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ABSTRACT 11 

Evapotranspiration (ET) plays an essential role for detecting plant water status, estimating crop 12 

water needs and optimising irrigation management. Accurate estimates of ET at field scale are 13 

therefore critical. The present paper investigates a remote sensing and modelling coupled 14 

approach for monitoring actual ET of irrigated wheat crops in the semi-arid region of Tensift Al 15 

Haouz (Morocco). The ET modelling is based on a modified Penman-Monteith equation obtained 16 

by introducing a simple empirical relationship between surface resistance (rc) and a stress index 17 

(SI). SI is estimated from Landsat-derived land surface temperature (LST) combined with the 18 

LST endmembers (in wet and dry conditions) simulated by a surface energy balance model 19 

driven by meteorological forcing and Landsat-derived fractional vegetation cover. The proposed 20 

model is first calibrated using eddy covariance measurements of ET during one growing season 21 

(2015-2016) over an experimental flood-irrigated wheat field located within the irrigated 22 

perimeter named R3. It is then validated during the same growing season over another drip-23 

irrigated wheat field located in the same perimeter. Next, the proposed ET model is implemented 24 

over a 10 x 10 km2 area in R3 using a time series of Landsat-7/8 reflectance and LST data. The 25 

comparison between modelled and measured ET fluxes indicates that the model works well. The 26 

Root Mean Square Error (RMSE) values over drip and flood sites were 13 and 12 W m-2, 27 

respectively. The proposed approach has a great potential for detecting crop water stress and 28 

estimating crop water requirements over large areas along the agricultural season. 29 

Keywords: Bulk surface resistance; Evapotranspiration; Crop water stress; Landsat; Penman-30 

Monteith; Surface temperature. 31 
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NOMENCLATURE 32 

Symbols signification and unit 

ET Evapotranspiration, mm 

rc Surface resistance,  s m-1 

r* Critical bulk resistance,  s m-1 

Rn Net radiation, W m-2 

G Soil heat flux, W m-2  

HEC Sensible heat flux (eddy covariance), W m-2 

LEEC Latent heat flux (eddy covariance), W m-2 

ua
 Wind speed, m s-1 

Rg Solar radiation, W m-2       

rha Relative humidity, % 

Ta Air temperature, °C  

R2 Determination coefficient 

𝛒R Red spectral reflectance, % 

𝛒PIR Near infrared spectral reflectance, % 

𝛆 Surface emissivity  

k Attenuation coefficient  

Δ Slope of the saturation vapour pressure curve at air temperature, kPa C-1  

γ Psychrometric constant, kPa C-1 

ρ Mean air density at constant pressure, kg m-3 

cp
 Stands for the specific heat of air, MJ kg-1 °C-1 

D Vapour pressure deficit, kPa 

ea Actual vapour pressure, kPa 

es Saturation  vapour pressure, kPa 

rah,
 Aerodynamic resistance, s m-1 

zr Reference height, m 

kar Von Karman constant equal to 0.44 

hc Canopy height, m 

d Displacement height, m 

zm Height of the dynamic soil roughness, m 

ψm Atmospheric stability function 

ψh Sensitive heat stability function 

α Surface albedo 

Ratm
 Atmospheric longwave radiation, W m-2 

σ Stephan-Boltzmann constant equal to 5.67 × 10-8, W m-2 K-4 

ɛa Atmospheric emissivity 

Γ Fractional empirical coefficient set to 0.4 

Fc Fraction vegetation cover 

a Empirical coefficient equal to 0.17 

b Empirical coefficients equal to 0.8 

c Empirical coefficients equal to 0.8 

F (LST) Cost function 

d Calibration parameters equal to 3000,  s m-1 
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e Calibration parameters equal to -1130, s m-1 

Abbreviation  

LST Land Surface Temperature, °C 

SI Stress Index 

IPCC International Panel on Climate change  

NDVI Normalized Difference Vegetation Index 

LAI Leaf Area Index 

SiSPAT Simple Soil Plant Atmosphere 

ISBA Interaction Soil-Biosphere-Atmosphere 

SVAT Soil Vegetation Atmosphere Transfer 

ICARE Interactive Canopy Radiation Exchange 

CERES   Crop Environment REsource Synthesis 

STICS   Simulateur multidisciplinaire pour les Cultures Standard 

Aquacrop Crop-water productivity model 

SEBS Surface energy balance model 

FAO-56 Food and Agriculture Organization. No 56 

PM Penman-Monteith  

SEBI Surface Energy Balance Index 

WDI Water Deficit Index 

TVI Temperature Vegetation Index  

TVDI Temperature Vegetation Dryness Index  

VTCI Vegetation Temperature Condition Index  

ET0 Evaporative demand, mm  

KH21 Krypton hygrometer 

HPF01  Soil heat flux plates  

CSAT3 3D sonic anemometer 

EC Eddy covariance 

L7 Landsat 7  

L8 Landsat 8 

NASA National Aeronautics and Space Administration 

USGS United States Geological Survey 

MODTRAN   MODerate resolution atmospheric TRANsmission 

RMSE Root Mean Square Error  

IPI Irrigated Priority Index 

SLC Scan line corrector  

H2020 Horizon 2020 

RISE Research and Innovation Staff Exchange 

REC    Root zone soil moisture Estimates at the daily and agricultural parcel scales for  

Crop irrigation management – a multi-sensor remote sensing approach 

AMETHYST 

  

