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Introduction sect:intro ss:intro

It is well known (see, e.g., [START_REF] Bernstein | A categorification of the Temperley-Lieb algebra and Schur quotients of Upsl 2 q via projective and Zuckerman functors[END_REF][START_REF] Frenkel | A categorification of finitedimensional irreducible representations of quantum sl 2 and their tensor products[END_REF][START_REF] Lehrer | A Temperley-Lieb analogue for the BMW algebra[END_REF]) that the Temperley-Lieb category is isomorphic to the full subcategory of U q psl 2 q-modules with objects V br for r " 0, 1, . . . , where V is the 2-dimensional simple module. This isomorphism underlies the quantum group theoretical construction of the celebrated Jones polynomial of knots. We generalise this by extending the classical isomorphism of categories above to an isomorphism of categories between the Temperley-Lieb category TLBpq, Qq of type B [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF] with appropriate parameters and the full subcategory T of U q psl 2 q-modules generated by the objects M b V br (r " 0, 1, . . . ) where M is a fixed projective Verma module.

A consequence of the category isomorphism between TLBpq, Qq and T is the generalised Schur-Weyl duality, identifying the endomorphism algebra End T pM b V br q with the Temperley-Lieb algebra TLB r pq, Qq of type B r , where TLB r pq, Qq is the endomorphism algebra of an object of the category TLBpq, Qq in analogy with [START_REF] Lehrer | The Brauer category and invariant theory[END_REF]. This enables us to bring into play the cellular structure of the Temperley-Lieb algebra, which we use to determine precise criterion for the semisimplicity of the endomorphism algebra End T pM b V br q.

The proofs of the main results rely on a new description of the Temperley-Lieb category TLBpq, Qq of type B as a subquotient T LBpq, Ωq of the coloured framed tangle category extensively studied by Freyd, Yetter [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF], Turaev, Reshitikhin [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF][START_REF] Reshetikhin | Invariants of 3-manifolds via link polynomials and quantum groups[END_REF]26] and others. The category TLBpq, Qq was defined in [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF] as a category of marked diagrams (i.e., "blob diagrams"), and the new category T LBpq, Ωq is described in terms of polar tangle diagrams. Ostensibly the two categories are very different, but nevertheless we are able to construct in Theorem 3.27 an explicit isomorphism between them with appropriate parameter matchings.

Two key ideas are involved in the reformulation of TLBpq, Qq. One is the uniform description of the affine Hecke algebra, affine Temperley-Lieb algebra and other related algebras given in [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF], where the unifying object is the braid group of type B. The affine Temperley-Lieb algebra is a quotient of the group algebra of this group, which factors through the affine Hecke algebra, while the Temperley-Lieb algebra of type B is in turn a quotient of the affine Temperley-Lieb algebra. The other is the embedding of the braid group of type B r into the braid group of type A r`1 (see Remark 3.2), which leads to a description of the group algebra of the former and its quotient algebras in terms of polar tangle diagrams [START_REF] Allcock | Braid pictures for Artin groups[END_REF][START_REF] Daugherty | Affine and degenerate affine bmw algebras: the center[END_REF]. Our construction of T LBpq, Ωq is a categorical generalisation of this.

We first introduce in Section 3.1 a category RT of coloured un-oriented tangle diagrams up to regular isotopy [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF][START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF]26]. The objects of the category are sequences of elements of C :" tm, vu, and the modules of morphisms are spanned by a class of coloured un-oriented tangle diagrams up to regular isotopy. This category has many interesting quotient categories closely related to categories of representations of quantum groups [2, [START_REF] Rogawski | On modules over the Hecke algebra of a p-adic group[END_REF][START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GLpnq[END_REF].

By imposing Temperley-Lieb skein relations (3.3), (3.4), (as well as their consequence which we call free loop removal (3.5)) to morphisms of RT , we obtain a quotient category MT Lpqq, the multipolar Temperley-Lieb category. The oneparameter multi-polar Temperley-Lieb category MT Lpq, Ωq is obtained as a quotient of MT Lpqq by specialising the two central central morphisms given by (3.7) to appropriate scalars related to Ω as described in (3.9). The second version T LBpq, Ωq of the Temperley-Lieb category of type B is the full subcategory of MT Lpq, Ωq generated by objects of the form pm, v r q :" pm, v, . . . , v loomoon r q for all r P Z ě0 . The category MT Lpq, Ωq contains the finite Temperley-Lieb category T Lpqq as a full subcategory in two different ways and in one of these it is also contained in T LBpq, Ωq. There exists a tensor functor T LBpq, Ωq ˆT Lpqq ÝÑ T LBpq, Ωq.

The structure of the category T LBpq, Ωq is studied in depth in Section 3.4; and that of TLBpq, Qq is summarised in Section 2. An explicit isomorphism between T LBpq, Ωq and TLBpq, Qq is constructed in Theorem 3.27.

We construct in Theorem 4.5 a tensor functor p F from the category RT to the category O int of U q psl 2 q-modules. This functor is shown to factor through the multipolar Temperley-Lieb category MT Lpq, Ωq with parameter Ω, whose dependence on M is given by (4.18). This induces a functor from MT Lpq, Ωq to O int , which restricts to a functor F 1 : T LBpq, Ωq ÝÑ T , where T is the full subcategory of O int mentioned above. We are able to show in Theorem 4.9 that F 1 is an isomorphism of categories. Our proof of this theorem uses the fact that our category equivalence extends the well known one between the Temperley-Lieb category and the category with objects the tensor powers of the 2-dimensional simple U q psl 2 q-module (see, e.g., [START_REF] Bernstein | A categorification of the Temperley-Lieb algebra and Schur quotients of Upsl 2 q via projective and Zuckerman functors[END_REF][START_REF] Frenkel | A categorification of finitedimensional irreducible representations of quantum sl 2 and their tensor products[END_REF][START_REF] Lehrer | A Temperley-Lieb analogue for the BMW algebra[END_REF]), which we refer to as the "classical case".

We note that this latter equivalence leads to analogous statements when q is a root of unity in the classical case (see [2]), and we expect this to be the case in our more general situation.

The endomorphism algebra TLB r pq, Ωq of the object pm, v r q in T LBpqq and the Temperley-Lieb algebra TLB r pq, Qq of type B r are isomorphic for appropriate parameters Q and Ω. The above isomorphism of categories implies that as associative algebra End T pM b V br q is isomorphic to TLB r pq, Ωq, and hence TLB r pq, Qq, for all r ě 0, which is a generalisation of the well-known classical Schur-Weyl duality [START_REF] Bernstein | A categorification of the Temperley-Lieb algebra and Schur quotients of Upsl 2 q via projective and Zuckerman functors[END_REF][START_REF] Frenkel | A categorification of finitedimensional irreducible representations of quantum sl 2 and their tensor products[END_REF][START_REF] Lehrer | A Temperley-Lieb analogue for the BMW algebra[END_REF] to the present case involving Verma modules.

Various new categories arise naturally from our constructions, which are interesting in their own right. These could lead to further connections between the (generally infinite dimensional) endomorphism algebras in these categories, and certain subcategories of the representation category of U q psl 2 q. In particular, even in the affine case, an equivalence would be interesting (cf. [START_REF] Chari | Quantum affine algebras and affine Hecke algebras[END_REF]).

We note finally that other work has been done in the general context of Schur-Weyl duality for modules related to those in this work, see e.g., [START_REF] Chari | Quantum affine algebras and affine Hecke algebras[END_REF][START_REF] Drinfel'd | Degenerate affine Hecke algebras and Yangians. (Russian)[END_REF][START_REF] Jimbo | A q-analogue of UpglpN `1qq, Hecke algebra, and the Yang-Baxter equation[END_REF].

