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Abstract 

Introduction Pituitary gonadotropins play an essential and pivotal role in the control of 

human and animal reproduction within the hypothalamic-pituitary-gonadal ( H P G )  axis. 

The computational modeling of pituitary gonadotropin signaling encompasses phenomena of 

different  natures  such  as  the dynamic  encoding o f  gonadotropin  secretion, and  the 

intracellular cascades triggered by gonadotropin binding to their cognate receptors, resulting in 

a variety of biological outcomes. 

Areas covered  We overview historical and ongoing issues in modeling and data analysis 

related to gonadotropin secretion in the field of both physiology and neuro-endocrinology. We 

mention the different mathematical formalisms involved, their interest and limits.  We discuss 

open  statistical questions  in  signal  analysis  associated with  key  endocrine  issues. We also 

review recent advances  in the modeling of the intracellular pathways  activated by 

gonadotropins, which  yields promising development for innovative  approaches  in drug 

discovery.

Expert opinion The greatest  challenge to be tackled in computational modeling of pituitary 

gonadotropin signaling is the embedding of gonadotropin signaling within its natural multi-

scale environment, from the s i n g l e  c e l l  level, to the organic and whole HPG level. The 

development of modeling approaches of G protein-coupled receptor signaling, together with 
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multicellular systems biology may lead to unexampled mechanistic understanding with critical 

expected fallouts in the therapeutic management of reproduction.

Keywords: FSH, GnRH, GPCR signaling, hormone rhythms, LH, mathematical models, multi-

scale modeling, systems biology.

Article highlights box: 

 Modeling of pituitary gonadotropin blood levels involves underlying endocrine feedback 

loops to shed light on the complex dynamical patterns of hormonal rhythms.

 Sophisticated statistical tools are needed to decipher the encoding of hormonal signals 

within the HPG axis.

 Dynamical modeling of the intracellular gonadotropin signaling networks leads to a 

mechanistic understanding of the gonadotropin action in a short time scale.

 Multi-scale modeling is needed to renew our understanding of the molecular, cellular, and 

physiological processes underlying the control of the reproductive function.

 Innovative approaches in drug discovery may arise from integrating the cellular and 

intracellular scales in a multi-scale modeling framework of the reproduction axis.

1) Introduction: 

Systems Biology, which heavily relies on mathematical modeling, has long been recognized as an 

opportunity  to  discover  new,  more  efficient  and  safer,  drugs  [1-3].  Systems  Biology  driven 

mathematical models allow one to understand the consequences of a local perturbation on the whole 

network behavior. For example, these models help understanding the effect of a drug, whose target 

is located in a precise cell type, on the physiological function this cell type participates in. These 
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models are also very useful for determining the best targets within a physiological net [4]. As stated 

by the statistician George Box, “all models are wrong, but some are useful” [5]. Indeed, models 

have been proven to be useful in many different situations, from the network-based classification of 

metastatic  cancers  [6],  or  the  susceptibility  to  metabolic  disorders  [7],  to  the  study  of  anti-

angiogenic therapies in cancer [8] and the mechanisms underlying neurodegeneneration [9], just to 

name  a  few. However,  modeling  is  not  a  straightforward  task,  and  requires  both  the  detailed 

knowledge of the studied system, and the selection of the most adapted mathematical formalism. In 

view of the complexity of the reproductive system, arising in particular from the multiple entangled 

levels  of  controls  and its  highly  dynamic  characteristics,  it  is  understandable  that  the  in-silico 

modeling  approaches  to  drug discovery  for  reproductive  biology are  still  in  its  infancy. Yet,  a 

variety of mathematical tools have been used to help understanding the dynamics of the  pituitary 

gonadotropin signaling and its perturbation, within the HPG axis. Here we present the state of the 

art  in  mathematical  modeling  applied  to  pituitary  gonadotropin  signaling,  which  could  help 

designing better therapeutic solutions for reproductive disorders. 

Pituitary  gonadotropins  are  high  molecular  weight  glycoproteins  secreted by a  specific  type  of 

pituitary cells, the gonadotrophs. In vertebrates, the pituitary gland is a pivotal organ within the 

neuroendocrine axes, linking the hypothalamus (and afferent connections) belonging to the central 

nervous system, to the peripheral target organs. In the hypothalamic-pituitary-gonadal (HPG) axis, a 

unique hypothalamic neuro-hormone, GnRH (gonadotropin-releasing hormone), exerts a direct and 

differential  control  onto the production and secretion of two pituitary hormones,  FSH (follicle-

stimulating hormone) and LH (luteinizing hormone) released by the same cell type. 

FSH and LH control the double gonadal function of gametogenesis and steroidogenesis, through G 

protein-coupled receptors (GPCR) expressed specifically on somatic cells.  In the testes,  Leydig 

cells are endowed with LH receptors (LHCGR), while Sertoli cells express FSH receptors (FSHR) 

3



[10]. In the ovaries, granulosa cells of growing follicles bear FSHR, theca and granulosa cells from 

preovulatory  follicles  express  LHCGR [11].  Gonadal  steroid  hormones  like  estradiol  (E2), 

progesterone (P), and testosterone (Te)  modulate in turn the secretion of pituitary LH and FSH,  as 

well as hypothalamic GnRH, within entangled endocrine feedback loops. FSH secretion is further 

tuned by inhibin (a peptide hormone of gonadal origin) and, in addition, inhibin action is enhanced 

or toned down by local paracrine secretion of activin and follistatin, respectively [12]. In female, 

each  reproductive  cycle  is  characterized  by  a  drop in  FSH level,  which  is  first  suppressed by 

gonadal  inhibin  emanating  from  the  whole  cohort  of  terminally  growing  follicles,  while  the 

contribution of the dominant follicle(s) to E2 production further impact FSH secretion at the end of 

the follicular phase [11,13]. Note that there exist other gonadotropins that are not secreted from the 

pituitary.  For  instance,  the  human  chorionic  gonadotropin  (hCG)  has  a  placental  origin,  and 

interacts with the LHCGR of the ovary and promotes the maintenance of the corpus luteum during 

the beginning of  pregnancy. We will deal almost exclusively with pituitary gonadotropins in this 

article.