 Assessment of changes in MEdiTerranean HYdro-resources in the South: river 

basin Trajectories 

1. INTRODUCTION 33 
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In arid and semi-arid regions, water scarcity is one of the main factors limiting agricultural 34 

development. Water scarcity is likely to be exacerbated in the near future under the combined 35 

effect of the alteration of the hydrological cycle, climate change and increasing water demand for 36 

agriculture, urban and industry (IPCC, 2009). 37 

In Morocco, irrigation is the biggest consumer sector of water, in average, it has been estimated 38 

that about 85% of mobilised water resources is used by agriculture with an efficiency lower than 39 

50 % (Plan bleu, 2009). The Tensift Al Haouz region, which is considered as a typical watershed 40 

of the Southern Mediterranean, is characterised by a semi-arid climate. Under these conditions, 41 

irrigation is inevitable for crop growth, development and yield. For that a good irrigation 42 

management requires an accurate quantification of crop water requirements which is assumed 43 

equivalent to evapotranspiration (ET) (Allen et al., 2011). 44 

During the last decades, several techniques have been proposed to estimate ET from local to 45 

global spatial scales. At the local scale, ET can be measured by using the sap flow sensors (Smith 46 

and Allen, 1996) that can provide the individual plant transpiration rate when the tree capacitance 47 

is neglected. Based on three different tree crop species, Motisi et al. (2012) verified that 48 

transpirational flow at orchard level is regulated by tree conductance, whereas capacitance effects 49 

are related to tree size or to environmental demand. ET can be also estimate at local scale by 50 

lysimetry (Edwards, 1986; Daamen et al., 1993). Passing from local to integrated spatial scales, 51 

the eddy covariance technique (Bedouchi et al., 1988; Allen et al., 2011) is suitable for measuring 52 

ET at the field scale over an homogeneous fields (1 ha and above). The eddy covariance and sap 53 

flow techniques can be jointly use to partition the ET in plant transpiration and soil evaporation 54 

(Cammalleri et al., 2013; Er-Raki et al., 2010). Another technique, is the scintillometry that can 55 

provide the sensible and latent heat flux over a transect ranging from 250 m to 10 km even for 56 

heterogeneous fields (Kohsiek et al., 2002; Ezzahar and Chehbouni, 2009). At global scale, remote 57 

sensing data in the optical/thermal bands provide several ET-related variables such as the 58 

Normalized Difference Vegetation Index (NDVI), surface albedo, surface emissivity, LAI (Leaf 59 

Area Index) and Land Surface Temperature (LST) (Granger, 2000; Clarson and Buffum, 1989). 60 

Several Authors have proposed the use of these methodologies (Hatefield, 1983; Moran and 61 

Jackson, 1991; Kustas, 1996; Kalma et al., 2008; Li et al., 2009; Allen et al., 2011; Er-Raki et al., 62 

2013). All these techniques provide ET estimates at a specific temporal and spatial scales and rely 63 

on particular assumptions. Interpolation or extrapolation is thus often necessary to infer ET rates 64 



5 
 

outside application scales, which can be a source of additional uncertainty. Moreover, most in situ 65 

techniques are expensive, time consuming and need a well-trained staff to operate and maintain it. 66 

As an alternative to observational methods of ET, numerous modelling methods have been 67 

proposed such as Simple Soil Plant Atmosphere (SiSPAT) (Braud et al., 1995), Interaction Soil-68 

Biosphere-Atmosphere (ISBA) (Noilhan and Mahfouf, 1996) and simple SVAT (Soil Vegetation 69 

Atmosphere Transfer) (Boulet et al., 2000), Interactive Canopy Radiation Exchange (ICARE) 70 

(Gentine et al., 2007). Others models like Crop Environment REsource Synthesis (CERES) 71 

(Ritchie, 1986), Simulateur multidisciplinaire pour les Cultures Standard (STICS) (Brisson et al., 72 

1998) and the crop-water productivity model (Aquacrop) (Raes et al., 2009) have combined the 73 

water balance with the crop growth, development and yield components. These modelling 74 

methods, whether complex or simple, are generally not easy to implement in an operational 75 

context as they require several parameters (e.g. soil and vegetation hydrodynamic properties) and 76 

forcing variables (e.g. climate and irrigation) that are often unavailable at the desired space and 77 

time scale. As a matter of fact, simpler models based on a few input data have been developed 78 

(Merlin, 2013; Merlin et al., 2014). Among them, the surface energy balance model (SEBS) 79 

estimates the turbulent fluxes and surface evaporative fraction (Su, 2002) by using remote sensing 80 

data (albedo, NDVI, emissivity and LST) in conjunction with meteorological forcing (solar 81 

radiation, air temperature, wind speed, air humidity) and surface parameters (e.g. roughness and 82 

stability correction functions for momentum and sensible heat transfer). In contrast, the FAO-56 83 

model requires limited input parameters and it has been extensively and successful used for 84 

estimating ET over several agricultural areas such as : wheat (Er-Raki et al., 2007, 2010; Jin et al., 85 

2017; Drerup et al 2017), olive (Er-Raki et al., 2008; Er-Raki et al., 2010;  Rallo et al., 2014), 86 

citrus (Er-Raki et al., 2009; Rallo et al., 2017), table grapes (Er-Raki et al., 2013), sugar beet 87 