Throughout the paper, we work over the ground field K 0 :" Cpq 1 k q, where q is an indeterminate over C such that pq 1 k q k " q for some fixed positive integer k. For any invertible scalar t P K 0 we write δ t :" ´pt `t´1 q , and for the special case t " q, set δ :" δ q " ´pq `q´1 q.

2. The Temperley-Lieb category of type B sect:TLB-old 2.1. The Temperley-Lieb category of type B. Let R be a ring and let q, Q P R be invertible elements. We begin by recalling the definition of the Temperley-Lieb category TLBpq, Qq of type B from [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF] (see also [START_REF] Martin | The blob algebra and the periodic Temperley-Lieb algebra[END_REF]7]). The objects of TLBpq, Qq are the integers t P Z ě0 . A (TLB) diagram D : t ÝÑ s is a "marked Temperley-Lieb diagram" from t to s, and Hom TLBpq,Qq pt, sq is the free R module with basis the set of TLB diagrams: t ÝÑ s.
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To define marked diagrams, recall that a TL diagram t ÝÑ s divides the "fundamental rectangle" into regions, of which there is a unique leftmost one (see Fig. 1, which is a TL diagram: 4 ÝÑ 6). A marked diagram is a TL diagram in which the boundary arcs of the left region may be marked with dots. Thus the TL diagram depicted in Fig. 1 has 2 markable arcs, and a corresponding marked diagram is shown in Fig. 2. These marked diagrams are composed via concatenation, just as TL-diagrams, with three rules to bring them to "standard form", which is a diagram with at most one mark on each eligible arc. The rules are (recalling that for any invertible element x P R, δ x " ´px `x´1 qq: eq:tlbrules eq:tlbrules (2.1)

Left region

(i) If D is a (marked) diagram and L is a loop with no marks then D > L " δ q D. (ii) If, in (i), L is a loop with 1 mark then D > L " ˆq Q `Q q ˙D.
(iii) If an arc of a diagram D has more than 1 mark and D 1 is obtained from D by removing one mark from that arc, then D " δ Q D 1 .

def:tlbb Definition 2.1. The category TLBpq, Qq has objects Z ě0 and morphisms which are R-linear combinations of marked diagrams, subject to the rules (2.1).

It is evident that Hom TLBpq,Qq pt, sq has basis consisting of TLB (marked) diagrams with at most one mark on each boundary arc of the left region. We shall refer to these as "marked diagrams"; the next result counts them.

prop:tlbdim Proposition 2.2. For integers t, k ě 0, the number bpt, t `2kq of marked diagrams t ÝÑ t `2k depends only on t `k. If t `k " m, then the number of these is dpmq " `2m m ˘.

Proof. Given a marked diagram t ÝÑ t `2k, one obtains a diagram 0 ÝÑ 2pt `kq by rotating the bottom of the diagram through 180 ˝until it becomes part of the top, pulling all the relevant arcs appropriately. This is illustrated below in Fig. 3 for the diagram in Fig. 2. (but note that we are applying this construction only to standard diagrams, which have at most one mark on each arc).
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This shows that bpt, kq " bp0, t `kq, which proves the first statement. Write dpmq " bp0, 2mq, and following [15, §4.3], we write dpxq " ř 8 i"0 dpiqx i , where dp0q " 1. Now if the 2m upper dots are numbered 1, 2, . . . , 2m from left to right any marked diagram D : 0 ÝÑ 2m will join 1 to an even numbered dot, say 2i. For fixed i, the number of such D is 2cpi ´1qdpm ´iq, where cpiq is the Catalan number in [15] (since the arc p1, 2iq may be either marked or unmarked). It follows that eq:rec1

eq:rec1 (2.2) dpmq " 2 m ÿ i"1 cpi ´1qdpm ´iq.
Multiplying (2.2) by x m and summing, we obtain eq:rec2 eq:rec2 (2. given by juxtaposing diagrams. Note that the functor (2.5) restricts to the usual tensor product on T Lpqq.

The category T Lpqq is generated, under composition and tensor product by the morphisms A, U, I depicted in Fig. 4 below, subject to the obvious relations.

;

; ;

A U I C 0 Figure 4.
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The category TLBpq, Qq is generated by the generators A, U, I of T L, with C 0 added as shown. Evidently it follows from (2.1)(iii) that C 0 satisfies C 2 0 " δ Q C 0 and from (2.1)(ii) that ApC 0 b IqU " q Q `Q q . For n " 1, 2, . . . , the algebra Hom TLBpq,Qq pn, nq is the Temperley-Lieb algebra TLB n pq, Qq of type B n . It has a cellular structure described as follows.

Given n P Z ą0 , define Λ B pnq " tt P Z | |t| ď n and t " n(mod 2qu. For t P Λ B pnq define M ptq as the set of monic diagrams D : |t| ÝÑ n in which no through string is marked. For each t P Λ B pnq, there is an injective map β t : M ptq ˆM ptq ÝÑ TLB n pq, Qq given by eq:cell eq:cell (2.6)

β t pD 1 , D 2 q " # D 2 D 1 if t ě 0 D 2 pC 0 b I bp|t|´1q qD 1 if t ă 0,
where D ˚is the diagram obtained from D by reflection in a horizontal. The next result is straightforward.

prop:tlbcell Proposition 2.3. Maintain the above notation.

(1) Let C :" > tPΛ B pnq β t : > tPΛ B pnq M ptq ˆM ptq ÝÑ TLB n pq, Qq. The image of C is a basis of TLB n pq, Qq. Write β t pS, T q " C t S,T for the basis elements (S, T P M ptq).

(2) The basis C t S,T (t P Λ B pnq, S, T P M ptq) is a cellular basis of TLB n pq, Qq. Remark 2.4. An analogous result for Temperley-Lieb algebras of type D is proved in [START_REF] Lejczyk | A graphical description of pD n , A n´1 q Kazhdan-Lusztig polynomials[END_REF].

2.3.

Cell modules for TLB n pq, Qq. We give a description of the cell modules corresponding to the cellular structure given in Proposition 2.3 and compute their dimension, although this is implicit in the results of [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF]. The cell module W t pnq (t P Λpnq) has basis the set M ptq, with TLB n pq, Qq-action defined in the usual way by multiplication of diagrams.

Let upt, kq " rankpW t p|t| `2kqq. We have seen (Proposition 2.2) that up0, kq " `2k

k ˘. This is the case t " 0 of the following result. prop:dimwt Proposition 2.5. We have

dim W t p|t| `2kq " upt, kq " ˆ|t| `2k k ˙.
Proof. It clearly suffices to consider the case t ě 0. We prove the result by induction on the pair t, k, the result being known for t " 0 (Proposition 2.2), while for k " 0, clearly upt, 0q " 1 " `|t| 0 ˘.

Now the same argument as in [15,Prop. 5.2], involving rotation of the bottom row of a monic diagram |t| ÝÑ |t| `2k through 180 ˝to obtain a diagram 0 ÝÑ 2|t| `2k, shows that we have the following recursion for upt, kq. Assume t, k ě 1. Then eq:urec eq:urec (2.7) upt, kq " upt ´1, kq `upt `1, k ´1q.

Hence by induction, upt, kq " `t´1`2k

k ˘``t `1`2pk´1q k´1 ˘" `t`2k k ˘.

Multipolar and affine Temperley-Lieb categories sect:cats

Certain categories of framed tangles, both oriented and unoriented, [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF] and of ribbon graphs [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF], have played important roles in the construction of topological invariants of link and 3-manifold. We now develop an alternative formulation of the Temperley-Lieb category TLBpq, Qq of type B in terms of framed tangles.

sect:cat-RT 3.1. A subcategory of tangle diagrams. We introduce here a category of unoriented tangles up to regular isotopy in the sense of [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF], which we denote by RT . Our category is a subcategory of the category S ´RTang, where S is the set C :" tm, vu which is defined in [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF]Def. 3.1]. We shall use the language of tangle diagrams, although an equivalent formulation could use the language of coloured ribbon graphs.