The secretion patterns of GnRH, FSH and LH have remarkable dynamic features. GnRH is secreted 

in pulses, and its encoding as a pulsatile signal is a prerequisite to sustain gonadotropin secretion. 

As a result of the excitation-secretion coupling in gonadotroph cells, involving calcium-mediated 

exocytosis of secretion granules, LH is also secreted in a pulsatile manner. In contrast, FSH appears 

to be mainly secreted in a calcium-independent basal manner (Note that basal secretion does not 

imply time-constant FSH level nor constant secretion rate). In addition, in each species investigated 

so far, including non human primates [14,15], FSH and LH are secreted massively at the time of 

ovulation, under the control of the GnRH surge, occurring each ovarian cycle [16]. 

4

https://en.wikipedia.org/wiki/Pregnancy
https://en.wikipedia.org/wiki/Corpus_luteum
https://en.wikipedia.org/wiki/LHCG_receptor


In the gonads, at the cellular scale, FSH and LH trigger, through their cognate GPCRs, multiple 

connected  signaling  pathways  conveying  hormonal  signals.  Multiple  feedbacks and  cross-talks 

contribute to a complex signaling network, which results in various cellular responses, spanning 

distinct spatial and time scales, from short-range membrane protein activation to sustained signaling 

and cell-cell communications [17].

Understanding the pituitary gonadotropin signaling is thus a challenging and multi-faceted issue, 

which  does  not  only  encompass  the  outcomes  of  ligand  binding  to  the  receptor,  but  also  the 

dynamic encoding of the gonadotropin signal, subject to multiple feedback controls. In agreement 

to their role as pivotal endocrine players within the HPG axis, LH and FSH signaling networks are 

embedded in a multi-scale framework.

In the following, we will  illustrate,  with the help of selected instances,  different approaches of 

modeling covering some of these facets and calling to various modeling formalisms.

2) Encoding the pituitary gonadotropin signal 

We will  first  give an overview on different computational  approaches  aiming to reproduce and 

analyze the changes in the secretion rates of gonadotropins and the resulting, finely tuned, time-

varying blood levels of pituitary gonadotropins in a physiological context. 

These approaches deal with the encoding of gonadotropin levels as dynamic endocrine signals. 

These signals follow various dynamic regimes, mainly (quasi-)steady states or oscillatory regimes, 

and  are  characterized  by  a  combination  of  properties  (amplitude,  frequency,  duration)  either 

considered on a rather long term (typically on the several-week term of an ovarian cycle, on a day-

to-day basis), or on a shorter term (the several-hour term of secretion events considered as such). 

In  the  former  case,  the  main  motivation  is  to  be  able  to  reproduce  both  qualitatively  and 

quantitatively the patterns of FSH and LH levels, together with the levels of gonadal hormones. It 

amounts to setting in a proper mathematical music the multiple and entangled feedback loops at 
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play within the HPG axis. In the latter case, the main motivation is to dissect the different steps (i.e. 

production, release, clearance) of the secretion events in order to get access to hidden endocrine 

information  (typically  the  secretion  rate  in  the  cavernous  sinus  [18]),  and  to  analyze  possible 

differences in the secretion patterns specific to physiological conditions (i.e. age, gender, puberty) 

or pathological situations.

2.1) Modeling the fluctuations in hormonal levels as the result of endocrine feedback loops 

within the HPG

The observation of the periodic and coordinated fluctuations in hormone levels along the ovarian 

cycle, especially along the menstrual cycle in the human species, has been the initial driving force 

for the development of dynamic models of the interactions between the ovaries and pituitary gland. 

A long modeling history, continuing up to now [19], started from the core “push-and pull” concept 

associated with the FSH/estradiol feedback loop (FSH-stimulated estradiol secretion as opposed to 

estradiol-inhibited FSH secretion) studied as soon as in the early 1940s. The pioneering work of 

Lamport  [20] was the first  to investigate this  question from a mathematical perspective and to 

introduce  the  natural  mathematical  formalism  of  ordinary  differential  equations  (ODE)  (Brief 

definitions  and  explanations  of  all  technical  mathematical  terms  are  provided  in  a  glossary  in 

annex.)  to tackle endocrine issues.

The two-dimensional linear ODE model analyzed by Lamport in 1940, modeling the estradiol level 

as a damped harmonic oscillator, failed to reproduce properly the pattern of estradiol oscillations. It 

was only twenty years later that this drawback was circumvented by Thompson [21], who separated 

the contribution of the growing dominant follicle (the future ovulatory follicle) to estradiol secretion 

in a three dimensional extension of the initial model. The model studied by Thompson is piecewise 

linear with reset “decision” functions (the size of the dominant follicle is reset to 0 after reaching a 
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given  threshold,  representing  the  occurrence of  ovulation),  and  its  solution  is  an  undamped 

oscillator.

Later developments, with a gold age in the early 1970s, have progressively complexified the model 

core  structure,  by  adding  nonlinearities  in  hormonal  interactions,  and  other  endocrine  players, 

mainly progesterone and LH. Among others, a seminal instance is provided by the work of Bogumil 

et al. [22]. They considered a rudimentary pulsatile-like mode of LH secretion and distinguished the 

episodic  secretion  regime  during  the  ovulatory  surge  from  the  constitutive  FSH  secretion  or 

pulsatile LH secretion in the remaining of the ovarian cycle (the authors qualify as “tonic” and 

“phasic”  the  general  versus  surge  secretion  regime).  The  key  ingredients  of  the  gonadotropin 

dynamics mostly rely on three mechanisms: (1) FSH and LH secretions are controlled by nonlinear 

feedback terms mediating the effects of gonadal, and possibly adrenal, steroids; (2) FSH and LH 

removal rates in the plasma  are linearly proportional to their plasma levels (first order process, or 

single exponential decay); (3) the LH surge occurs as a result of LH accumulation in the pituitary 

gland, controlled by stepwise functions that integrate through time the positive stimulus of steroids. 