(Diarra et al., 2017; Anderson et al. 2017) and for different climate (Debnath et al., 2015; Ayyoub 88 

et al., 2017). It is based on the Penman-Monteith (PM) equation that has been formulated to 89 

include all the parameters that govern the energy exchange between vegetation and atmosphere. In 90 

the PM formulation, the extraction of water vapour from the surface is controlled by the surface 91 

resistance (rc). However, the PM approach has been limited by the difficulties to estimate rc as it 92 

depends on several factors related to pedological, biophysical and physiological processes, which 93 

are also related to agricultural practices (Katerji et al., 1991; Testi et al., 2004). 94 
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To overcome these difficulties, many authors have used the concept of “critical bulk resistance, 95 

r*”, where r* is rc when evapotranspiration is not affected by wind speed (Katerji and Perrier, 96 

1983). The critical bulk resistance depends only on other local meteorological variables. Rana et 97 

al. (2005) and Ayyoub et al. (2017) showed that rc is linearly related to r*, allowing the ET 98 

estimates even in water shortage conditions. It has been demonstrated that the use of the critical 99 

resistance approach to estimate canopy resistance that varies with local meteorology provides 100 

more accurate ET estimates than assuming a constant value of resistance for a given canopy 101 

(Katerji and Rana, 2006). Alves and Pereira (2000) further investigated the surface resistance in 102 

the PM equation and suggested that the surface resistance integrates the combined effects of 103 

stomatal, soil surface and canopy resistances. They also showed that the surface resistance 104 

depends on meteorological variables as in Jarvis (1976). This approach has then been confirmed 105 

by Katerji and Perrier (1983) who showed that decoupling the surface resistance (function of 106 

critical resistance), from atmospheric resistance effects improves ET estimates, and this is 107 

consistent with the study of Alves and Pereira (2000). All those methods estimate the surface 108 

resistance and ET at local scale but little attention has been paid on determining rc at large scale 109 

from remote sensing data. Since the crop water stress is related to rc through stomatal closure, one 110 

can estimate rc from remotely sensed LST which can provide a good proxy for water stress level. 111 

Several stress indexes have been developed such as the Surface Energy Balance Index (SEBI, 112 

Mensenti et al., 1993), Water Deficit Index (WDI, Moran et al., 1944; Moran, 2004), Temperature 113 

Vegetation Index (TVI, Prihodko et al., 1997), Temperature Vegetation Dryness Index (TVDI, 114 

Sandholt et al., 2002) and Vegetation Temperature Condition Index (VTCI, Wang et al., 2004; 115 

Wan et al., 2004). VTCI is defined as a ratio of the dry to actual LST difference to the dry to wet 116 

LST temperature difference, with wet/dry LST being estimated as the minimum/maximum LST 117 

that the surface can reach for a given meteorological forcing.  Among existing thermal-based 118 

stress indexes, VTCI has two main advantages: 1) it is rather physically-based due to possibility of 119 

simulating wet/dry LST values using a surface energy balance model (Wang et al., 2001) and 2) it 120 

can be applied to mixed pixels including soil and vegetation components.  In this context, the 121 

objective of this study is to model ET based on the modified PM equation by introducing a simple 122 

established relationship between rc and a thermal-based proxy of vegetation water stress, since it 123 

was considered as the most relevant parameter for drought monitoring (Jakson et al., 1981; Wan et 124 

al., 2004). The surface water stress index (SI) will be derived from the VTCI estimated either from 125 
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in situ or Landsat thermal/reflectance remote sensing data. After, the approach is calibrated and 126 

tested in terms of ET estimates over both flood and drip irrigated sites. 127 

2. MATERIALS AND METHODS  128 

2.1. Site description 129 

A field experiment was conducted over wheat crops in the Tensift region in central Morocco. This 130 

area has a semi-arid Mediterranean climate, characterised by low and irregular rainfall with an 131 

annual average of about 240 mm, against an evaporative demand (ET0) of 1600 mm year-1. The 132 

study site is located in the irrigated zone R3 in the Haouz plain, approximately 40 km southwest of 133 

Marrakech city (see Figure 1). The experiment was carried out during the 2015-2016 growing 134 

season in two irrigated wheat fields: a 2 ha drip-irrigated field and a 4 ha flood-irrigated field. The 135 

surrounding of two fields is also cultivated with wheat and beans for the drip-irrigated one. The 136 

soil of both sites has low sand and high clay contents (47 % clay, 35 % silt, and 18 % sand). The 137 

sowing dates were the 13th and 22th December 2015 for the drip and flood irrigated sites, 138 

respectively. 139 

2.2. Ground data description 140 

During the investigated agricultural season, both wheat sites were equipped with all sensors 141 

necessary for measuring different water and heat fluxes exchanged between soil, vegetation and 142 

atmosphere. The net radiation (Rn) was measured by the net radiometer (Kipp and Zonen CNR4, 143 

Campbell Sci). Soil heat flux (G) was controlled at a 5 cm depth using soil heat flux plates 144 

(HPF01, Campbell Sci). Radiometric brightness temperature was measured using an Infra-Red 145 

Thermometer (IRTS-P’s, Apogee) and then converted to LST using surface emissivity. An eddy 146 

covariance system, consisting of a 3D sonic anemometer (CSAT3, Campbell Scientific Ltd.) and 147 

a Krypton hygrometer (KH21, Campbell Scientific Ltd.), was installed to provide continuous 148 

measurements of vertical sensible heat (HEC) and latent heat (LEEC) fluxes. Half-hourly 149 

measurements of classical meteorological data were collected over a grass cover using an 150 

automatic meteorological weather station: wind speed (ua), incoming solar radiation (Rg), air 151 

relative humidity (rha) and air temperature (Ta) at a reference height (2 m). 152 

