the following
boolean function:

g(i, j) = gsim(i, j) ∧ greg(i, j) (5)

where gsim checks that similarity between the two regions is greater than a
threshold ωsim and greg verifies that the new region size is not disproportionate
to the size of the other regions, using a threshold ωreg. So we have:

gsim(i, j) = fsim(i, j) > ωsim and greg(i, j) = (φ(i)+φ(j)) <
ωreg

M

M
∑

n=0

φ(n) (6)

where φ(i) is the number of pixels belonging to vi and M the number of regions.
The adaptive nature of ASARI results from gsim function, which stops merg-
ing in image parts containing small distinct details. The function greg prevents
a segmentation-like behavior and ensures that superpixel sizes remain much
smaller than object areas. ASARI stops when any edge cannot be removed any
more or when all vertices have been selected 10 times2.
2 Our experiments show that this number of iterations is sufficient to provide good

results.



Initialization - To produce V0, we use the SLIC algorithm [1], which has the
two benefits of drastically reducing the number of initial regions and simplifying
the use of the texture similarity measure, which requires at least one hundred
of pixels to give a significant histogram. The drawback of this approach is to
introduce two more parameters, ωmin and ωcomp, which must be designed to
produce very small regions. Parameter ωmin gives an average region size and
parameter ωcomp is the SLIC compactness parameter [1].

Parametrization - ASARI has 6 parameters: ωLTP , ωtex, ωsim, ωreg, ωmin

and ωcomp. As these parameters impact different aspects of ASARI, sometime
related to contradictory properties (like conciseness and boundary adherence), it
is not simple to learn them at once. We processed in three steps, first with para-
meters linked to untextured region detection (ωLTP , ωtex), then setting SLIC
parameters (ωmin, ωcomp) and finally focusing on thresholds for the merging cri-
terion (ωsim, ωreg). Parameters ωLTP = 19 and ωtex = 0.8 have been learned by
solving an intermediary classification problem of small patches extracted both
of Wikimedia Common3 images and Brodatz texture images4, and then, classi-
fied into textured or untextured patches. The value of ωcomp = 10 has been set
following previous evaluation of SLIC [1]. The parameter ωmin is the only one
which must be set by the user. In all of our tests we use a value of 0.00015 × N ,
with N the number of pixels in the image. The value of ωreg = 4 is related to an
assumption about region growing: in an ideal case, at each step, 4 regions will be
merged, to maintain a grid structure. The value of parameter ωsim = 0.05 has
been learned on Berkeley dataset, and chosen to allow a satisfactory compromise
between conciseness and boundary adherence properties. Experimental results of
Sect. 3 show that these parameters allow ASARI to achieve competitive results
and that they do not require to be re-learned anymore when dealing with other
datasets.

3 Experimental Results

We evaluated ASARI using both Stutz experimental design [12] and a new bench-
mark, Heterogeneous Size Image Dataset (HSID) that we proposed recently5.
Contrary to Stutz datasets, i.e. the 100 images of the Berkeley Segmentation
Dataset6 (BSD) [7] and the 400 images of the New York University7 (NYU)
[11] which only contains small images of thousand pixels, HSID is made up of
100 Wikimedia Common photographs, with a majority having several millions
of pixels. In addition, variations of image size are significantly more important
in HSID than in BSD or NYU.

In Stutz review [12], boundary adherence of evaluated methods is analyzed
using two measures: the Undersegmentation Error (UE) and the Boundary Recall

3 https://commons.wikimedia.org/wiki/Main Page.
4 http://www.ux.uis.no/∼tranden/.
5 http://image.ensfea.fr/hsid/.
6 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
7 http://cs.nyu.edu.



(BR). Let G be a ground truth segmentation for an image I, S be an overseg-
mentation of I, BG be the set of boundary pixels in G, BS be the set of boundary
pixels in S and N be the number of pixels. The undersegmentation error gets
for each object Gi in G the set of superpixels required to cover it and counts the
number of pixels leaking of Gi. The boundary recall checks whether boundaries
of superpixels contain boundaries in G:

UE(S, G) =
1

N

∑

Gi∈G

∑

Sj∩Gi �=∅

min(|Sj ∩ Gi|, |Sj − Gi|) and BR(S, G) =
|BS ∩ BG|

|BG|
(7)

In fact, even for a human, it is sometimes difficult to know exactly whether a
pixel belongs or not to a boundary, Stutz allows a distance of 0.0075 × diag

(where diag is the image diagonal length) pixels between boundary points in G

and in S.
Unfortunately these two measures are not suitable to evaluate boundary

adherence on HSID. To put it in a nutshell, the average score of UE is not
significant due to the important variations in foreground areas in HSID images
and the Stutz threshold is not suitable for big images. So, we suggest a modi-
fication of BR using fuzzy set theory. From BG we define the fuzzy set B∗

G∩S

with membership function fG∩S(pi) = exp(−
d(pi−p

′

i)
2

2σ2 ) where d(pi − pj) is the

distance between pi and pj locations, and p
′

i = arg min
pj∈BS

(d(pi −pj)). The function

fG∩S returns a value in the range [0, 1], a value of 1 meaning a perfect coinci-
dence between an element in BG and an element in BS . Finally, we propose the
fuzzy boundary recall measure FBR(S,G) = 1

|BG|

∑

p∈BG
fG∩S(p).