Bogumil et al also introduced a more elaborate description of ovarian follicle dynamics, again with 

threshold-mediated  transitions,  including  the  FSH-induced  recruitment  of  a  cohort  of  growing 

follicles,  as  well  as  different  development  stages  for  the  dominant  follicle  and  corpus  luteum. 

Altogether, combining the endocrine variables with the physiological ones, the model consists in 34 

equations, involving a system of algebraic-integro-differential equations.

An  alternative  way  to  generate  proper  hormonal  patterns  while  keeping  a  relatively  tractable 

mathematical  formalism  is  the  use  of  delay  differential  equations  (DDE).  In  the  context  of 

gonadotropin  dynamic  models,  explicit  constant  time  delays  are  often  used  in  feedback  terms 

entering  the  FSH  and  LH  secretion  rates.  This  is  consistent  with  the  effective  latency  in  the 
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feedback of gonadal hormones, upon pituitary gonadotropin hormone synthesis. For instance Clark 

et al. have designed in [23] an autonomous DDE system reproducing the average levels of FSH and 

LH,  subject  to  the  control  exerted  by  estradiol,  inhibin  and  progesterone,  without  introducing 

stepwise decision functions nor convolution integrals. Applying tools from Hopf bifurcation theory 

and  performing  numerical  simulations,  they  have  shown the  existence  of  two  distinct,  locally 

asymptotically stable, periodic solutions. The first one is consistent with the hormonal patterns in 

normal  menstrual  cycles,  and  the  other  one  to  an  abnormal  cycle,  that  can correspond  to  a 

pathological endocrine status such as the Polycystic Ovarian Syndrome. Further developments and 

variants of this model have been proposed and are reviewed in [24]. The model can be refined by 

embedding additional variables to include more detailed biological knowledge. In particular, the 

distinction between two types of inhibin (inhibin A and  inhibin B), which affect differentially the 

synthesis of FSH, and the role of Anti-Müllerian Hormone (AMH) on the developing follicles was 

included in [25]. These refinements allowed the authors to broaden the timescale of the model up to 

a  lifelong  model,  and to  investigate  the  impact  of  a  putative  AMH treatment  on  the  onset  of 

menopause.

The efforts in developing models of hormone interactions mainly regard the hypothalamic-pituitary-

ovarian axis in women. Nevertheless, several approaches have tackled similar issues in different 

breeding [26] or laboratory species [27]. For instance, in line with the approach followed in [23], a 

model based on DDE has been designed in [26] for the bovine species, whose ovarian physiology is 

rather  close  to  human  ovarian  physiology  (roughly  comparable  duration  of  the  ovarian  cycle, 

existence of follicular waves and similar size of the ovarian follicles). Interesting approaches in fish 

species  [28,29] have  also  been  developed  with  an  underlying  motivation  of  comprehensive 

ecotoxicology. 
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The models discussed so far  are  physiologically-based pharmacokinetic  (PBPK) models,  where 

secretion/clearance mechanisms are included as building blocks, and hormone circulating levels are 

related to one another by means of linear or nonlinear functions. Such equations intend to describe 

in a simple (or even simplistic) way the recurrent growth and decline of the steroidogenic ovarian 

tissues, ovarian follicles and corpus luteum. This is possible with the help of logic, rather than 

dynamic  smooth,  functions  to  compensate  for  the  inaccurate  understanding  of  some  processes 

and/or to skip too complex phenomena. The rationale behind the construction of such models is thus 

to embed the endocrine and physiological knowledge available at the time of the model design in a 

single mathematical framework. Beyond the question of gonadotropin dynamics, the concomitant 

study  of  such  models  has  motivated  important  advances  in  the  theoretical  understanding  of 

dynamical systems [30,31] in the mathematical physiology and mathematical biology communities.

As far as the hypothalamic-pituitary-testicular axis in men or males, a similar core structure as the 

E2-FSH  push-and-pull  concept  arises  from  the  GnRH-LH-testosterone  feedback  loop:  GnRH-

stimulated LH secretion,  LH-stimulated testosterone secretion,  and testosterone-inhibited GnRH 

secretion. This concept was first illustrated by Smith [32] who used the ODE formalism to derive a 

three-dimensional model analogous to the widespread feedback repression or Goodwin model (see 

[31]), and obtained an oscillatory solution that could describe periodic hormone patterns. We refer 

to  [33]  for  recent  developments  based  on  a  DDE  formalism,  and  model  outputs  matching 

experimental  observation  under  normal  and  perturbed  conditions  (such  as  castration  and 

testosterone replacement). 

2.2) Computational approaches of the GnRH and LH pulse generator

The endocrine system in male, as compared to females, has relatively simpler key features: a main 

gonadal  player,  testosterone,  a  static  pool  of  steroidogenic  cells  in  the  gonad,  no  surge  nor 
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qualitative change in the secretion regime on the central side. Inhibin also affects FSH secretion in 

males [10], and oestradiol seems to contribute significantly to the steroid feedback exerted by testes 

onto the hypothamo-piuitary axis. However, the role of testosterone is prominent in the control of 

the GnRH-LH system, and has been the main focus of modeling approaches designed on the whole 

HPG scale. This has encouraged the design of more comprehensive modeling approaches facing 

explicitly the issue of GnRH and LH pulse modeling and its embedding within the whole HPG axis. 

The difficulty arises from the almost discontinuous character of pulses (with GnRH signal being 

encoded as a square wave) and the discrete nature of the times of pulse release events. To represent 

point events, one has to call  to other mathematical formalisms than autonomous ODE or DDE 

systems:  stochastic  point  processes  [34],  stochastic  differential  equations  (SDE)  [35],  excitable 

dynamics in the framework of impulse ordinary differential equations [36], or stiff nonlinear ODE 

with several timescales [37].