Before using the data of latent heat flux (equivalent to ET) measured by the eddy covariance 153 

system, it is important to check the reliability and the quality of these measurements. This is 154 
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undertaken through the analysis of the energy balance closure. By ignoring the term of canopy 155 

heat storage and the radiative energy used by vegetation photosynthesis (Testi et al., 2004), the 156 

energy balance closure is defined as:   157 

                                                                           n EC ECR G H LE        (1) 158 

To check the budget closure during the study period, we compared the available energy at the 159 

surface (Rn - G) with the sum of turbulent fluxes (HEC + LEEC) at half-hourly scale. The quality of 160 

the correlation between (Rn - G) and (HEC + LEEC) was evaluated by the regression line and the 161 

determination coefficient R2. Figure 2 shows the energy budget closure for sub-hourly data during 162 

2015-2016 growing season for both study sites separately. 163 

Results show that the closure of the energy balance is relatively well verified by comparison with 164 

other studies (Testi et al., 2004; Ezzahar et al., 2009). The regression lines are close to the 1:1 line 165 

and R2 values are generally close to 1 (0.91 and 0.88 for the flood and drip irrigated fields, 166 

respectively). However, the slope of the regression forced through the origin was about 1.3 for 167 

both sites, indicating some underestimation of turbulent fluxes (HEC + LEEC) by about 30% of the 168 

available energy (Rn - G). This due to the attenuation of turbulence at low or high frequency 169 

signals (Ezzahar et al., 2009). Also, the difference between the sensors source area has a very 170 

important impact on the energy balance closure. In fact, the surface area of the sensors measuring 171 

the available energy (net radiation and soil heat flux) is very small compared to that of EC system, 172 

which can quickly change depending on wind speed and direction and surface conditions. 173 

Moreover, the energy absorbed by the plant has not been considered in the energy balance. In this 174 

context, Scott et al. (2003) evaluated the storage in the biomass to about 5-10 % of the available 175 

energy, which could partially explain the overestimation of available energy at the surface. 176 

2.3. Remote sensing data 177 

Landsat 7 (L7) and Landsat 8 (L8) satellites were launched by NASA on April 1999 and 178 

February 2013, respectively. The combined use of both satellites potentially provides repetitive 179 

acquisitions every 8 days of high (30 -100 m) resolution multispectral data of the Earth’s surface 180 

on a global basis. The data (available for download from the USGS website, 181 

https://earthexplorer.usgs.gov/ ) are resampled to 30 m resolution. A total of 14 images (6 and 8 182 

images for L7 and L8, respectively) were used in this study. They were acquired from January 183 

2016 until the end of the agricultural season (end of May). 184 

https://earthexplorer.usgs.gov/
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Herein, Landsat data were used to estimate the NDVI, surface emissivity and LST over the R3 185 

area overlaying both study sites. NDVI is calculated using the spectral reflectance measurements 186 

acquired in the visible 𝜌𝑅 (red) and near-infrared regions 𝜌𝑃𝐼𝑅:  187 

                                                                 NDVI =
ρPIR−ρR

ρPIR+ρR
 .                                                           (2) 188 

The surface emissivity was estimated from an empirical relationship with NDVI and 189 

soil/vegetation emissivity components: 190 

                                                       ε = εv − (εv − εs) (
NDVI−NDVIv

NDVIs−NDVIv
)

k

                                         (3) 191 

where 𝜀𝑣 is the vegetation emissivity (set to 0.99), 𝜀𝑠 is the soil emissivity (set to 0.96), NDVIv is 192 

NDVI for full vegetation (set to 0.99), NDVIs is the NDVI for bare soil (set to 0.15). k is an 193 

attenuation coefficient relevant to the relation between LAI-NDVI and NDVI-emissivity ranging 194 

from 2 to 3. In Olioso et al. (2013) the value of k is derived from the shape of the NDVI-195 

emissivity relationship for a range of soil moisture conditions and vegetation canopy emissivities. 196 

In our case, it was adjusted to 2 based on the NDVI-LAI relationship established in the same 197 

region by Er-Raki et al. (2007). Note that this value was used in Tardy et al. (2016) over the same 198 

(semi-arid) region. 199 

LST was derived from the thermal infrared bands passing by different correction steps defined in 200 

Tardy et al., (2016). Those steps allowed to convert the Landsat digital number to the physical 201 

LST by inverting the Plank’s low. An atmospheric correction of the thermal infrared bands data 202 

was firstly carried out using the MODTRAN atmospheric radiative transfer model software. For 203 

doing that, knowledge of the humidity and air temperature profile was needed. As second step, the 204 

at-sensor radiance was converted into surface radiance using the estimated surface emissivity. 205 

Then the LST was obtained by inverting the Plank’s law. In order to evaluate the spaceborne LST, 206 

a comparison between the Landsat-derived against in situ LST measurements is presented in 207 

Figure 3.  208 

According to this figure, a relatively good match between satellite and ground LST data is 209 

obtained for the flood irrigated wheat parcel with a determination coefficient (R2) of 0.92 and a 210 