The objects of RT are sequences of elements of C " tm, vu, which are called "colours", where the empty sequence is allowed. The morphisms are spanned, over a base ring R, by unoriented tangles up to regular isotopy in the terminology of [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF], coloured by C. Such tangles are represented in "tangle diagrams" as unions of arcs; we say that an arc is horizontal if its end points are either both at the top or at the bottom of the tangle. An arc is vertical if it has end points and is not horizontal. To define (the subcategory) RT , we impose the following two conditions on morphisms.

(1) Closed arcs (i.e. those with no end points) are all coloured by v.

(2) Any arc coloured by m P C is vertical, and no two such arcs cross.

The composition of morphisms is explained in [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF] and is essentially by concatenation of tangle diagrams.

We call RT the restricted coloured tangle category. Since the two ends of any arc have the same colour, we will write m or v beside an arc to indicate its colour. The term "tangle diagram" will be abbreviated to "diagram" below.

thm:tensor-cat Theorem 3.1. The category RT has the following properties.

(1) There is a bi-functor b : RT ˆRT ÝÑ RT , called the tensor product, which is defined as follows. For any pair of objects A " pa 1 , . . . , a r q and B " pb 1 , . . . , b s q, we have A b B " pA, Bq :" pa 1 , . . . , a r , b 1 , . . . , b s q. The tensor product is bilinear on morphisms. Given diagrams D and D 1 , D b D 1 is their juxtaposition with D on the left. Proof. This was proved in [10, Theorem 3.5] and in [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF]Lemma 5.3]. The result of [START_REF] Freyd | Braided compact closed categories with applications to low dimensional topology[END_REF]Theorem 3.5] in fact applies to several categories of tangles; the case which covers our theorem is that of S ´RTang with S " C. Note that [10, Theorem 3.5] does not involve colours, but this is not an issue as colours merely label components of tangles. We can also extract our theorem from [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF]Lemma 5.3] by removing directions of ribbon graphs and forbidding coupons. There is also a direct proof along the lines of [START_REF] Lehrer | The Brauer category and invariant theory[END_REF]Appendix].

An alternative representation.

A second way of representing the category RT is as follows. We depict arcs coloured by m as thick arcs called poles, and arcs coloured by v as thin arcs. This way a diagram automatically carries the information about the colours of its arcs, so that we may drop the letters for colours from the diagram.

For example, we have the following diagram pm, v 2 , m, v 2 q Ñ pv, m, v, m, v 2 q.

rem:braid-gps 3.2. Some full subcategrories of RT . We denote by BT the full subcategory of RT with objects pm, v r q " pm, v, . . . , v loomoon r q, r " 0, 1, 2, . . . . This is the category of "tangles of type B", or tangles with a pole. We note that the automorphism group of the object pm, v r q in BT (or RT ) contains the Artin braid group Γ r of type B r (cf. [14, §2]). More generally, for any object A P C N in RT , the set ΓpAq of diagrams A Ñ A with only vertical arcs (i.e. arcs which are monotonic from top to bottom) forms a group. In particular Γpv r q is the Artin braid group of type A r , and Γpm, v r q -Γ r is the Artin braid group of type B r . (cf. [14, §2]). It has generators ξ 1 , σ 1 , σ 2 , . . . , σ r´1 , and we shall freely use the notation in loc. cit.; in particular the generators ξ 1 , σ 1 , σ 2 , . . . , σ r´1 satisfy the braid relations of type B: eq:brb eq:brb (3.1)

ξ 1 σ 1 ξ 1 σ 1 " σ 1 ξ 1 σ 1 ξ 1 ξ 1 σ i " σ i ξ 1 if i ą 1 σ i σ j " σ j σ i if |i ´j| ą 1 σ i σ i`1 σ i " σ i`1 σ i σ i`1 for i " 1, . . . , r ´2.
These generators are identified with tangles as depicted in Figure 5 below. It is an enjoyable exercise to verify the first relation in (3.1) diagramatically.

ξ 1 " ξ 1 "
. . .

;

.

σ i " ... ... 1 i i `1
Figure 5. Generators ξ 1 and σ i eq:btg

The usual tangle category T 0 is the full subcategory of RT with objects v r , r " 0, 1, 2, . . . . The tensor functor of RT given by juxtaposition of tangles restricts to a tensor functor eq:tensbt eq:tensbt (3.2) BT ˆT0 ÝÑ BT , which will play an important role in this work.

rem:tangle-cats Remark 3.2. When convenient, T 0 will be identified with the subcategory of BT whose morphisms have no entanglement with the pole in the obvious way.

ss:sq 3.3. Some subquotient categories of RT . There are various interesting quotient categories of RT , the endomorphisms of which include well-known algebras such as the affine Brauer algebra and affine Temperley-Lieb algebra. We define some quotient categories of RT (resp. BT , T 0 ) whose objects are the same as those of RT , but whose Hom spaces will be quotients of the corresponding Hom spaces in RT (resp. BT , T 0 ). In general our categories will be multipolar. We refer to the case where there is just one pole on the left, as the affine case. eq:skein1 eq:skein1 (3.3) q

1 2 ´q " q ´1 2 ´q´1
.

eq:skein2 eq:skein2 (3.4)

q 1 2
´q "

. lem:flr Lemma 3.4. In the category MT Lpqq, we have the following identity.

eq:flr eq:flr (3.5)

" ´pq `q´1 q.

Proof. Let us write C 1 " q 1 2 σ 1 ´q P End MT L pm, v 2 q. By (3.3), we have q

1 2 σ 1 ´q " q ´1 2 σ ´1 1 ´q´1
, which is equivalent to eq:quad eq:quad (3.6) pσ 1 ´q 1 2 qpσ 1 `q´3 2 q " 0.

It follows that C 1 pσ 1 `q´3 2 q " 0 and hence that C 2 1 " C 1 pq

1 2 σ 1 ´qq " C 1 p´q ´1 ´qq. But from (3.4) it is evident that C 2 1 " F > C 1 ,
where F is a free loop, and hence a morphism in Hom MT Lpqq p0, 0q " K 0 . It follows that F " ´pq `q´1 q as claimed.

def:afftl Definition 3.5. If we impose the skein relations (3.3) and (3.4) on the subcategories BT and T 0 , we obtain the affine Temperley-Lieb category T L a pqq and the Temperley-Lieb category T Lpqq respectively.

Remark 3.6. Note that T L a pqq and T Lpqq are also the full subcategories of MT Lpqq with objects pm, v r q and v r (r " 0, 1, . . . ) respectively. The identification of T 0 with a subcategory of BT in Remark 3.2 leads to a similar identification of T Lpqq with the corresponding subcategory of T L a pqq.

The next proposition identifies the endomorphism algebras in the categories above and provides a justification for the terminology above.

prop:end Proposition 3.7.

(1) For r ě 1, the subalgebra of End T L a pqq pm, v r q generated by the images of the elements ξ 1 and σ i pi " 1, 2, . . . , r ´1q depicted in Figure 5 (2) For r ě 0, End T Lpqq pm, v r q -TL r pqq, the Temperley-Lieb algebra.

Proof. The algebra End RT pm, v r q contains a subalgebra generated by ξ 1 , σ 1 , . . . , σ r´1 subject to certain relations. We have seen in the proof of Lemma 3.4 that the relations (3.3) is equivalent to (3.6). Thus in case (1) the relevant algebra is a quotient of K 0 Γ r {xpq

1 2 σ 1 ´qqpq 1 2 σ 1
`q´1 qy, where Γ r is the Artin braid group of type B r . But by [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF]Definition (3.1)], this is isomorphic to the extended affine Hecke algebra p H a r pqq [START_REF] Lusztig | Affine Hecke algebras and their graded version[END_REF], since the generators σ i (of Γ r ) may be replaced by q 1 2 σ i without changing the relations.