Even  if  the  variety  of  the  involved  formalisms  hamper  direct  comparisons  between  these 

approaches, they all share the ability to generate time series of GnRH and/or LH inter-peak intervals 

(IPI) to follow on a short term basis (generally on the order of several hours) the pulse frequency 

and the frequency modulations related to physiological (e.g. circadian rhythmicity at puberty) or 

pathological  (e.g.  exposure to  endocrine disruptors)  conditions.  In  contrast,  notwithstanding the 

specific mathematical formalism, they may differ according to the access to endocrine data. 

Clinically-oriented studies can only make use of LH time series.  Information on GnRH activity is 

not available, so that GnRH pulse times must be inferred from LH pulse times. In this framework, 

even if elaborate theoretical and computational works, mostly based on deconvolution methods, 

manage to reconstruct the most plausible (in a statistical sense) GnRH signal, no direct validation is  

possible. When such approaches are deployed with an objective of signal analysis such as pulse 
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detection  [38,39],  it  becomes  very  difficult  to  assess  the  validity  of  the  detection  results. 

Nevertheless  such  studies  have  a  clear  methodological  interest  since  they  have  led  to  the 

development of useful statistical tools dedicated to challenging problems in data analysis. Also, the 

use of simulated secretion data, as performed in [40] and [41], can be of great help to assess the 

sensitivity to noisy and subsampled data, and the positive and negative predictive values of the 

detection method.

In contrast,  in experimentally-oriented studies,  one can take advantage of other sources of data 

retrieved in non-human primates, rodent or ruminant species. These are mainly multi-unit activity 

recordings (MUA, volleys of electrical activity recorded from the median eminence [42]), providing 

an  electrophysiological  correlate  of  the  GnRH-induced  LH pulses,  and GnRH levels  measured 

directly from the pituitary portal blood with a high time resolution. 

MUA data have motivated the design of stochastic point process models to investigate the temporal 

structure of the HPG activity, which were used for instance in  [34] to detect possible  memory 

mechanisms in successive LH pulses, as well as a circadian rhythm. 

The seminal work of Keenan  et al. [35] has provided a SDE-based description of the male HPG 

incorporating a sophisticated point process for GnRH and LH pulses. 

A Weibull renewal process, with an intensity depending on both GnRH and testosterone, represents 

the  GnRH  release  times,  and  drives  subsequent  LH  release  times,  subject  to  a  deterministic 

refractory period and fixed time delay. The pulse shape follows a generalized gamma density. The 

pulse  amplitude  is  derived  from  the  detailed  dynamics  of  the  content  of  exocytosis  secretion 

vesicles. These dynamics combine previous accumulation and new synthesis of LH or GnRH, ruled 

by stochastic rates (logistic functions integrating over time the testosterone and/or GnRH regulating 
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activities, perturbed by an Ornstein-Uhlenbeck process). A continuous mode of synthesis for LH as 

well as for testosterone is also included, which eventually filters the upstream pulsatile signals. The 

comparison of  the model  outputs with data  was later  performed in [43]  to  investigate  possible 

systematic changes affecting the dynamics of the GnRH-LH-Te axis in aging men. This SDE-based 

pulse generator has also been taken-up in [44] to represent pulse events in a female HPG model.

In the framework of pulse modulated systems, Churilov et al. have also incorporated the pulsatile 

secretion of GnRH into the ODE model initially proposed in [32], by introducing deterministic 

jump discontinuities  as  Dirac  delta  functions  for  the  pulses  in  [45].  Both  the  firing  times  and 

amplitudes of the jumps are modulated by the testosterone level. The detailed mathematical analysis 

of  the stability  of  periodic  solutions  is  challenging;  it  is  based on the design of  an equivalent 

discrete time map (between any two GnRH pulses) and the study of its fixed points. 

In the framework of excitable systems, Brown et al. have designed a mathematical neuroscience 

approach to represent in a compact and averaged way the dynamic neuron network underlying the 

GnRH/LH pulse  generator  [36].  They  used  the  excitation  property  of  a  well-known model  in 

electrophysiology,  the  FitzHugh-Nagumo  (FHN)  model.  In  this  model,  the  input  is  a  point 

stochastic process with varying amplitude and intensity, which generates the GnRH and LH pulses. 

The slow-fast  structure  of  the  FHN model  was not  fully  exploited  here.  In  contrast,  timescale 

separation was at the source of the design and analysis of a multiple timescale model involving 

coupled  FHN  systems  and  coping  not  only  with  GnRH  pulses,  but  also  with  the  recurrent 

alternation between the pulse and surge regimes [37].  This GnRH pulse and surge generator is also 

able to capture the modulation of pulse frequency along an ovarian cycle and the effects of estradiol 

or progesterone bolus [46], in agreement with the whole corpus of biological knowledge drawn 

from GnRH portal blood data.
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The objective of the deconvolution analysis is to recover the full secretion signal. Deconvolution-

based methods are somehow close to the former PBPK-like models mentioned in the first part of 

this  section,  in  the  sense  that  they  aim  to  explain  the  encoding  of  dynamic  signals  by  the 

combination of a secretion mechanism with a clearance mechanism. The convolution ensues from 

the fact that, at a given time t, hormone molecules secreted at any time s less than t, and still not  

cleared-off by time t, can contribute to the current hormone level. We refer to [40] for an instance of 

non-parametric reconstruction of LH and FSH secretory rates, upon exogenous GnRH stimulation. 

In general, the results of the deconvolution procedure are dependent on the specific hypotheses 

underlying the secretory burst shape and clearance mechanisms, as well as on the statistical method 

and regularization scheme (see [47] for a review and comparison of different deconvolution-based 

methods).