RMSE equal to 0.91 °C, whereas an R2 of 0.80 and an RMSE equal to 2.36 °C are found for the 211 

drip-irrigated field. The systematic over-estimation observed in the drip site could be attributable 212 

to the spatial extent of in situ and spaceborne observations. In fact, the drip-irrigated site is small 213 

(in comparison with the flood one), and does not fully cover the Landsat thermal pixel size (100 m 214 

resolution). Moreover, some differences between in situ and Landsat data could be explained by 215 
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the limited spatial representativeness of 2-m high in situ thermal data. In addition, the  better 216 

results in flood irrigated field than in drip irrigated field is due to: 1) The irrigation system: as it is 217 

known, flood irrigation implies a homogeneous fraction of wetted areas, where all the pixels have 218 

the same percentage of irrigation water, which means an uniform LST within the site. In contrast, 219 

just a part of the soil surface is wetted in the drip irrigated site, which may lead to some 220 

heterogeneity in observed LST from one pixel to another. 2) The flood irrigated site is bigger (4 221 

hectares) than the drip one (approximately 2 hectares with a surface area of 4 ha (35 Landsat 222 

pixels) and 2 ha (10 Landsat pixels), respectively. Note that several 60/100 m Landsat LST pixels 223 

were partly covering the surrounding fields, causing representativeness issues especially for the 224 

smaller (drip) field.  In addition 3) for the flood site, the surrounding fields are similar with the 225 

same irrigation system and crop (wheat). Contrariwise, the drip one, was surrounded by fields with 226 

different crops (beans). 227 

The observed overestimation of LST by Landsat could also be due to an overestimation of the 228 

surface emissivity. As soil emissivity is difficult to estimate without specific measurements 229 

(unavailable in this experiment), it was fixed arbitrarily to 0.95. Moreover, we would like to 230 

underline that the field measurements of LST are representative of a small square of the surface 231 

only, which is much smaller than a Landsat pixel. Last each crop field can include a mixture of 232 

wet and dry Landsat pixels, although an average of all LST values was computed at the field scale.  233 

2.4. EVAPOTRANSPIRATION MONITORING APPROACH 234 

2.4.1. Evapotranspiration modelling 235 

The latent heat flux (LE (W m-2)) of wheat was modelled by using the following PM equation: 236 

                                                      𝐋𝐄 =
𝚫(𝐑𝐧−𝐆)+𝛒𝐜𝐩

𝐃

𝐫𝐚,𝐡

𝚫+𝛄(𝟏+
𝐫𝐜

𝐫𝐚,𝐡
)

                                                     (4) 237 

where Δ stands for the slope of the saturation vapour pressure curve at air temperature (kPa C-1). 238 

The psychrometric constant (kPa C-1) and the mean air density at constant pressure (kg m-3) are 239 

presented by γ and ρ respectively while cp stands for the specific heat of air (MJ kg-1 °C-1). The 240 

vapour pressure deficit; D (kPa) is obtained by calculating the difference between the air vapour 241 

pressure; ea (kPa) and the saturated water vapour pressure; es (kPa) where the latter is calculated as 242 

addressed in equation 5. 243 
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                                                         es = 0.611 × e
(

17.27×Ta
Ta+273.3

)                                            (5) 244 

In Equation (4), all parameters are deduced from the meteorological variables measured by the 245 

automatic meteorological station. However, the use of this model requires determining the 246 

aerodynamic resistance (rah, s m-1) and bulk canopy resistance (rc, s m-1). rah is calculated at a 247 

reference height zr in the boundary layer above the canopy by: 248 

                                                                   rah =
(log[

(zr−d)
zm⁄ ]−ψm)×(log[

(hc−d)
zm⁄ ]−ψh)

kar2×ua
                                    (6)                                       249 

where kar is the Von Karman constant equal to 0.44, hc the canopy height, the displacement height 250 

(to adjust the effects of vegetation height on wind displacement) and the height of the dynamic 251 

soil roughness are presented as , d = 2/3 hc and zm = hc/8  respectively. The ψm and ψh presents 252 

the atmospheric stability function and the sensitive heat stability function, respectively.  253 

For irrigated crops, the canopy resistance rc is not assumed to be constant. It changes according to 254 

available energy, vapour pressure deficit, and other environmental factors. In this study, we 255 

propose to use a simple empirical relationship between rc and a vegetation water stress index (SI) 256 

which is calculated as: 257 

                                                          SI = 1 − VTCI                                                          (7) 258 

where VTCI is calculated as follow: 259 

                                                    VTCI =
LSTdry−LST

LSTdry−LSTwet
                                                   (8) 260 

where LSTwet and LSTdry are the LST simulated by an energy balance model in fully wet and dry 261 

surface conditions, respectively (Stefan et al., 2015; Merlin et al., 2016). We therefore distinguish 262 

between stressed and unstressed conditions via the VTCI. Especially, VTCI equals 1 (SI = 0) for 263 

LST = LSTwet  (energy-limited evaporation), which means that vegetation is unstressed and the 264 

value of rc is low. In the opposite case, VTCI equals 0 (SI = 1) for LST=  LSTdry (soil-controlled 265 

evaporation), which means that vegetation is undergoing water stress and the value of rc is large. 266 

