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Using superpixels instead of pixels has become a popular pre-processing step in computer vision. However, there are few adaptive methods able to automatically find the best comprise between boundary adherence and superpixel number. Moreover, no algorithm producing color and texture homogeneous superpixels keeps competitive execution time. In this article we suggest a new graph-based region merging method, called Adaptive Superpixel Algorithm with Rich Information (ASARI) to solve these two difficulties. We will show that ASARI achieves results similar to the state-of-the-art methods on the existing benchmarks and outperforms these methods when dealing with big images.

Introduction

The idea and definition of superpixel is given for the first time by Ren et al.,[START_REF] Ren | Learning a classification model for segmentation[END_REF]. The two authors describe a segmentation method including an oversegmentation pre-processing grouping pixels into small homogeneous and regular regions called superpixels. Currently, oversegmentation is an active research field, with steady publication of new methods [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Conrad | Contour-relaxed superpixels[END_REF][START_REF] Machairas | [END_REF]. Some examples of oversegmentation results are given in Fig. 1. A good oversegmentation method must satisfy five properties: validity (an oversegmentation must be an image partition into connected components), boundary adherence (superpixels must not overlap different objects of the image), conciseness (an oversegmentation must give as few superpixels as possible), simplicity (the number of neighbors of each superpixel must be as small as possible, to avoid a complex adjacency graph), efficiency (an oversegmentation algorithm must have an execution time as low as possible). We call adaptivity, the fact that an algorithm is able to find the best compromise between these two properties, reducing the number of superpixels in wide homogeneous regions and increasing it to segment correctly thin details.

Oversegmentation algorithms may be region-based [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Liu | Entropy rate superpixel segmentation[END_REF], when clustering pixels, or boundary-based [START_REF] Conrad | Contour-relaxed superpixels[END_REF][START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], when focusing on edge evidence. The review of Stutz [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF] shows that five methods achieve similar results and outperform other algorithms: the Felzenszwalb et al. algorithm (FZ) [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], Quick Shift (QS) [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF], Entropy Rate Superpixels (ERS) [START_REF] Liu | Entropy rate superpixel segmentation[END_REF], Simple Linear Iterative Clustering (SLIC) [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] and Contour Relaxed Superpixel [START_REF] Conrad | Contour-relaxed superpixels[END_REF]. The FZ [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF] and ERS [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] algorithms use a graphbased representation of the image G < V, E >, where V is the set of elements to be grouped (i.e. the pixels) and E, the set of edges linking pairs of neighboring elements. Each edge is weighted using a dissimilarity measure. FZ uses a predicate checking that the dissimilarity between elements along the boundary of two components is greater than the dissimilarity between neighboring elements within each of the two components, to produce a partition of G into K connected components corresponding to superpixels. ERS is a greedy algorithm selecting a subset A ⊂ E and removing these edges. The result is a partition of G, which maximizes an entropy rate. The QS method [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF] is a modification of the medoid-shift algorithm to efficiently find modes of a Parzen density estimate P . Color and location of each pixel are used as feature vectors that are clustered by linking each vector to its nearest neighbor which increases P . The SLIC method [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] is an adaptation of the k-means algorithm. Starting from an image oversegmentation into a regular grid, the average color and location features of each superpixel are computed. Then, each pixel is re-assigned to the most similar superpixel and the average features of superpixels are re-computed. The CRS algorithm [START_REF] Conrad | Contour-relaxed superpixels[END_REF] finds a partition S into superpixels, which has a high likelihood of having generated the observed image. Starting from an initial segmentation into rectangular superpixels, CRS maximizes the probability function by reallocating some boundary pixels to another superpixel. In our evaluation, we add to these five state-of-the-art methods, WP, a watershed transformation based algorithm recently suggested by Machairas et al. [START_REF] Machairas | [END_REF].

The main contribution of this article is a graph-based oversegmentation method (Sect. 2), called Adaptive Superpixel Algorithm with Rich Information (ASARI). As its name suggest, ASARI is able to adjust the size and the number of superpixels to fit the image complexity, partitioning uniform objects (like the sky) in a few large superpixels and producing a lot of thin superpixels to match with small details. In addition, ASARI groups pixels using both color and texture information, without dramatically increasing the computation time. The only oversegmentation algorithm using texture has been proposed by Ren et al. in [START_REF] Ren | Learning a classification model for segmentation[END_REF]. Unfortunately, its high execution time discouraged its usage in practical applications. Using Stutz benchmark [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF], we show in Sect. 3 that ASARI is competitive with the state-of-the-art methods. However, the benefit of this new algorithm is more significant on a new dataset, that we recently made available: Heterogeneous Size Image Dataset (HSID). Contrary to other oversegmentation evaluation datasets, HSID contains photographs having extremely different sizes (from some thousand to several millions of pixels) and a majority of big images. This leads us to an interesting application of ASARI, as a preprocessing step in the Superpixel Classification based Interactive Segmentation (SCIS) method [START_REF] Mathieu | Segmentation interactive pour l'annotation de photographies de paysages[END_REF].