Empirical detection methods have been provided outside the deconvolution framework, with the 

objective to provide one with a reliable sequence of IPIs, hence to detect the pulse peak times only, 

rather  than  to  reconstruct  the  whole  signal.  By  necessity, they  often  rely  on  ad-hoc  threshold 

parameters and may generate false-positive and false-negative errors, mainly due to the fact that the 

effective, almost instantaneous, pulse times are almost never observed experimentally, so that the 

selection of the locally highest values as time peaks may be misleading. To circumscribe this pitfall,  

the algorithm proposed in [41] involves a mixture of local, semi-local and global criteria combined 

with basic PBPK notions (LH half-life). Its reliability has been deeply investigated on simulated 

and reference data, and it has been applied in different experimental contexts (see e.g. [48]). The 

field of pulse/peak detection is still very active from the methodological ground (see for instance 

the use of nonlinear diffusion equations reviewed in [49]).
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The issue of the statistical estimation of signal features becomes even harder when one considers 

several linked data series, such as joint measurement of LH and FSH levels [50]. To decipher the 

inherent multi-hormone interactions gonadotropins are part of, Veldhuis et al. have combined peak 

detection algorithms, deconvolution-based methods and biomathematical modeling to reconstruct 

unobserved signals in a framework called ensemble models [51]. However, methods are still  in 

active development, and no gold standard has been achieved yet. For instance, network inference 

and model-free approaches may also be used to unravel hormonal regulations [51,52].

3) Decoding the pituitary gonadotropin signal at the cellular level

Pituitary gonadotropins transmit their signal through GPCR receptors (FSHR and LHCGR [53]) in 

the gonadal cells, to control gametogenesis and steroidogenesis. The binding of gonadotropins to 

their cognate receptors triggers the activation of several intracellular signaling pathways and leads 

to global changes in gene transcription [54-56] and protein translation [57,58]. 

3.1) Interaction network

Signaling cascades activated by the gonadotropins mainly originate from the interaction of their 

receptors with Gαs and β-arrestin proteins. However, the large number of molecules participating in 

these  reaction  cascades,  the  numerous  interconnections  (with  feedback)  existing  between  these 

molecules,  and  the  cross-talks  between  pathways,  partly  underlie  the  complexity  of  signaling 

networks [59].

A first step toward the understanding of the signaling dynamics is based on the notion of interaction 

network (see Figure 2), i.e. a graph summarizing the links (direct or indirect activation, inhibition, 

modulation, complexation, etc) between the molecules involved in the various signaling cascades. 

This graph may be derived from a careful analysis of biological experiments in various cell models. 
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Several  attempts  to  characterize  FSH-induced  signaling  networks  have  been  made  recently,  in 

particular in Sertoli cells [17,60,61], in granulosa cells [17] or in cumulus cells [62]. See also [63] 

for a recent curation of the literature on FSH signaling. We are not aware of analogous results for 

LH-induced signaling networks,  yet  recent  experimental  works  shed light  on the  different  LH-

dependent pathways in granulosa cells [64].

To  face  the  complexity  of  interaction  networks,  and  the  always  increasing  volume  of  data, 

especially –omics data, computational tools are needed to gather and integrate information.  For 

example, enrichment of -omics data following specific hormone stimulation is possible through the 

confrontation with large pathway databases,  such as Ingenuity®  Pathway Analysis  or Cytoscape 

[65]. Such an approach has been used in [62] to identify key functions and pathways associated 

with a list of differentially expressed genes after FSH stimulation in bovine cultured cumulus cells. 

Logic-based inference may also complete possible reaction networks by abductive reasoning with 

perturbation  experiments  (knock-in,  knock-out,  siRNA etc)  and  has  been  applied  to  the  FSH-

induced signaling network in [66].

3.2) Receptors Structures, trafficking and signaling bias

Studies on the gonadotropin receptors biology may also inform on receptor trafficking, cross-talks 

between pathways, or identification of scaffolding or hub molecules [67]. Structural modeling helps 

to gain insights on specific mechanisms such as the activation of the receptor upon ligand binding, 

although the structures of the full-length gonadotropin receptors are currently not available. One 

instance of such an approach is provided by [68], where structure modeling helps to understand the 

different actions of the human luteinizing hormone (hLH) and the human chorionic gonadotropin

(hCG)  at their common receptor. Although hLH and hCG occupy the same binding site on the 

extracellular part of the receptor, 3D homology models, based on the known FSH/FSHR structure 

[69], predict that the subsequent interaction with the hinge region of the  LHCGR receptor varies 
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between  the  two  hormones.  See  also  [70]  for  a  review  on  LHCGR and  its  structure-function 

relationships, [67] for a review on FSHR and [71] for recent advances in GnRH receptor structure. 

Structural modeling approaches may also reveal the architecture of molecular complexes involving 

the receptor [72], and predict direct interactions having important consequences within a signaling 

pathway.

Receptor  oligomerization  (formation  of  a  protein  complex  that  consists  of  a  small  number  of 

receptors)  also  play  an  important  role  in  the  signaling  networks.  In  particular,  homodimers 

(complex  made  of  two  receptors  of  the  same  type)  and  heterodimers  (complex  made  of  two 

different receptors) have been shown for FSHR and  LHCGR [73,74], which adds a new layer of 

complexity.  Indeed,  these  different  oligomers  might  induce  different  signaling,  and  may  be 

selectively favored by a given ligand (natural or synthetic hormones, small molecules, etc).  In 

particular, the signaling of these oligomers might be biased relative to each other, that is, the same 

set of signaling pathways is triggered, but with different relative efficacy. Signaling bias is now 

considered  as  a  common  feature  to  many  GPCRs,  and  has  profound  therapeutic  implications 

[75,76].  Recent evidence show that gonadotropin receptor signaling pathways can be biased by 

allosteric modulators or differentially activated in a context-dependent manner, leading to different 

cellular outcomes [77-80] like steroid productions. Functional selectivity also probably occurs at the 

GnRH receptor, which opens the way to interesting pharmacological opportunities [81].

From  the  modeling  viewpoint,  signaling  bias  has  been  revealed  using  classical  equilibrium 

pharmacology models [82]. The so-called operational model is widely used to infer bias from dose-

response data [83]. However, the current availability of  fluorescence (or Förster ) resonance energy 

transfer  (FRET, mechanism describing energy transfer  between two light-sensitive molecules,  a 

donor  and  an  acceptor)  and  bioluminescence  resonance  energy  transfer  (BRET,  using 

bioluminescent luciferase as donor molecules instead of a light-sensitive molecule which has to be 
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initially  excited  by  illumination)  techniques  [84,85],  as  well  as  recent  evidence  of  temporal 

signatures of bias signaling [86,87], motivate the use of dynamic modeling techniques to decipher 

the mechanisms underlying functional selectivity.