In case (2) we obtain in a similar way that End T Lpqq pm, v r q is a quotient of the algebra

K 0 Br xpq 1 2 σ 1 ´qqpq 1 2 σ 1 `q´1 qy
, where B r is the r-string braid group and this latter algebra is well known to be isomorphic to the Hecke algebra H r pqq. Now write

C i " q 1 2 σ i ´q. It is clear from (3.4) by composing diagrams, that C i C i`1 C i " C i .
Expressing this relation in terms of the Hecke algebra H r pqq, which has basis elements T w , w P Sym r (note that here T w is taken to be a word in the q 1 2 σ i ), it follows that in End MT Lpqq pm, v r q, which is a quotient of p H a r pqq, we have the relation F i " 0, where

F i " ÿ wPSym 3 p´q ´1q pwq T w " 0.
But F i is (a scalar multiple of) the transform of the element E i in [14, Definition (4.1)] under the automorphism of p H a r pqq defined by q

1 2 σ i Þ Ñ ´q´1 2 σ ´1 i , ξ 1 Þ Ñ ξ ´1 1 .
The statement (1) now follows from loc. cit. and similarly for (2). rem:rigid Remark 3.8. The tangle category RT is remarkably rigid with respect to skein relations of the form (3.3) and (3.4). In fact the relations we have given may be shown to be essentially unique with respect to the requirement of compatibility with the sliding relations of Theorem 3.1(d).

Next consider in the category MT Lpqq the morphisms depicted in (3.7). Let D be a diagram D : pA 1 , m, A 2 q Ñ pB 1 , m, B 2 q in MT Lpqq, where the two m's shown are connected by a thick arc. Then

Dpid A 1 b z i b id A 2 q " pid B 1 b z i b id B 2 qD, i " 1, 2.
This is clear diagrammatically, because the thin loops may be thought of as pulled very tightly around the pole, so that they may be slid through any arcs entangling the pole.

However, note from Remark 3.11 (3) below that z 1 and z 2 are not independent in MT Lpqq.

The next result relates z 1 and z 2 to polar loops. It is important for subsequent developments.

ntral-skein-ATL Lemma 3.10. The following relation holds in MT Lpqq, and hence also in T L a pqq.

qδ `δz 1 " pqz 2 `z2 1 q
, where the right hand side is a symbolic notation for pqz 2 `z2 1 q b id v . Proof. We prove the relation diagrammatically. Consider the first relation of (3.1), that is,

ξ 1 σ 1 ξ 1 σ 1 " σ 1 ξ 1 σ 1 ξ 1 , in Γ 2 . Now the skein relations (3.
3) and (3.4) imply that in the above notation, q 1{2 σ 1 " q `C1 . Hence substituting for σ 1 , we obtain ξ 1 pC 1 `qqξ 1 pC 1 `qq " pC 1 `qqξ 1 pC 1 `qqξ 1 , which after simplification yields the following relation in MT Lpqq:

ξ 1 C 1 ξ 1 C 1 `qξ 2 1 C 1 " C 1 ξ 1 C 1 ξ 1 `qC 1 ξ 2 1 .
In terms of diagrams, this is expressed as follows.

q

`" q `. Now premultiply this equation by , and then pull the bottom right end point of the string in each of the four diagrams anticlockwise to the top by using the straightening relation. One then obtains the stated relation.

rem:zi Remark 3.11.

(1) The equation in Lemma 3.10 may be written symbolically as follows.

δξ 2 1 " ´q´1 δξ 1 z 1 b id v `z2 b id v `q´1 z 2 1 b id v .
(2) In principle, one might define elements z i for all i P Z, which are central in MT Lpqq in the sense above, where the loop of the thin arc in z i wraps around the pole i times. However, if we apply the operator D Þ Ñ A ˝pξ i 1 b I ˝Dq ˝U , where A and U are as in Fig. 11, to the relation in the proof of Lemma 3.10, it is easily checked that we obtain

qδz i`2 `δz 1 z i`1 " pqz 2 `z2 1 qz i , i P Z, eq:zi (3.8)
which uniquely determines all z i and pqz 2 `z2 1 q i z ´i for i ě 0 as polynomials in z 1 and z 2 , with z 0 " δid m .

:zi-constraints

(3) From the diagrams it is evident that z ´1 " z 1 . Hence putting i " ´1 in (3.8) yields qδz 1 `δ2 z 1 " pqz 2 `z2 1 qz ´1 " qz 1 z 2 `z3
1 , which simplifies to z 1 pz 2 1 `qz 2 `q´1 δq " 0. In constructing quotients of MT Lpqq by setting z 1 and z 2 equal to constants, this relation imposes constraints upon those constants. The values in (3.9) below satisfy these constraints. (4) Polynomials in z ˘i b id v r (for i ě 1) of degree greater than 0 are contained in End T L a pqq pm, v r q, but are not elements of the extended affine Temperley-Lieb algebra x TL a r pqq.

ect:TLBC-struct 3.4. Definition and structure of the category T LBpq, Ωq. In this section we define (Definition 3.14 below) and study a category T LBpq, Ωq which will ultimately turn out to be isomorpic to TLBpq, Qq for appropriate parameter choices. We begin by considering the quotient category of MT Lpqq obtained by identifying the central morphisms z 1 , z 2 : m Ñ m (see (3.7)) with scalars, that is, by imposing conditions on the removal of loops which are entangled with the pole. A certain specialisation of this category is the category T LBpq, Ωq. rem:quad Remark 3.12. Note that if z 1 and z 2 are identified with scalars, then Lemma 3.10 implies that in the resulting specialised (quotient) category, ξ 1 satisfies a quadratic relation. The apparently mysterious choice of parameters below, is such that this quadratic relation reads pqξ 1 ´Ωqpqξ 1 ´Ω´1 q " 0 (cf. Lemma 3.15 below). Note also that our choice of parameters is consistent with the constraint implied by Remark 3.11 [START_REF] Arakawa | Duality between sln(C) and the degenerate affine Hecke algebra[END_REF].

def:tlbc-2p Definition 3.13. Fix an invertible scalar Ω P K 0 , and set a 1 " ´pΩ `Ω´1 q, a 2 " ´q´1 ppΩ `Ω´1 q 2 `δq ´1q. eq:a-omega (3.9) Let MT Lpq, Ωq be the category whose objects are the same as those of MT Lpqq, and whose modules of morphisms are obtained from those in MT Lpqq by imposing all relations which are consequences of the two equalities

z 1 " a 1 id m , z 2 " a 2 id m .
def:tlbom Definition 3.14. Let T LBpq, Ωq be the full subcategory of MT Lpq, Ωq with objects pm, v r q for all r P Z ě0 .

This will be referred to as the Temperley-Lieb category of type B. The justification for the terminology will be provided by Theorem 3.27.

The following relation is an immediate consequence of Lemma 3.10. We refer to it as the third skein relation.

lem:skein-a-a Lemma 3.15. The following skein relation holds in MT Lpq, Ωq, and hence also in T LBpq, Ωq.

q 2 `qδ Ω `" 0 .
It is easy to see that the image of the Temperley-Lieb category T Lpqq in the quotient category MT Lpq, Ωq is canonically isomorphic to itself. Thus we shall regard T Lpqq as a full subcategory of MT Lpq, Ωq.

The following result is clear. rem:tlsub Remark 3.17. The Temperley-Lieb category T Lpqq may be thought of as a subcategory of T LBpq, Ωq, since diagrams from pv r q to pv s q are evidently in bijection with diagrams pm, v r q to pm, v s q which have no entanglement with the pole. Thus T Lpqq is the subcategory of T LBpq, Ωq with precisely such morphisms.