2.4.2. Energy balance Model 267 

The two extreme temperatures ( LSTwet and LSTdry ) of Equation (8) are simulated by running an 268 

energy balance model forced by rc ≈ 0 s m-1 and rc ≈ ∞, respectively. The surface net radiation is 269 

expressed as: 270 

                                                                        Rn = (1 − α) Rg + ε(Ratm − σ LST4)                                    (9) 271 
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with α (-) being the surface albedo (set to 0.20), Ratm stands for the atmospheric longwave 272 

radiation (W m-2) and σ = 5.67 × 10-8 the Stephan-Boltzmann constant (W m-2 K-4). The 273 

downward atmospheric radiation at surface level is expressed as: 274 

                                                                      Ratm = εa × σTa
4                                                     (10) 275 

where εa is the atmospheric emissivity estimated as in Brutsaert (1975): 276 

                                                                                                            εa = 1.24 × (
ea

Ta
)

1

7
                                                 (11) 277 

with                                                                ea = es(Ta) ×
rha

100
 278 

The ground flux G is estimated as a fraction of net radiation at the soil surface Rn,s: 279 

                                                                            G = Γ. Rn,s                                                         (12) 280 

with Γ being a fractional empirical coefficient set to 0.4, and Rn,s is given by: 281 

                                                                     Rn,s = Rn × (1 − Fc)                                               (13) 282 

with Fc being the fraction vegetation cover calculated as: 283 

                                                                      Fc = (
NDVI−NDVIs

NDVIV−NDVIS
)                                                (14) 284 

The sensible heat flux is given by: 285 

                                                                      H = ρcpβ
LST−Ta

ra,h
                                                      (15) 286 

where 𝛽 is the “𝛽 function” calculated as follows as a function of LAI: 287 

                                           𝛽 = 1 −
𝑎

𝐿𝐴𝐼∗𝑏∗√2𝜋
𝑒

−
(ln (𝐿𝐴𝐼)−𝑐)2

2∗𝑏2                                    (16) 288 

with a, b and c are empirical coefficients equal to 0.17 for a and 0.8 for b and c (Boulet et al., 289 

2012).  These values are calibrated for the wheat in the same study site.   290 

The latent heat flux is estimated using the following equation: 291 

LE =
ρcp

γ
 

es−ea

ra,h+rc
                                  (17) 292 

Finally, for running the energy balance model, it was set LST = Ta and search for the value of 293 

LST that minimises the following cost function F (LST): 294 

                                                           𝐅 (𝐋𝐒𝐓) = (𝐑𝐧 − 𝐆 − 𝐇 − 𝐋𝐄)𝟐                                      (18)         295 
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F (LST) is named “cost function” as it is the function to be minimised in order to find the LST 296 

value corresponding to the energy balance closure (e.g. Merlin et al., 2016).                               297 

3. RESULTS AND DISCUSSIONS 298 

The PM equation is used in this study to estimate the surface ET of wheat over two different crop 299 

fields in terms of irrigation systems located in the R3 area. The proposed approach aims to 300 

modify the PM equation by expressing rc, which is the main parameter controlling latent heat 301 

flux, as a function of a thermal-derived SI. The use of LST as an indicator of the surface 302 

resistance in order to estimate the ET, is assessed by using the in situ measurements collected in 303 

the flood-irrigated site. The “observed” rc is estimated by inverting Equation (3) using ET 304 

measured by eddy covariance system. Then, a validation exercise is carried out over the drip 305 

irrigated-site using in situ data. Finally, an evaluation of the method is undertaken using Landsat 306 

data over both sites.  307 

3.1 In situ evaluation of the proposed approach 308 

The time series of retrieved SI and rc over the flood site is shown in Figure 4. According to this 309 

figure, daily patterns of SI and rc are similar and respond perfectly to the water supply (rainfall or 310 

irrigation). On one hand, after water supply, the soil moisture in the root zone increases and the 311 

plant transpirates at potential rate with no limitation and the values of rc and SI tend to decrease. 312 

On another hand, the absence of irrigation and rainfall (dry condition, e.g. from the end of April) 313 

results in an increase in the root zone depletion and generates stress (SI increased). The increase 314 

in soil water depletion is due to the removal of water by ET that induces water stress conditions 315 

and then the stomatal closure which increases rc. Consequently, it can be concluded that both the 316 

variables follow similar trends. This leads to look if there is any relationship between both terms. 317 

For this purpose, rc is plotted against SI (Figure 5) by using in situ measurements (flood site).  318 

When SI ranges from 0 to 0.4 which corresponds to unstressed vegetation with low LST values, 319 

rc values are scattered around a mean value of about 70 s m-1 which corresponds to the minimum 320 

bulk surface resistance (𝑟𝑐𝑚𝑖𝑛).  321 

The obtained value of  𝑟𝑐𝑚𝑖𝑛 is in agreement with values obtained for wheat crop by Baldocchi 322 

(1994). When SI increases above a threshold value SI = 0.4, rc increases linearly with SI. This 323 

confirms the results reported by Autovino et al. (2016) and Er-Raki et al. (2016) who found a 324 
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similar shape for olive and orange orchards, respectively. The obtained relationship, which gives 325 

the best fit between both terms, is given by: 326 

𝑟𝑐 = 𝑟𝑐𝑚𝑖𝑛 = 70 𝑠. 𝑚−1          𝑓𝑜𝑟 𝑆𝐼 < 0.4                                     327 