3.3) Intracellular dynamic modeling

Beyond the large size of the GPCR interaction networks and the numerous possibilities of cross-

talks  between  signaling  pathways,  an  additional  and  key  layer  of  complexity  comes  from the 

dynamic  properties  of  intracellular GPCR  signaling.  In  fact,  different  types  of  stimulations 

(biochemical nature of the ligand, temporal pattern, dose etc) may activate the same molecules but 

at  different  subcellular  locations  or  with  distinct  temporal  signatures,  leading  to  very  different 

cellular responses [88,89]. 

Various modeling approaches have been used to represent GPCR signaling dynamics [90-93]. Once 

an interaction network has been built, a common framework based on ODE is used to dynamically 

represent the activation of signaling pathways. The interaction network is appropriately interpreted 

as  a  biochemical  reaction  network,  and  each  reaction  is  translated  into  infinitesimal 

elimination/production rates for the concentration of its reactant/product,  using the law of mass 

action. 

A standard iterative  workflow between model  construction and experimental  data  is  applied to 

address  specific  biological  questions  [94].  Once  the  dynamic  model  has  been  built,  extensive 

optimization  algorithms  are  used  to  estimate  unknown  parameters  (kinetic  rates,  initial 

concentration, etc) [95], and dedicated statistical frameworks can be used for model selection [96].

To  our  knowledge,  there  are  few  detailed  works  on  the  intracellular modeling  of  pituitary 

gonadotropin intracellular signaling. Clément et al. [97] proposed a model of the dramatic increase 
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in  the  efficiency  of  cAMP response  along  follicular  development.  A steady  state  analysis  and 

parameter sensibility have been performed in the case of constant input, and numerical simulations 

were done for  time-varying inputs.  The dynamic regulation of  p70S6 kinase,  through both the 

cAMP and mTOR pathways, after either FSH or insulin stimulation, has been compared at two 

different  developmental  stages  in  primary  rat  Sertoli  cells  [98].  This  model  gave  access  to 

experimentally  unavailable  detailed  quantitative  description  on  p70S6  kinase  complex 

phosphorylation mechanisms. At a coarser scale, Quignot and Bois [99] have used a dynamic model 

to  simulate  steroid  synthesis  under  FSH  stimulation  and  investigated  the  effects  of  endocrine 

disruptors on steroidogeneis,  using both  in-vitro and  in-vivo experimental data on rat  granulosa 

cells.  Their  model  includes  the  CYP19  aromatase  and  Hsd17b1  enzyme,  whose  syntheses  are 

known to be regulated by FSH through the cAMP signaling pathway. These enzymes control in turn 

the production of gonadal steroids.

One can expect that this research field will be rapidly growing, as much biological knowledge has 

been  gathered  recently  (see  sections  above  2.1,  and  2.2),  and  important  and  challenging  open 

questions remain to be tackled from the modeling viewpoint. The temporal encoding of hormonal 

signals,  as  discussed  in  the  first  section  of  this  review,  is  a  powerful  information-carrying 

mechanism, since cells may be able to behave as sophisticated decoding sensors [100]. 

Deciphering the impact of the pulsatile nature of the signal, and possible differential effects of the 

pulse frequency (as it is naturally the case for LH), on the downstream intracellular targets [101] is 

a  particularly  relevant  issue  in  this  context.  The  study  of  the  respective  contribution  of  the 

amplitude,  duration  and  frequency  of  the  signaling  events  will  require  the  design  of  specific 

experimental setups, such as microfluidic devices for instance, allowing one to control accurately 

the encoding of the input signal, combined with the development of mathematical methods suited to 

the analysis of non-autonomous dynamical systems [102]. Up to now, the decoding of GnRH pulses 
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by gonadotrophs has retained much more attention than that of LH pulses by gonadal cells. This is 

probably due to the fact that the pulsatility of GnRH is an absolute prerequisite for its biological  

action. Moreover, the frequency of GnRH pulses differentially controls the expression of the FSH 

and LH beta subunits and the release rates of FSH and LH (see review [103]). An additional interest 

in the framework of this review is that the decoding of GnRH pulses results in the encoding of 

gonadotropin signals. Hence the insight gained from models dedicated to GnRH pulse decoding will 

certainly be beneficial  to  the understanding of  pituitary gonadotropin signaling as  a  whole.  An 

impressive amount of modeling work has been dedicated to GnRH signaling (which falls out of the 

scope  of  this  article,  see  a  comprehensive  review in  [104]).  These  approaches  raise  a  generic 

theoretical  question:  which  network  motifs  are  able  to  decode and discriminate  different  pulse 

frequency-coded signals and/or to preserve the frequency information downstream in the signaling 

cascades? Some steps forward have been made to answer this question through the careful analysis 

of low-dimensional ODE models corresponding to small  network motifs [105,106]. Information 

theory and stochastic modeling have also been used to assess how reliable a signaling pathway can 

be in transmitting information from a given input into a given output [107]. Yet, much work is still 

needed to correctly embed these theoretical results in a realistic signaling network.

4) Conclusion

Many efforts in the study of gonadotropin signals have been put on modeling the fluctuations in 

circulating hormone levels on a day-to-day basis and on the statistical and mathematical analysis of 

the GnRH-driven LH pulse generator. This is mostly due to the wide availability of endocrine time 

series and their interest for clinical investigations. Mathematical modeling has proven to be useful 

and successful in bringing qualitative and quantitative information on hormonal rhythms. These 

approaches  are  still  under  active  development,  and models  are  being  challenged to  generate  a 

variety of behaviors including relevant pathological situations. Current challenges in this direction 
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include data fitting and statistical analysis of the measured signals (times series analysis), to supply 

information  as  accurate  as  possible  on  unobservable  variables  in  natural  and  pathological 

conditions. Although the mathematical modeling approaches in reproductive pharmacology is still 

to  be  much  more  developed,  we  believe  that  these  models  will  be  particularly  important  for 

evaluating the consequences of treatments, either in pathological situations or for medically assisted 

procreation. 