We now investigate the structure of the Temperley-Lieb category T LBpq, Ωq in more depth. Morphisms of T LBpq, Ωq are linear combinations of diagrams with only one vertical thick arc placed at the left end, which can be described explicitly as follows. (1) the diagram has only one vertical thick arc placed at the left end, which will be called the pole;

(2) there are no loops in the diagram;

(3) arcs do not self-tangle, and thin arcs do not tangle with thin arcs; (4) if a thin arc tangles with the thick arc, it crosses the thick arc just twice, and crosses behind the pole in the upper crossing.

For example, the diagrams in Figure 6 and Figure 7 are morphisms in T LBpq, Ωq. The one in Figure 7 is not in the subcategory T Lpqq of T LBpq, Ωq, while that in Figure 6 is in T Lpqq. Figure 6 is a morphism pm, v 7 q Ñ pm, v 5 q, where arcs do not cross, and Figure 7 is a morphism pm, v 4 q Ñ pm, v 6 q, where 2 thin arcs over cross the thick arc twice each. Note that there is a unique Temperley-Lieb diagram m Ñ m consisting of a thick arc only.

The spaces of morphisms of T LBpq, Ωq are easily seen to be spanned by Temperley-Lieb diagrams, since the relations in Section 3.3 may be used to reduce any diagram to a linear combination of Temperley-Lieb diagrams.

Composition of morphisms may be described as follows. Given morphisms D : B Ñ T and D 1 : T Ñ U represented by Temperley-Lieb diagrams, their composition is defined by the following steps The following result is obtained by repeatedly applying the straightening relations.

lem:hom-iso Lemma 3.19. Let N be any non-negative integer. Then for r " 0, 1, . . . , 2N , the vector spaces Hom T LBpq,Ωq ppm, v r q, pm, v 2N ´rqq are all isomorphic.

Proof. The proof is the same as in [START_REF] Lehrer | The Brauer category and invariant theory[END_REF]. A special case of the above is W p2N q :" Hom T LBpq,Ωq pm, pm, v 2N qq. Let F t W p2N q be the subspace of W p2N q spanned by diagrams such that at most t thin arcs are entangled with the pole. For example, Figure 8 is a diagram m Ñ pm, v 12 q which lies in F 3 W p12q. Note that two of the three arcs which cross the pole at its upper part are "parallel" when they cross the pole. Let us make this notion more precise.

Definition 3.20. Any thin arc which is entangled with the pole has two polar crossings, and in this way defines an interval on the pole, which we call its "polar interval". We say that two thin arcs in a Temperley-Lieb diagram are parallel if they are both entangled with the pole and the polar interval defined by one is contained in the polar interval defined by the other. Examples of distinguished and standard diagrams are given respectively in Figure 9 and in Figure 10.

It is easily seen that there is a unique distinguished (resp. standard) Temperley-Lieb diagram m Ñ pm, v 2N q with N thin arcs tangling with the pole. Recall that F t W p2N q is the subspace of W p2N q " Hom T LBpq,Ωq pm, pm, v 2N qq spanned by diagrams with at most t thin arcs which are entangled with the pole. lem:reduct Lemma 3.23.

(1) Any Temperley-Lieb diagram in F t W p2N q, which does not belong to F t´1 W p2N q, can be expressed as a linear combination of elements of F t´1 W p2N q and a distinguished (resp. standard) diagram with t thin arcs tangling with the pole, where the coefficient of the distinguished (resp. standard) diagram is a (half-integer) power of q.

(2) Any Temperley-Lieb diagram in F t W p2N q can be expressed as a linear combination of distinguished (resp. standard) diagrams.

Proof. By stretching the entangled arcs, one sees that any Temperley-Lieb diagram diagram m Ñ pm, v 2N q with t thin arcs entangling the pole can be expressed as the composition D 1 ˝D of two diagrams D : m Ñ pm, v 2t q and D 1 : pm, v 2t q Ñ pm, v 2N q, where D 1 has no thin arcs which entangle the pole. Now consider a diagram D : m Ñ pm, v 2t q with t thin arcs entangling the pole. If D is distinguished, then the original diagram is distinguished. If D is not distinguished, we may pull the thin arcs one by one so that all t arcs are parallel, at the expense of introducing crossings, which after sliding, will all be to the right of the pole. We now use skein relations to remove the crossings among the thin arcs. This leads to a linear combination of diagrams, where the only diagram with t thin arcs entangling the pole is the distinguished one, and its coefficient is a power of q.

In a similar way, we can express any Temperley-Lieb diagram in F t p2N q as a linear combination of a standard diagram and diagrams in F t´1 p2N q. This proves part (1) of the Lemma.

To see (2), observe that given any Temperley-Lieb diagram diagram m Ñ pm, v 2N q with t thin arcs entangling the pole, we may use part [START_REF] Allcock | Braid pictures for Artin groups[END_REF] to express it as a linear combination of a distinguished (resp. standard) diagram and diagrams in F t´1 p2N q. We then repeat the reduction process for diagrams in F t´1 p2N q, then F t´2 p2N q, etc., and after t iterations, arrive at the statement (2).

We have the following result.

lem:dim-TLB Lemma 3.24. For all r " 0, 1, . . . , 2N , dim Hom T LBpq,Ωq ppm, v r q, pm, v 2N ´rqq "

ˆ2N N ˙.
Proof. We give a proof here which will be useful for proving Theorem 4.9. By Lemma 3.19, we only need to prove the dimension formula for r " 0. Recall that in the proof of Lemma 3.19 we introduced the following filtration for W p2N q " Hom T LBpq,Ωq pm, pm, v 2N qq.

F N W p2N q Ą F N ´1W p2N q Ą ¨¨¨Ą F 1 W p2N q Ą F 0 W p2N q Ą H, eq:filtr (3.10) where F t W p2N q is the subspace spanned by Temperley-Lieb diagrams with at most t thin arcs entangled with the pole. Let Endp2N q " Hom T LBpq,Ωq ppm, v 2N q, pm, v 2N qq and denote by End 0 p2N q the subspace of Endp2N q spanned by diagrams without tanglement. Then End 0 p2N q is a subalgebra of Endp2N q isomorphic to the Temperley-Lieb algebra TL 2N pqq of degree 2N . Now End 0 p2N q acts naturally on W p2N q, and the F t W p2N q are End 0 p2N q-submodules. Clearly FtW p2N q F t´1 W p2N q is isomorphic to a cell module W 2t p2N q [13, Def.(2.2)] for End 0 p2N qq, which is a simple module in the present generic context. Hence as vector space, Hom T LBpq,Ωq pm, pm, v 2N qq -

N à t"0 W 2t p2N q. (3.11)
Using the well-known fact [15] 

that dim W 2t p2N q " ˆ2N N ´t˙´ˆ2 N N ´t ´1ẇ ith dim W 2N p2N q " ˆ2N 0 
˙" 1, we obtain the result.

sss:tp 3.5. Standard diagrams, tensor product and generators. Recall from Remark 3.17 that the diagrams in the subcategory T Lpqq of T LBpq, Ωq are those which involve no entanglement with the pole. As such, they look like a disentangled pole adjacent to a 'usual' finite Temperley-Lieb diagram (cf. [START_REF] Graham | The representation theory of affine Temperley-Lieb algebras[END_REF][START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF]). Now it follows from Lemma 3.16 that there is an obvious functor eq:tp2 eq:tp2 (3.12) T LBpq, Ωq ˆT Lpqq ÝÑ T LBpq, Ωq which is defined by juxtaposition of diagrams, where the disentangled pole is omitted from the second factor. Moreover it is clear that the diagrams depicted as I, A, U below generate the subcategory T Lpqq under composition and the tensor product defined by (3.12).