ASARI: A Region Merging Algorithm

ASARI is a region-merging algorithm, following the approach of Salembier et al. [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF], which is still the base of successful works in image analysis [START_REF] Li | Region-based urban road extraction from VHR satellite images using binary partition tree[END_REF][START_REF] Xu | Connected filtering on tree-based shape-spaces[END_REF]. Let G 0 =< V 0 , E 0 > be a graph related to an image I, where V 0 is the set of vertices and E O the set of edges connecting them. Each vertex v i corresponds to a pixel or a small group of pixels and there is an edge (v i , v j ) between each pair of neighboring pixels or regions. A region merging algorithm with G 0 as input, produces a graph G K =< V K , E K >, where V K is a partition of V 0 into connected components and E K is a subset of E 0 . More concretely, some vertices of G 0 are merged and edges linking them are removed. Salembier et al. [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF] show that such an algorithm can be defined by a merging order (the order in which the edges are processed), a merging criterion (how to decide if an edge must be removed) and a region model (how to represent the union of two vertices).

Merging order -Merging order in the case of an oversegmentation algorithm must ensure that visually similar regions will be merged, while maintaining regions with reasonably similar areas. We associate to each vertex v i a variable ∆ i referring to the number of times v i has been previously selected. At the beginning of each iteration, the algorithm selects the vertex with the smallest ∆ i (when several vertices have the same ∆ i value, one is arbitrary chosen). ASARI merging order keeps among the set of edges linking v i to its neighbors, the one maximizing a similarity measure f sim . Whether v i and its most similar neighbor are merged or not1 , ∆ i is incremented.

Similarity measure -When designing ASARI, one of our objectives was to propose a similarity measure using both color and texture features and keeping reasonable execution times (a few seconds on a desktop computer, for images of size 3000 × 4000). So, we chose the Local Ternary Patterns (LTP) [START_REF] Tang | Topology preserved regular superpixel[END_REF] largely for their rapidity. The LTP of a pixel p is a pair of identifiers, (LT P N , LT P P ), corresponding to gray level variations of its 8-neighborhood. Let T = {g 0 , • • • , g 7 } be the set the gray levels of the 8 neighbors of p. The identifiers are given by:

LT P N (p) = 7 n=0 2 n δ(p -g n ) and LT P P (p) = 7 n=0 2 n δ(g n -p) ( 1 
)
where δ is a threshold function, returning 1 if its input is greater than a threshold ω LT P , 0 otherwise. In the binary representation of LT P N and LT P P , digits equal to 0 correspond to neighbors with gray levels similar to the center gray level. So, pixels with a pair of LTP identifiers equals to (0, 0), have a neighborhood with similar gray levels. The ratio between the number of this kind of pixels and the total number of pixels in a region gives the probability for the region to be textured or not. If this probability is lower than a threshold ω tex , the region is textured. We assume that a similarity measure must give a low value when comparing a textured region to an untextured region. Let f c (i, j) be a colorbased similarity measure between regions v i and v j , f t (i, j) be a texture-based similarity measure, and h be a binary function, returning 1 for a textured region, 0 otherwise. The similarity function is the following:

f sim (i, j) =        f c (i, j) if h(i) + h(j) = 2 f t (i, j) + f c (i, j) 2 if h(i) + h(j) = 0 0 otherwise. (2) 
Let c i be a vector containing the normalized average color of v i :

f c (i, j) = exp(- 1 N c ||c i -c j || 2 ) ( 3 
)
where N c is the length of c i . Let t i be the concatenation of the normalized histograms of LT P N and of LT P P , for the region v i . We have:

f t (i, j) = exp(- 1 N t (t k i -t k j ) 2 t k i + t k j ) (4) 
where N t is the number of strictly positive bins in t i or t j and the superscript k denotes the k-th element of the vector. Notice that f t is derived from the χ2 measure. Distinguishing between textured and untextured regions reduces the execution time of ASARI, the computation time for f c being significantly lower than for f t .