Yet, there will remain limitations in terms of mechanistic interpretation as long as the cellular and 

intracellular scales are not embedded in larger scale approaches. The GPCR community is very 

active currently, and has  for  instance developed new experimental  tools that  shed light  on key 

mechanisms of GPCR trafficking. It is to be expected that the modeling of pituitary gonadotropin 

signals will benefit from a larger effort of the GPCR modeling community [108]. In turn, this will 

bring decisive tools for drug screening and development of innovative approaches in drug discovery 

for reproductive biology.

5) Expert opinion

In this review, we have illustrated some computational modeling approaches dealing with the 

proper assessment of FSH and LH release from rather  blurred  experimental data,  the 

phenomenological “push-and-pull” like hormone dynamics ensuing from the endocrine dialogs 

between the gonads and pituitary, the detailed description of the molecular pathways triggered 

by FSHR  and  LHCGR, and some associated  structural biology issues. Even if these issues 

have been dealt  partially  from the modeling viewpoint,  there  still remain many open 

questions.

To our opinion, the greatest challenge to be tackled is embedding gonadotropin signaling within 

its natural multi-scale environment, which encompasses the following different scales: the 

cellular level, the cell-to-cell level, and the cell population level.
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At the cell level, there remain many challenges regarding the intracellular networks downstream 

the gonadotropin receptors.  To date, most attention has been put on canonic second  messenger 

pathway (such as cAMP),  while  it  is  now  clearly  established that  there  are  several 

distinct  signaling  modules,  such as  β-arrestin-induced ones [76].  T h e  s y s t e m a t i c 

a c c o u n t  o f  cross-talks between gonadotropin receptors, with growth-factor and/or steroid 

induced pathways, or even direct conformational effect of steroids, will also be decisive to yield 

more predictive computational models in drug discovery.  An instance of functional interaction of 

great physiological impact is provided  by  the granulosa cells of terminally developing  ovarian 

follicles in which FSHR and LHCGR coexist. FSHR and LHCGR signaling interact in different 

ways in granulosa cells. First the expression of LHCGR in granulosa cells is induced by FSHR 

signaling. Second, once granulosa cells are endowed with both FSHR and LHCGR, FSH and LH 

act in synergy on cAMP and steroid synthesis (see l o w e r  panel of Figure 3). Finally, in those 

cells there might be physical interactions between FSHR and LHCGR, yet such interactions remain 

to be assessed in vivo (there are evidence in in vitro devices [73,74]).

Systems biology approaches, able to aggregate biological knowledge in a single 

framework and predict effect of (physiological or pharmaceutical) alterations of 

these networks,  are going to be key tools in drug discovery in reproduction. 

Concomitantly, methodological improvements will be needed as more involved 

formalisms are required. The  spatialization of the signaling modules and actors (nucleus, 

cytoplasmic, scaffolding, endocytosis) has to be taken into account, a s  i t  can be associated with 

clearly different kinetics, hence different final biological  outcomes [109].  For  instance,  a 

general mechanism yielding persistent cAMP signals triggered by internalized GPCR 

has  been  proposed  and  supported  by  a  reaction-diffusion  model  [110] . Recently, this 

mechanism has been revealed for the LHCGR in mural granulosa cells by [111], and the authors 

have suggested that it could contribute to transmit signals up to the oocyte and be physiologically 

21



relevant for oocyte meiosis resumption. Spatial modeling approaches will then rapidly develop in 

the need of refined description of the signaling networks.

In addition, stochastic modeling approaches also becomes important. The recent 

study on the GnRH receptor at the single cell level [107] has allowed one to 

understand how negative feedback in the ERK signaling pathway provides an 

optimal information transfer  at  intermediate  feedback levels.  It  is  thus to  be 

expected that advances in experimental tools will allow a more general study of 

signaling pathways at the single cell level, and that stochastic modeling will be 

helpful to decipher inherent biological variability and the intrinsic role of cell-

cell response variations.

At the cell-to-cell level, the intercellular communication between cells expressing either LHCGR 

or FSHR is a key mechanism within the HPG axis. 

A typical instance  of coordination  between FSH and LH signaling is the control of 

steroidogenesis in the somatic cells of ovarian follicles. LH-induced signaling in theca cells 

results in the production of androgens that are transferred to granulosa cells. In these latter cells, 

the androgens are converted into estrogens thanks to FSH-induced expression of the  aromatase 

enzyme. This process is known as the two-cell two-gonadotropin model [112] (see upper panel 

of Figure 3 ). It has been considered in a phenomenological, coarse-grain manner in [44] [113], 

yet would deserve more dedicated studies, all the more since it  can give rise to imbalanced 

steroidogenesis  as encountered  in pathological  situations such as  the Polycystic  Ovarian 

Syndrome  [114].  Again,  spatial  modeling  may  also  help  here  to  understand  how  the  spatial 

distribution of FSHR and LHCGR within a follicle can affect the signaling processes [115].
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A  comparable  coordination  between FSH and LH signaling  exists  in  the 

spermatogenesis  process.  When stimulated by LH, Leydig cells  secrete  testosterone, 

which  together  with  FSH  stimulate  Sertoli  cell  activity  and  spermatogenesis  [116] . 

However, up to our knowledge, there is no precise mathematical modeling to decipher this 

cell-cell  communication.  Undoubtedly,  theoretical  approaches  will  reveal  nontrivial 

behaviors  of  this  system,  and  will  permit  to  shed  light  on  possible  alterations  of  its  

dynamics.