I " , A " , U " 
. All relations among these generators are well known to be consequences of the following.

eq:tlrels eq:tlrels (3.13) AU " δp" ´pq `q´1 qq; pA b IqpI b U q " I. We wish to determine a similar presentation for the whole of T LBpq, Ωq. For this we begin by observing that any Temperley-Lieb diagram may be expressed as a linear combination of diagrams which are standard in the following sense.

f:stand-general Definition 3.25. A Temperley-Lieb diagram D : pm, v r q Ñ pm, v s q is called standard if pD b id v r qpid m b U r q : m Ñ pm, v r`s q is a standard diagram in the sense of Definition 3.22, where U r : H Ñ v 2r is given by the following diagram. It is now clear that to obtain T LBpq, Ωq from T Lpqq just one extra generator, depicted L in the diagram below, needs to be added to the set of generators of T Lpqq given in Figure 11. Note that L is the image of ξ 1 in T LBpqq.

L "

. We shall use these generators in the proof of Theorem 3.27 below.

Note that among the relations in T LBpq, Ωq we have, using Lemma 3.10 and Definition 3.13, qL 2 " pΩ `Ω´1 qL ´q´1 I, eq:skein (3.14) ApL b IqU " ´pΩ `Ω´1 q. eq:loop (3.15) sect:tlb-equiv 3.6. An equivalence of categories. We have defined two "Temperley-Lieb categories of type B", viz. the category T LBpq, Ωq of Definition 3.13 and the category TLBpq, Qq of Definition 2.1. Both categories contain the finite Temperley-Lieb category T Lpqq as a subcategory. In the case of TLBpq, Qq this is realised as in §2.2. In the case of T LBpq, Ωq (cf. Definition 3.13), T Lpqq may be thought of as having the same objects tpm, v r qu, r " 0, 1, . . . as T LBpq, Ωq, but where the morphisms are linear combinations of tangles which are not entwined with the pole.

Our next objective is to prove the following result.

thm:tlbequ Theorem 3.27. Let R be an integral domain with invertible elements q, Q and Ω and an element ? ´1 such that ? ´12 " ´1. Then there is an equivalence of categories M : TLBpq, Qq ÝÑ T LBpq, Ωq which takes the object r P Z to pm, v r q, is the identity on T Lpqq, and respects the tensor product, if and only if Ω " ˘p? ´1Qq ˘1. In this case we have MpC 0 q " ? ´1qL ´QI.

Note that the stated conditions on M imply that for diagrams D P TLBpq, Qq and D 1 P T Lpqq, we have eq:resp eq:resp (3.16)

MpD b D 1 q " MpDq b D 1 .
Proof of Theorem 3.27. We shall define M on the generators A, U, I and C 0 , the effect of M on objects having been given. Since M is to be the identity functor on the subcategory T Lpqq, evidently we must have MpAq " A, MpU q " U and MpIq " I, where on the left side of these equations A, U and I are as in Fig. 4 of section 2.2, while on the right side they are as defined in Fig. 11.

It remains only to define MpC 0 q. This is a morphism in End T LBpq,Ωq pm, vq, and since this space has basis I, L, it follows that eq:b1 eq:b1 (3.17)

MpC 0 q " aL `bI, for a, b P R. We shall determine constraints on a, b. First, observe that it follows by applying Ap´b IqU to both sides of (3.17) that MpApC 0 b IqU q " aApL b IqU `bApI b IqU, whence using (3.15) and (2.1)(ii) it follows that eq:b2 eq:b2 (3.18) κp" q Q `Q q q " aδ Ω `bδ q , where, for any invertible x P R, δ x " ´px `x´1 q.

Next, we square both sides of (3.17) using the relations (3.14) and (2.1)(iii). One obtains eq:b3 eq:b3 (3.19) p2ab ´q´1 δ Ω a 2 qL `pb 2 ´q´2 a 2 q " aδ Q L `bδ Q I, and equating the coefficients of L and I respectively, we obtain 2ab ´q´1 δ Ω a 2 " aδ Q , eq:b4 (3.20) b 2 ´q´2 a 2 " bδ Q . eq:Omega-Q (3.25) Substituting this into (3.24), we obtain a " ˘?´1q.

It is now easily checked that the defining relations among the generators A, U, I and C 0 , which are those involving only A, U and I, as well as those in (2.1), are respected by M. Thus M is well defined; that is, Mpφq is well defined for any morphism φ P TLBpq, Qq.

But evidently, given the relation δ 2 Ω " ´pQ ´1 ´Qq 2 , M has an inverse functor, M ´1 which is defined on the generators of T Lpq, Ωq by

M ´1 : I Þ Ñ I; A Þ Ñ A; U Þ Ñ U and M ´1pLq " a ´1C 0
´a´1 bI, where a ´1 " ˘?´1q ´1 and b " ˘?´1Ω ˘1. If we take Ω " ? ´1Q and a " ? ´1q then M ´1pLq " ´?´1q ´1C 0 ´q´1 ΩI. It is now clear that provided δ 2 Ω " ´pQ ´1 ´Qq 2 , M ˝M´1 " id T LBpq,Ωq and M ´1 ˝M " id TLBpq,Qq , proving the required isomorphism of categories.

rem:dims Remark 3.28. It is evident from Theorem 3.27 that the Hom spaces in T Lpq, Ωq and TLBpq, Qq have the same dimension. Hence Lemma 3.24 follows from Proposition 2.2. We have included an independent proof of this result to illustrate the role of the filtrations by tangle diagrams in the context of the latter category.

4. Quantum Schur-Weyl duality sect:Schur-Weyl 4.1. The quantum group U q psl 2 q. We briefly describe the representations and the universal R-matrix of U q psl 2 q in this section. We write U q for the K 0 -algebra U q psl 2 q. This has generators E, F and K ˘1, with relations

KEK ´1 " q 2 E, KF K ´1 " q ´2F, EF ´F E " K ´K´1 q ´q´1 . The comultiplication is given by ∆pKq " K b K, ∆pEq " E b K `1 b E, ∆pF q " F b 1 `K´1 b F,

and the antipode by

SpEq " ´EK ´1, SpF q " ´KF, SpKq " K ´1.

4.1.1. Representations. Projective modules. An integral weight U q psl 2 q-module M of type-1 is one such that M " ' kPZ M k where M k " tv P M Kv " q k vu. Let U q pbq be the Borel subalgebra of U q psl 2 q generated by E and K ˘1. The category O int is defined as the category of U q psl 2 q-modules M , which satisfy: ' M is finitely generated as a U q psl 2 q-module. ' M is locally U q pbq finite. ' M is an integral weight module of type 1. For any integer P Z, denote by pK 0 q " K 0 v `the 1-dimensional U q pbq-module such that Ev `" 0 and Kv `" q v `, and let M p q " U q psl 2 qb Uqpbq pK 0 q . This is the Verma module with highest weight , which has a unique simple quotient V p q. Then M p q and V p q are the standard and simple objects in O int . The simple module V p q is finite dimensional if and only if ě 0, and in this case it is p `1q-dimensional.

The element z :" F E `qK`q ´1K ´1 pq´q ´1q 2 is central in the quantum group U q psl 2 q. It acts as the scalar χ :" q `1`q ´ ´1 pq´q ´1q 2 on any highest weight vector of weight and since it is central, therefore acts as the scalar χ on the whole of any highest weight module in O int with highest weight .

For any module M P O int , if we define M χ :" tm P M | pz ´χ q i m " 0 for some i ě 0u, then M χ is a direct summand of M . We denote by O χ int the full subcategory of O int whose objects are modules M such that M " M χ , and call it the block (which is indeed a block) of O int corresponding to χ . It follows from the definition of O int that any M P O int is a direct sum of finitely many summands, each of which belongs to a block.

Evidently χ " χ 1 if and only if " 1 or ` 1 `2 " 0.

def:link Definition 4.1. The weights , 1 P Z are said to be linked if " 1 or ` 1 `2 " 0. The linkage principal asserts here merely that χ " χ 1 ðñ , 1 are linked.

Observe that if ě ´1, then there exists no 1 ą linked to . This leads to the following result, which is well known, but we provide a proof for the convenience of the reader. lem:proj Lemma 4.2. Fix an integer ě ´1.