                                   𝑟𝑐 = 𝑑 ∗ 𝑆𝐼 + 𝑒                         𝑓𝑜𝑟 𝑆𝐼 ≥ 0.4                  (19) 328 

where d and e are the calibration parameters, which are equal to 3000 s m-1 and -1130 s m-1, 329 

respectively. Note that the values of 𝑟𝑐𝑚𝑖𝑛, 𝑑 and e are expected to depend on local 330 

meteorological data, crop and soil types. 331 

The relationship of Equation (19) is validated by comparing the modelled and measured latent 332 

heat flux for the drip-irrigated wheat site at Landsat overpass time (Figure 6). According to this 333 

figure, an acceptable correlation is obtained between simulated and measured LE using the 334 

proposed approach (R2 = 0.53). The scatter of modelled LE estimates is probably due to the 335 

uncertainties associated to the relatively small footprint of the in situ thermal radiometer. 336 

Looking at the dynamics of actual LE and rc values estimated by Equation (19) (not showed in 337 

the manuscript), the proposed methodology for bulk resistance estimation allows for capturing 338 

the variability of measured LE. The significant bias in simulated LE is probably due to the 339 

underestimation of in situ LST, involving an overestimation of simulated LE especially during 340 

the dry period (Ramelo et al 2014; Ruhoff at al., 2013). Those explanations were added to the 341 

revised version. 342 

3.2 Spatial analysis  343 

To overcome the spatial representativeness issue of in situ measurements and for further 344 

evaluating the proposed model, Landsat data are used as input of the modified PM model. ET 345 

estimates are spatialized within a 10 × 10 km2 area centred over the R3 sector which is mainly 346 

covered by wheat crops. The R3 perimeter is occupied by different cultures (wheat, alfalfa, 347 

orange, and olive), so before spatializing the ET, a land use has been performed in order to 348 

distinguish between wheat and other crops. Figure 7 shows the spatial and temporal variations of 349 

Landsat-derived LST and Fc over wheat crops. As the entire growing season of wheat was divided 350 

into four growth stages namely: the initial, the development, the mid-season and the late season, 351 

we choose to present one image for each stage (Figure 7). This figure shows that during the initial 352 

stage (06/01/2016), most of the fields were under bare soil conditions characterised by low Fc and 353 

high LST values depending spatially on the water supply and atmospheric conditions.  In the 354 
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development stage (07/02/2016) an effective full cover is reached in some parcels while other 355 

ones are characterized by low Fc depending on the sowing date and the development of 356 

vegetation. This spatial variability of Fc has a direct effect on the variability of LST.  When Fc 357 

reaches the maximum value at the mid-season (18/03/2016), spatial LST values are similar around 358 

20 °C except for some pixels where the LST values are relatively higher (about 35 °C), which 359 

correspond to the non-cultivated parcels.  At the last stage (29/05/2016), from the beginning of 360 

maturity until harvest or full senescence, wheat fields are characterized by low Fc and high LST 361 

values. 362 

Our approach involves the energy balance model in order to assess the variation of LST in space 363 

and time for two extreme dry and wet conditions which depend on climatological conditions.  364 

Figure 8 shows the dry and wet LST maps for the selected four dates.  These maps show that, in 365 

the coldest days in winter (06/01/2016), the LSTdry oscillated between 15 and 30 °C and the 366 

LSTwet ranged from 10 to 17 °C. In the other hand, for the hottest days in summer (29/05/2016), 367 

the LSTdry reached its maximum (50 °C) as well as the LSTwet that reached 30 °C. 368 

The use of LST time series extracted from Landsat satellite and the dry and wet LST values 369 

computed using the energy balance model appears to be a good way to monitor water stress index 370 

for irrigation scheduling. Figure 9 presents the spatial distribution of SI over R3 perimeter at the 371 

different growth stages. The maps of this figure show that Landsat-derived SI consistently ranges 372 

between 0 and 1 all along the agricultural season, regardless of the vegetation cover fraction and 373 

LST values (see Figure 7). In fact, the use of Fc and LST data as input variables of the energy 374 

balance model to estimates LSTdry and LSTwet, allows taking into account all the growing stages 375 

of wheat crop. In particular, we can distinguish between the small vegetation (tillering stage) and 376 

the full developed one (mid-season stage). In this regard Barbosa da Silva and Rao (2005) 377 

estimated SI of cotton crop using LST, rc and Rn. However, they did not take into account the 378 

vegetation parameters and their variability during the agricultural season. These parameters affect 379 

the aerodynamic resistance and hence both the sensible and latent heat fluxes.  380 

In Figure 9, the pixels having a SI value close to 1 (red colour) are characterised by a high 381 

vegetation stress due to the mismatch between water supply and water requirement (late 382 

irrigation). The values of SI ranging between 0.3 and 0.6 are characterised by the onset of 383 

vegetation stress. This is due to the difficulty of the irrigation distribution at the right moment. 384 

Indeed, the water transported by gravity across the R3 channels may arrive to the fields before or 385 

after the optimal date (Belaqziz et al., 2013; Belaqziz et al., 2014). Pixels with SI values around 0 386 
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correspond to un-stressed, meaning recently irrigated wheat. Following the evolution of SI, it 387 

appears that this index shows spatial and quantitative information about the method of irrigation 388 

distribution, and could be used to optimise the irrigation scheduling. Those results are consistent 389 

with the work of Belaqziz et al. (2013), who used another index named “Irrigated Priority Index 390 