Comparison to the state-of-the-art methods - By design, ASARI
satisfy validity property, the only requirement is that vertices in G0 are con-
nected components. Then, because only adjacent regions are merged, the result-
ing superpixels are always a partition of I into connected components. The
average number of neighbors by superpixel equals to 6 on BSD, NYU and HSID
dataset, that is similar to all state-of-the-art oversegmentation methods.

Table 1 compares the results of ASARI to those achieved by the methods
QS [14], FZ [3], SLIC [1], ERS [5] and CRS [2], in Stutz review [12]. On BSD,
UE and BR scores of ASARI are similar to those of the state-of-art methods,

Table 1. Comparison between ASARI and the state-of-the-art oversegmentations
methods reviewed by Stutz [12]. K is the average number of superpixels and T the
execution time in seconds.

Methods UE BR K T

ASARI 0.04 0.99 899 1.38

QS 0.03 1 ≃ 1000 1.24

FZ 0.03 0.99 ≃ 1000 0.059

ERS 0.04 0.99 ≃ 1000 1.11

SLIC 0.04 0.99 ≃ 1000 0.09

CRS 0.04 1 ≃ 1000 0.9

(a) Scores achieve on BSD.

Methods UE BR K T

ASARI 0.1 0.99 899 2.89

CRS 0.09 1 ≃ 1897 1.19

ERS 0.08 0.99 ≃ 1500 2.21

SLIC 0.09 0.99 ≃ 1500 0.17

FZ 0.07 0.99 ≃ 1500 0.1

QS 0.07 0.99 ≃ 1500 1.24

(b) Scores achieve on NYU.

Methods FBR K T

ASARI 0.61 1528 6

WP parameters of [6] 0.51 1587 27

CRS parameters of [2] 0.34 1601 21

ERS parameters of [12] 0.60 1500 36

SLIC parameters of [1] 0.58 1648 3

FZ parameters of [8] 0.59 1596 10

QS parameters of [12] 0.53 1676 97

(c) Scores achieve on HSID.



Fig. 1. Results achieved by ASARI on BSD, NYU and HSID.

with a lower average number of superpixels (about 100 superpixels below). The
adaptive nature of ASARI allows it to increase the conciseness of the produced
oversegmentation, with some images partitioned into about 500 superpixels. An
example is given in Fig. 1a. On NYU, UE of ASARI is slightly less good but
BR is similar. The average number of superpixels is more important (about
300 superpixels above). Figure 1b shows that, despite these difficulties, ASARI
keeps its ability to adapt. Table 1c shows that ASARI is the method providing
the best compromise between boundary adherence and compactness properties
on the HSID dataset. The gap is significant with WP (+10% on FBR, for a
similar number of superpixels), CRS (+17% with 100 superpixels fewer), SLIC
(+2% with 100 superpixels fewer) and QS(+10% with 200 superpixels fewer).
The differences with FZ (+2% with a similar number of superpixels) and ERS
(+1% with a similar number of superpixels) are less important, but execution
times of ASARI are better (near to 2 times faster than FZ and more than 6
times faster than ERS). Figure 1c and d show some examples of ASARI results.
In Fig. 1d, the use of texture information allows a clear separation between the
foreground and the background, which have similar colors.

Practical application - Interactive segmentation is a semi-automatic seg-
mentation process. The user chooses some pixels (named seeds) and indicates
for each of them the element to which it belongs. Features of desired regions are
deduced by analyzing these seeds. Usually, adding or removing some seeds can
improve the produced result, allowing the user to get any desired segmentation
results. Suggested in 2016, Superpixel Classification-based Interactive Segmen-
tation (SCIS) [8] creates a segmentation of the image by learning features of
superpixels labeled by the user and classifying the remaining superpixels. The
image is first oversegmented using FZ, then the average color and the center
of mass location of each superpixel are computed. The learning and classi-
fication steps are made using a Support Vector Machine (SVM). Currently,
despite its promising result, SCIS is not suitable to segment a dataset like
HSID. The oversegmentation step using FZ produces a lot of small superpixels,
often misclassified by the SVM. The resulting segmentation is noisy and
correcting these errors by adding seeds is tedious. An example of this problem



Fig. 2. SCIS with FZ and ASARI: a comparison.

is shown in Fig. 2. As shown in this figure, ASARI, by producing more larger
superpixels, considerably reduces this noise. In addition, ASARI is faster
than FZ.

4 Conclusion

The main contribution of this paper is the description and the evaluation of
a new oversegmentation algorithm, ASARI, which is suitable for datasets with
important variations on image sizes and image complexities. The adaptive nature
of ASARI and the fact that ASARI creates color and texture homogeneous
superpixels while keeping reasonable execution times, allow it to outperform
the state-of-the-art methods in such dataset. On other dataset, ASARI obtains
results greater or equal to the state-of-the-art methods. The trade-off between
boundary adherence, conciseness and efficiency achieved by ASARI offers inter-
esting perspectives. We show a example of ASARI application as a preprocessing
step of SCIS method. An implementation of ASARI is available online8.
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