Finally, the ultimate challenge will be to embed gonadotropin-induced decision-making of 

individual  cells into the mechanistic modeling of tissular or organic functions subject to 

systemic whole- body controls (cell population and tissue level). This means connecting fine-grain 

models designed a t  each level of the HPG. Some steps forward have already been made through 

the design and study of spatio-temporal  multi-scale models for structured cell populations 

[117,118] in the context of ovarian follicle development. The gonadotropin-induced signaling is 

explicitly accounted for by control terms driving both the cell fates locally (proliferation, terminal 

differentiation, cell death)  and the whole cell dynamics  globally. The simulation  and 

mathematical analysis of such models are really tricky and necessitate dedicated mathematical 

and computational developments. Even if the formulations of the control terms  a r e  b a s e d 

o n  biochemistry, they remain  very compact.  An even more challenging science front,  both 

from the  experimental and  mathematical/computational grounds,  consists in coupling the 

detailed  dynamics  of intracellular signaling networks  induced by gonadotropins ,  with the 

dynamics of cell populations underlying physiological functions, which would open the way to 

unheard-of fallouts in systems biology and systems pharmacology.
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Figure 1: the hypothalamic-pituitary gonadal (HPG) axis

As  any  neuroendocrine  axis,  the  reproductive  (hypothalamic-pituitary  gonadal)  axis 

involves three anatomic levels : the hypothalamus and pituitary gland on the central side, 

the gonads (ovaries in females, testes in males) on the peripheral side. The gonadotropin-

releasing hormone (GnRH) is secreted by endocrine neurons of the hypothalamus into a 

dedicated portal system, which preserves its encoding as a pulsatile signal up to its target 

cells within the pituitary gland, the gonadotrophs. In response to GnRH pulses, these cells 

are able to release both gonadotropins, the follicle-stimulating hormone (FSH) and the 

luteinizing hormone (LH). FSH and LH are released into the general blood flow and act 

upon the somatic cells of the gonads to sustain both gametogenesis (oocyte and sperm 

maturation) and steroidogenesis (production of steroid hormones such as progesterone, 

testosterone and estradiol). The main source of steroid hormones are Leydig cells in the 

testes, granulosa and theca cells  in the ovarian follicles and luteal  cells  of the corpus 

luteum  (the  histological  remnant  of  follicles  after  ovulation)  in  the  ovaries.  In  turn,  

gonadal steroids affect the production and secretion of both the hypothalamic GnRH and 

gonadotropins, while FSH secretion is further modulated by gonadal inhibin. In addition, 

in females, at each ovarian cycle, the GnRH pattern switches from a pulsatile secretion 

regime to a surge regime resulting in a massive and prolonged increase in GnRH level, 

which triggers the LH ovulatory surge. The inserts represent the change in the estradiol 

and progesterone levels over a whole ovarian cycle, on a day-to-day basis (left side) and 

the changes in testosterone levels on an hour-to-hour basis (right side).
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Figure 2: Schemat ic  view of  the FSHR signaling network

Representation of a model of the FSHR signaling network, gathering various signaling 

levels:  trans-membrane  receptors,  transducer  molecules,  second  messengers,  effector 

molecules and kinases, transcription factors and translation modulators, mRNA and genes. 

Note  that  only  a  small  subset  of  FSHR signaling  network  is  shown.   Roughly,  four 

(linked) signaling pathways are represented: (i) Activation of calcium channels, mediated 

by either Gq or the adaptor protein,  phosphotyrosine interacting with PH domain and 

leucine zipper 1 (APPL1); (ii) p38/ERK/PKA cAMP-dependent pathway; (iii) PI3K/AKT 

Gs-dependent pathway; (iv) mTOR/rpS6 , both Gs and β-arrestin dependent pathways. 

Note  that  these  pathways  are  neither  linear  chain  nor  independent  of  each  other,  as 

multiple cross-talks and retroaction loops exist.  LHCGR and EGFR are also represented 

at  the  cell  membrane,  to  highlight  possible  cross-talks  and  receptor  trans-activation 

(LHCGR is known to activate Gq, Gi, Gs, β-arrestin and Src pathways; EGFR activates 

PI3K and ERK). Finally, while some information on FSH-dependent gene transcription 

and  protein  translation  is  available  in  the  literature,  a  current  open  question  is  the 

understanding of the comprehensive mechanistic link between the signaling pathways and 

gene expression level (thus, we have not represented any arrow here). Note also that the 

protein encoded by the gene AREG interacts with EGFR (thus adding another level of 

complexity in the cross-talks).
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Figure 3: coordination between FSH and LH signaling

Upper panel : the two-cell two-gonadotropin model

In the ovaries, granulosa cells from ovarian follicles express FSH receptors while theca cells 

express LH receptors. The two cell types function in a coordinated manner, especially as far as 

the synthesis of steroid hormones is concerned. LH-induced signaling in theca cells results in 

the synthesis  of testosterone from  progesterone,  catalyzed  by the  CYP17A1  enzyme. The 

aromatization of testosterone into estradiol  by  the CYP19A1 enzyme is in turn induced by 

FSH signaling in granulosa cells.

Lower panel : FSH and LH synergic signaling in granulosa cells

Although  most of the time granulosa  cells are deprived of LH receptors,  they can become 

endowed  with both gonadotropin receptors  in specific physiological conditions,  namely in 

follicles which have  been selected for ovulation. In these follicles, LH receptor expression is 

induced  by FSH signaling,  which results in an enhanced cAMP output as well as a more 

efficient production of estradiol. Hence,  compared to the other growing follicles, the dominant 

follicle gets the double advantage of becoming less dependent to FSH supply and contributing 

the most to the drop in FSH levels at the end of the follicular phase.
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List of abbreviations

DDE:  delay differential equations

E2: estradiol

FHN:  FitzHugh-Nagumo

FSH: follicle-stimulating hormone

FSHR: FSH receptors

GnRH: gonadotropin-releasing hormone

GPCR: G protein-coupled receptor

hCG: human chorionic gonadotropin

hLH: human luteinizing hormone

HPG : hypothalamic-pituitary-gonadal

IPI: inter-peak intervals

LH: luteinizing hormone

LHCGR: LH receptors

MUA:  multi-unit activity

ODE: ordinary differential equations

P: progesterone 

PBPK: physiologically-based pharmacokinetic

SDE :stochastic differential equations

Te: testosterone
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