(1) The Verma module M p q is projective in O int .

(2) If M is a finite dimensional module in O int , then there is a linear isomorphism Hom Uqpsl 2 q pM p q, M p q b M q -M 0 , where M 0 is the zero weight space of M .

Proof. Consider first part [START_REF] Allcock | Braid pictures for Artin groups[END_REF]. Let ψ : M N be any surjection in O int . Then ψpM q " N , so that ψpM χ q " N χ . If φ : M p q ÝÑ N , then clearly φpM p qq Ď N χ and hence to prove (1), we may suppose that M and N are in the block O χ int of O int . Since the image φpm `q of the highest weight vector m `of M p q is in N " ψpM q, φpm `q " ψpvq for some v P M . Writing v " v 0 `v1 `¨¨¨`v k , where v 0 has weight and for i ě 1, v i has weight i ‰ (the i being pairwise distinct), we see that for j " 1, 2, 3, . . . , we have q j pψpvq ´ψpv 0 qq `qj 1 ψpv 1 q `¨¨¨`q j k ψpv k q " 0. A van der Monde type argument shows that ψpv i q " 0 for i ą 0 and that ψpvq " ψpv 0 q. Replacing v by v 0 , we may therefore assume that v is a weight vector of weight . Now the subspace U q pbqv Ď M contains a highest weight vector v 1 of weight (say) 1 . Thus v 1 is an eigenvector of z, with eigenvalue χ 1 . Since M is in the block O χ int , we must have χ " χ 1 , i.e. 1 is linked to . But 1 ě ě ´1, so 1 " , and hence v is a highest weight vector in M .

It follows that the unique homomorphism φ 1 : M p q ÝÑ M with φ 1 pm `q " v, renders the following diagram commutative.

M p q φ φ 1 | | M ψ / / / / N.
This proves that M p q is projective in O int .

We now prove part (2). Since the module M given in part (2) is finite dimensional, M p q b M " U q psl 2 q b Uqpbq ppK 0 q b M q. Applying the induction functor to the composition series of pK 0 q b M as U q pbq-module leads to a filtration

M p q b M :" W 0 Ą W 1 Ą W 2 Ą ¨¨¨Ą W D´1 Ą W D " 0, D " dim M,
where the W i are in O int and W i {W i`1 " M p i q for some integer i . By the projectivity of M p q, we have Hom Uqpsl 2 q pM p q, W i q " Hom Uqpsl 2 q pM p q, M p i qq ' Hom Uqpsl 2 q pM p q, W i`1 q as vector space, and hence Hom Uqpsl 2 q pM p q, M p q b M q " à i Hom Uqpsl 2 q pM p q, M p i qq.

But Hom Uqpsl 2 q pM p q, M p i qq ‰ 0 only when and i are linked. The condition ě ´1 requires i " , and in this case, Hom Uqpsl 2 q pM p q, M p i qq is one dimensional. Since the weight space of weight in M p q b M is v `b M 0 , we have Hom Uqpsl 2 q pM p q, M p q b M q -M 0 . Some properties of V " V p1q. There exists a basis tv 1 , v ´1u of V such that the corresponding representation is given by

K Þ Ñ ˆq 0 0 q ´1˙, E Þ Ñ ˆ0 1 0 0 ˙, F Þ Ñ ˆ0 0 1 0 ˙.
We have V b V " V p2q ' V p0q, with the 1-dimensional submodule spanned by

c 0 :" ´qv 1 b v ´1 `v´1 b v 1 .
Since V is self-dual, there exists a unique (up to scalar multiple) non-degenerate invariant bilinear form p , q : V ˆV ÝÑ K 0 given by

pv 1 , v ´1q " ´qpv ´1, v 1 q " 1, pv 1 , v 1 q " pv ´1, v ´1q " 0.
Here invariance of the form means that pXv, wq " pv, SpXqwq for all v, w P V and X P U q psl 2 q, where S is the antipode of U q psl 2 q.

The following maps are clearly U q psl 2 q-morphisms

Č : K 0 ÝÑ V b V, 1 Þ Ñ c 0 , eq:cup (4.1) Ĉ : V b V ÝÑ K 0 , v b w Þ Ñ pv, wq, eq:cap (4.2)
as are the maps η, ζ : V ÝÑ V respectively defined by the compositions

η : V " ÝÑ K 0 b V Čbid ÝÑ V b V b V idb Ĉ ÝÑ V, ζ : V " ÝÑ V b K 0 idb Č ÝÑ V b V b V Ĉbid ÝÑ V.
The statements in the lemma below are all either well-known or easily checked.

eq:cup-cap Lemma 4.3. Let e " Č ˝Ĉ. The following relations hold.

Ĉp Čq " ´pq `q´1 q, eq:loop-c (4.3)

η " ζ " id V , eq:straighten (4.4) e 2 " ´pq `q´1 qe. eq:e-op (4.5) 4.1.2. The universal R-matrix. As the universal R-matrix of U q psl 2 q will play an important role in our development, we give some explicit information concerning it. Following [START_REF] Cox | The blob algebra in positive characteristic[END_REF], we define a functorial linear operator Ξ as follows. For any pair of modules M 1 , M 2 in O int , and weight vectors w 1 P M 1 and w 2 P M 2 with weights

k 1 , k 2 respectively, Ξ M 1 ,M 2 : M 1 b M 2 ÝÑ M 1 b M 2 , w 1 b w 2 Þ Ñ q k 1 k 2 2 w 1 b w 2 . (4.6)
The universal R-matrix is the functorial linear isomorphism R " Ξ ˜8 ÿ j"0 pq ´q´1 q j vjw q ! E j b F j ¸, eq:univ-R (4.7) where vjw q ! " ś j k"0 vkw q with vkw q " 1´q ´2k 1´q

´2 . [Warning: this is not the usual definition of q-numbers.] For i " 1, 2, denote the representation of U q psl 2 q on M i by π i . Then the universal R-matrix acts on

M 1 b M 2 by R M 1 ,M 2 " Ξ ˜8 ÿ j"0 pq ´q´1 q j vjw q ! π 1 pE j q b π 2 pF j q ¸.
This is well defined, since E and F act locally nilpotently. The universal R-matrix has the following properties.

R M 1 ,M 2 pπ 1 b π 2 q∆pxq " pπ 1 b π 2 q∆ 1 pxqR M 1 ,M 2 , @x P U q psl 2 q; (4.8) R M 1 bM 2 ,M 3 " R M 1 ,M 3 R M 2 ,M 3 , R M 1 ,M 2 bM 3 " R M 1 ,M 3 R M 1 ,M 2 , (4.9) R M 1 ,M 2 R M 1 ,M 3 R M 2 ,M 3 " R M 2 ,M 3 R M 1 ,M 3 R M 1 ,M 2 , (4.10) 
where the last two equations are equalities of automorphisms of M 1 b M 2 b M 3 . The last equation is the celebrated Yang-Baxter equation.

Let

P M 1 ,M 2 : M 1 b M 2 ÝÑ M 2 b M 1 be the permutation w b w 1 Þ Ñ w 1 b w, and denote ŘM 1 ,M 2 " P M 1 ,M 2 R M 1 ,M 2 : M 1 b M 2 ÝÑ M 2 b M 1 . Then ŘM 1 ,M 2 pπ 1 b π 2 q∆pxq ´pπ 2 b π 1 q∆pxq ŘM 1 ,
M 2 " 0, @x P U q psl 2 q, eq:commute (4.11) and the Yang-Baxter equation becomes the following "braid relation" among isomorphisms

M 1 b M 2 b M 3 ÝÑ M 3 b M 2 b M 1 in O int . p ŘM 2 ,M 3 b id M 1 qpid M 2 b ŘM 1 ,M 3 qp ŘM 1 ,M 2 b id M 3 q " pid M 3 b ŘM 1 ,M 2 qp ŘM 1 ,M 3 b id M 2 qpid M 1 b ŘM 2 ,M 3 q.
For M 1 " M 2 " V p1q, by looking at the action of q 1 2 ŘV,V on the respective highest weight vectors of the simple submodules of V bV " V p2q'V p0q, it becomes evident that q 1 2 ŘV,V has eigenvalues q and ´q´1 on V p2q and V p0q respectively. Bearing in mind that Č ˝Ĉ " ´pq `q´1 q times the projection to V p0q this may be restated as follows.

eq:normal-R Lemma 4.4. The R-matrix ŘV,V satisfies the following relation.

q 1 2 ŘV,V " q `Č ˝Ĉ, lem:normal-R (4.12)
where Č and Ĉ, are as defined in (4.1).