Merging criterion -A merging criterion g(i, j) must ensure both visual consistency and regularity of the region and can be expressed by the following boolean function:

g(i, j) = g sim (i, j) ∧ g reg (i, j) (5) 
where g sim checks that similarity between the two regions is greater than a threshold ω sim and g reg verifies that the new region size is not disproportionate to the size of the other regions, using a threshold ω reg . So we have:

g sim (i, j) = f sim (i, j) > ω sim and g reg (i, j) = (φ(i)+φ(j)) < ω reg M M n=0 φ(n) (6)
where φ(i) is the number of pixels belonging to v i and M the number of regions.

The adaptive nature of ASARI results from g sim function, which stops merging in image parts containing small distinct details. The function g reg prevents a segmentation-like behavior and ensures that superpixel sizes remain much smaller than object areas. ASARI stops when any edge cannot be removed any more or when all vertices have been selected 10 times 2 .

Initialization -To produce V 0 , we use the SLIC algorithm [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], which has the two benefits of drastically reducing the number of initial regions and simplifying the use of the texture similarity measure, which requires at least one hundred of pixels to give a significant histogram. The drawback of this approach is to introduce two more parameters, ω min and ω comp , which must be designed to produce very small regions. Parameter ω min gives an average region size and parameter ω comp is the SLIC compactness parameter [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF].

Parametrization -ASARI has 6 parameters: ω LT P , ω tex , ω sim , ω reg , ω min and ω comp . As these parameters impact different aspects of ASARI, sometime related to contradictory properties (like conciseness and boundary adherence), it is not simple to learn them at once. We processed in three steps, first with parameters linked to untextured region detection (ω LT P , ω tex ), then setting SLIC parameters (ω min , ω comp ) and finally focusing on thresholds for the merging criterion (ω sim , ω reg ). Parameters ω LT P = 19 and ω tex = 0.8 have been learned by solving an intermediary classification problem of small patches extracted both of Wikimedia Common3 images and Brodatz texture images4 , and then, classified into textured or untextured patches. The value of ω comp = 10 has been set following previous evaluation of SLIC [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. The parameter ω min is the only one which must be set by the user. In all of our tests we use a value of 0.00015 × N , with N the number of pixels in the image. The value of ω reg = 4 is related to an assumption about region growing: in an ideal case, at each step, 4 regions will be merged, to maintain a grid structure. The value of parameter ω sim = 0.05 has been learned on Berkeley dataset, and chosen to allow a satisfactory compromise between conciseness and boundary adherence properties. Experimental results of Sect. 3 show that these parameters allow ASARI to achieve competitive results and that they do not require to be re-learned anymore when dealing with other datasets.

Experimental Results

We evaluated ASARI using both Stutz experimental design [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF] and a new benchmark, Heterogeneous Size Image Dataset (HSID) that we proposed recently 5 . Contrary to Stutz datasets, i.e. the 100 images of the Berkeley Segmentation Dataset6 (BSD) [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] and the 400 images of the New York University7 (NYU) [START_REF] Silberman | Indoor segmentation and support inference from RGBD images[END_REF] which only contains small images of thousand pixels, HSID is made up of 100 Wikimedia Common photographs, with a majority having several millions of pixels. In addition, variations of image size are significantly more important in HSID than in BSD or NYU.

In Stutz review [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF], boundary adherence of evaluated methods is analyzed using two measures: the Undersegmentation Error (UE) and the Boundary Recall (BR). Let G be a ground truth segmentation for an image I, S be an oversegmentation of I, B G be the set of boundary pixels in G, B S be the set of boundary pixels in S and N be the number of pixels. The undersegmentation error gets for each object G i in G the set of superpixels required to cover it and counts the number of pixels leaking of G i . The boundary recall checks whether boundaries of superpixels contain boundaries in G:

U E(S, G) = 1 N G i ∈G S j ∩G i =∅ min(|S j ∩ G i |, |S j -G i |) and BR(S, G) = |B S ∩ B G | |B G | (7) 
In fact, even for a human, it is sometimes difficult to know exactly whether a pixel belongs or not to a boundary, Stutz allows a distance of 0.0075 × diag (where diag is the image diagonal length) pixels between boundary points in G and in S.

Unfortunately these two measures are not suitable to evaluate boundary adherence on HSID. To put it in a nutshell, the average score of U E is not significant due to the important variations in foreground areas in HSID images and the Stutz threshold is not suitable for big images. So, we suggest a modification of BR using fuzzy set theory. From B G we define the fuzzy set

B * G∩S with membership function f G∩S (p i ) = exp(- d(p i -p ′ i ) 2 2σ 2
) where d(p ip j ) is the distance between p i and p j locations, and p ′ i = arg min p j ∈B S (d(p ip j )). The function f G∩S returns a value in the range [0, 1], a value of 1 meaning a perfect coincidence between an element in B G and an element in B S . Finally, we propose the fuzzy boundary recall measure

F BR(S, G) = 1 |B G | p∈B G f G∩S (p).
Comparison to the state-of-the-art methods -By design, ASARI satisfy validity property, the only requirement is that vertices in G 0 are connected components. Then, because only adjacent regions are merged, the resulting superpixels are always a partition of I into connected components. The average number of neighbors by superpixel equals to 6 on BSD, NYU and HSID dataset, that is similar to all state-of-the-art oversegmentation methods.