(IPI)” in the same study area to manage the irrigation distribution. The IPI equation is mainly 391 

based on both the water stress level and irrigation dates of wheat crop. The main drawback of IPI 392 

is that it needs the amount of water supply as input, which is not the case of SI developed. This 393 

new index based on LST only might then be combined with IPI in order to detect and retrieve 394 

irrigation amount, information that is very difficult to obtain over large areas. 395 

Figure 10 shows the spatial distribution of ET and its temporal variation across the season. We 396 

can observe a high variability of ET, which depends on the spatial heterogeneity of Fc, LST and 397 

SI over R3.  398 

The spatial representation allowed to distinguish between the fields corresponding to stressed 399 

wheat (blue colour) where LE is lower and the field corresponding to un-stressed fields (other 400 

colour) that have been relatively well irrigated during the wheat growing stages, for high ET 401 

values. The obtained spatial and temporal variations of ET are in accordance with the spatio-402 

temporal variability of Fc, LST and SI (see Figures 7, 9). To observe this more easily, the 403 

frequency histograms for remote sensing data (Fc, LST), SI and ET on one date 18/03/2016 are 404 

plotted in Figure 11. The choice of this date relies on the fact that the end of March summarises 405 

the history of wheat crop growth and its development from sowing date (Karrou., 2003; Hadria., 406 

2006). By analysing the different histograms, one can be concluded that the estimates LE are 407 

coherent with other surface properties (Fc, LST, and SI). Fc values in the higher range (larger 408 

than 0.8) have a high frequency/percentage. They correspond to the fields with low LST values 409 

(lower than 25 °C), which are associated to small values of surface aerodynamic resistance (large 410 

crop height) rather than to large water availability for wheat. On this date, our model computes a 411 

large amount of un-stressed areas with relatively small SI and large LE values. Those results 412 

seem to be representative of the real situation.   413 

The land surface parameters (LST, Fc, and emissivity) are obtained from Landsat data. Therefore 414 

all cloudy data (images) are discarded. In addition, the Landsat-7 images include data gaps due to 415 

scan line corrector (SLC) failure on May 31 2013, which on some dates unfortunately covered the 416 

irrigated sites. The selected data are used for validating the predicted ET (Equation 4) against in 417 

situ ET for both flood and drip sites (Figure 12). As it can be observed in this figure, the proposed 418 
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approach allows to predict correctly the temporal dynamics of ET with an acceptable accuracy and 419 

a good correlation. The validations for the two sites resulted in R2 of 0.76, 0.70 and a RMSE of 420 

12, 13 W m-2 for flood-irrigated site and drip-irrigated site, respectively. 421 

A further validation of the proposed approach was performed by comparing the measured ET 422 

with the ET simulated one under fully stressed (SI=1, rc = 1870 s m-1) and un-stressed (SI=0, rc 423 

=70 s m-1) conditions. The obtained results are presented in the same Figure 12 under real 424 

meteorological conditions. As expected, the model simulates very low values of ET for SI=1 425 

whereas it simulates high values of ET for SI=0.  On some dates, the ET simulations with SI=0 426 

(rc = 70 s m-1) coincides with the ET estimated from Landsat-derived SI, which means that the 427 

fields were monitored in well-watered conditions (SI < 0.4). One key result is that the Landsat-428 

derived SI (0< SI <1, 70< rc <1870 s m-1) provides much more accurate ET estimates over both 429 

validation sites than when assuming fully stressed (SI = 1, rc = 1870 s m-1) or fully unstressed 430 

(SI=0, rc = 70 s m-1) condition in the PM equation. 431 

4. CONCLUSION 432 

The aim of this study was to use the PM equation to estimate the evapotranspiration (ET) over 433 

irrigated wheat crops of semi-arid areas. As the PM approach has been limited by the difficulties 434 

to estimate the bulk surface resistance (rc) since it depends on several factors related to crop 435 

characteristics and agricultural practices, we proposed in this study to link rc to the stress index 436 

(SI) derived from remotely sensed LST and to implement the developed relationship in the PM 437 

model. SI was estimated as the observed LST normalized by the LST simulated in fully wet and 438 

dry conditions using a surface energy balance model forced by meteorological forcing and 439 

vegetation fraction.  440 

The approach was tested over a 10 x 10 km2 irrigated perimeter R3. The calibration/validation 441 

strategy implements two instrumented wheat sites with flood and drip irrigation and Landsat 442 

shortwave and thermal imagery during one growing season (2015-2016). The rc retrieved from 443 

eddy covariance measurements over the flood-irrigated site (by inverting PM equation) was first 444 

correlated to SI. This relation was then tested over the drip-irrigated site using in situ 445 

measurements in order to simulate the surface ET. Next, this method was evaluated in terms of 446 

latent heat flux using Landsat temperature and reflectance data over both sites. The RMSE values 447 
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over drip and flood sites are 13 and 12 W m-2, which correspond to the relative errors of 5 and 448 

4%, respectively. 449 

The proposed relationship between rc and SI employed in the PM model holds great potential for 450 

estimating crop ET using remote sensing data. Moreover, the results reached in terms of 451 

detecting crop water stress, can be helpful to distinguish between the irrigated and non-irrigated 452 

areas, which could give a prevision of the wheat yield based on the IPI developed by Belaqziz et 453 

al. (2013). Note however that the proposed methodology has been tested over two wheat parcels 454 

only. Further calibration studies should be undertaken to investigate and understand the 455 

variability of rc parameters over different crop types and surface conditions. 456 
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