Table 1 compares the results of ASARI to those achieved by the methods QS [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF], FZ [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], SLIC [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], ERS [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] and CRS [START_REF] Conrad | Contour-relaxed superpixels[END_REF], in Stutz review [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF]. On BSD, U E and BR scores of ASARI are similar to those of the state-of-art methods, Table 1. Comparison between ASARI and the state-of-the-art oversegmentations methods reviewed by Stutz [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF]. K is the average number of superpixels and T the execution time in seconds. [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF] 0.60 1500 36 SLIC parameters of [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] 0.58 1648 3 FZ parameters of [START_REF] Mathieu | Segmentation interactive pour l'annotation de photographies de paysages[END_REF] 0.59 1596 10 QS parameters of [START_REF] Stutz | Superpixel segmentation: an evaluation[END_REF] 0.53 1676 97 (c) Scores achieve on HSID. with a lower average number of superpixels (about 100 superpixels below). The adaptive nature of ASARI allows it to increase the conciseness of the produced oversegmentation, with some images partitioned into about 500 superpixels. An example is given in Fig. 1a. On NYU, U E of ASARI slightly less good but BR is similar. The average number of superpixels is more important (about 300 superpixels above). Figure 1b shows that, despite these difficulties, ASARI keeps its ability to adapt. Table 1c shows that ASARI is the method providing the best compromise between boundary adherence and compactness properties on the HSID dataset. The gap is significant with WP (+10% on FBR, for a similar number of superpixels), CRS (+17% with 100 superpixels fewer), SLIC (+2% with 100 superpixels fewer) and QS(+10% with 200 superpixels fewer). The differences with FZ (+2% with a similar number of superpixels) and ERS (+1% with a similar number of superpixels) are less important, but execution times of ASARI are better (near to 2 times faster than FZ and more than 6 times faster than ERS). Figure 1c andd show some examples of ASARI results. In Fig. 1d, the use of texture information allows a clear separation between the foreground and the background, which have similar colors.

Practical application -Interactive segmentation is a semi-automatic segmentation process. The user chooses some pixels (named seeds) and indicates for each of them the element to which it belongs. Features of desired regions are deduced by analyzing these seeds. Usually, adding or removing some seeds can improve the produced result, allowing the user to get any desired segmentation results. Suggested in 2016, Superpixel Classification-based Interactive Segmentation (SCIS) [START_REF] Mathieu | Segmentation interactive pour l'annotation de photographies de paysages[END_REF] creates a segmentation of the image by learning features of superpixels labeled by the user and classifying the remaining superpixels. The image is first oversegmented using FZ, then the average color and the center of mass location of each superpixel are computed. The learning and classification steps are made using a Support Vector Machine (SVM). Currently, despite its promising result, SCIS is not suitable to segment a dataset like HSID. The oversegmentation step using FZ produces a lot of small superpixels, often misclassified by the SVM. The resulting segmentation is noisy and correcting these errors by adding seeds is tedious. An example of this problem is shown in Fig. 2. As shown in this figure, ASARI, by producing more larger superpixels, considerably reduces this noise. In addition, ASARI is faster than FZ.

Conclusion

The main contribution of this paper is the description and the evaluation of a new oversegmentation algorithm, ASARI, which is suitable for datasets with important variations on image sizes and image complexities. The adaptive nature of ASARI and the fact that ASARI creates color and texture homogeneous superpixels while keeping reasonable execution times, allow it to outperform the state-of-the-art methods in such dataset. On other dataset, ASARI obtains results greater or equal to the state-of-the-art methods. The trade-off between boundary adherence, conciseness and efficiency achieved by ASARI offers interesting perspectives. We show a example of ASARI application as a preprocessing step of SCIS method. An implementation of ASARI is available online8 .
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 1 Fig. 1. Results achieved by ASARI on BSD, NYU and HSID.
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 2 Fig. 2. SCIS with FZ and ASARI: a comparison.

The decision to merge or not v i and its most similar neighbor is related to the merging criterion.

Our experiments show that this number of iterations is sufficient to provide good results.
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