Now let

R T " Ξ ˜8 ÿ j"0 pq ´q´1 q j vjw q ! F j b E j ¸, eq:univ-RT (4.13) and denote R T M 1 ,M 2 " R T : M 1 b M 2 ÝÑ M 1 b M 2 . Then R T M 1 ,M 2 " P M 2 ,M 1 R M 2 ,M 1 P M 1 ,M 2 : M 1 b M 2 ÝÑ M 1 b M 2 . Furthermore, ŘM 2 ,M 1 ŘM 1 ,M 2 " R T M 1 ,M 2 R M 1 ,M 2 , and
R T M 1 ,M 2 R M 1 ,M 2 " ∆pv ´1qpv b vq : M 1 b M 2 ÝÑ M 1 b M 2 ,
where v is Drinfeld's central element of U q psl 2 q (see [START_REF] Cox | The blob algebra in positive characteristic[END_REF]). The element v acts on any highest weight module with highest weight (i.e., a module which is generated by a highest weight vector of weight ) in O int as multiplication by the scalar q ´1 2 p `2q . Assume that M 1 and M 2 are both highest weight modules with highest weights

1 and 2 respectively. Then R T M 1 ,M 2 R M 1 ,M 2 acts on a highest weight submodule M 1 of M 1 b M 2 with highest weight as R T M 1 ,M 2 R M 1 ,M 2 | M 1 " q χp , 1 , 2 q id M 1 , where χp , 1 , 2 q " p `2q 2 ´ 1 p 1 `2q 2 ´ 2 p 2 `2q 2 .
eq:eigen (4.14)

If m `is the highest weight vector of M 1 , and v P M 2 is a vector of weight j, we have Km `" q 1 m `and Kv " q j v. Then

R T M 1 ,M 2 R M 1 ,M 2 pm `b vq " 8 ÿ k"0 pq ´q´1 q k q j 1 `kp 1 ´j´2kq vkw q ! F k m `b E k v. eq:RtR (4.15)
4.2. A tensor functor. We again fix V " V p1q, and for any integer , let M be either M p q or V p q. We shall adopt the following notation. Recall that C " tm, vu; for any sequence A " pa 1 , a 2 , . . . , a r q with a j P C, write

U A " U a 1 b U a 2 b ¨¨¨b U ar ,
where U m " M and U v " V . We set U H " K 0 for the empty sequence H.

Recall that there exists a canonical tensor functor from the category of directed coloured ribbon graphs to the category of finite dimensional representations of any quantum group, see [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF]Theorem 5.1]. Adapting that functor to our context yields the following result.

thm:RT Theorem 4.5. Let V " V p1q, and for any integer let M be either M p q or V p q.

There exists a unique covariant linear functor p F : RT ÝÑ O int , which satisfies the following properties.

(1) The functor respects the tensor products of RT and O int ;

(2) p F sends the object A of RT to p FpAq " U A ; and (3) p F maps the generators of the morphism spaces as indicated below.

a Þ Ñ id U a , b c Þ Ñ ŘU b ,U c , b c Þ Ñ p ŘU b ,U c q ´1,
for all a, b, c P C with b, c not both equal to m, and

v Þ Ñ Č, v Þ Ñ Ĉ,
where the maps Č : K 0 ÝÑ V b V and Ĉ : V b V ÝÑ K 0 are defined by (4.1) and (4.2) respectively.

Proof. Suppose for the moment that the functor p F as defined in (2) and ( 3) is well defined on morphisms, that is, that eq:wd eq:wd (4.16) The relations in part (3) of Theorem 3.1 are preserved by p F.

Then equation (4.17) and property (3) of the statement, which defines the images of the generators of morphisms under p F, define the functor uniquely. The functor evidently respects the tensor products for objects, since for any objects A and B in RT , we have

p FpA b Bq " U pA,Bq " U A b U B .
The statement (1) now reduces to showing that p F respect tensor products for morphisms, that is, for any two morphisms D, D 1 in RT , eq:rtp eq:rtp (4.17) p FpD b D 1 q " p FpDq b p FpD 1 q, which will follow from (4.16). Thus we are reduced to proving the latter statement.

Clearly p F preserves relations (a). It also preserves relations (b) since the Rmatrices satisfy the Yang-Baxter equation. It follows from (4.4) that the straightening relations (c) are also preserved.

To prove the sliding relations, let us write

Ψ `:" p F ¨a v ', Ψ 1 `:" p F ¨a v ', Ψ ´:" p F ¨a v ', Ψ 1 ´:" p F ¨a v '.
Let v, v 1 P V be vectors with weights and 1 respectively, and let w P U a be a vector with weight k. Then we have

Ψ `pv b w b v 1 q " q 1 2 k pv, v 1 qw `pq ´q´1 qq 1 2 pk´2qp `2q pEv, v 1 qF w, Ψ 1 `pv b w b v 1 q " q ´1 2 k 1 pv, v 1 qw ´pq ´q´1 qq ´1 2 k 1 pv, Ev 1 qF w.
Invariance of the bilinear form implies that pv, Ev 1 q " ´pEv, Kv 1 q " ´q 1 pEv, v 1 q. Also note that pv, v 1 q " 0 unless ` 1 " 0, and pEv, v 1 q " pv, Ev 1 q " 0 unless " 1 " ´1. Hence

Ψ `pv b w b v 1 q " q 1 2 k pv, v 1 qw `pq ´q´1 qq 1 2 pk´2q pEv, v 1 qF w " Ψ 1 `pv b w b v 1 q.
Similarly we have

Ψ ´pv b w b v 1 q " q ´1 2 k pv, v 1 qw ´pq ´q´1 qq ´1 2 k pF v, v 1 qEw, Ψ 1 ´pv b w b v 1 q " q 1 2 k 1 pv, v 1 qw `pq ´q´1 qq 1 2 pk`2qp 1 ´2q pv, F v 1 qEw.
In this case, pF v, v 1 q " ´pv, KF v 1 q " ´q´1 pv, F v 1 q, and pF v, v 1 q " pv, F v 1 q " 0 unless " 1 " 1. We still have pv, v 1 q " 0 unless ` 1 " 0. Hence Ψ ´pv b w b v 1 q " q ´1 2 k pv, v 1 qw `pq ´q´1 qq ´1 2 pk`2q pv, F v 1 qEw " Ψ 1 ´pv b w b v 1 q. Now consider the twists. Let

ϕ :" p F ¨v ‹ ‹ ' , ϕ 1 :" p F ¨v ‹ ‹ ' ,
which are scalar multiples of id V . By direct computations, one can verify that

ϕv 1 " ´q 3 2 v 1 , ϕ 1 v ´1 " ´q´3 2 v ´1.
Hence ϕ " ´q 3 2 id V , ϕ 1 " ´q´3 2 id V , and ϕ ˝ϕ1 " id V . Another way to compute this is to use the well known relationship between the R-matrix and Drinfeld's central element. By taking into account the q-skew nature of the bilinear form, we immediately obtain ϕ " ´q 3 2 id V , ϕ 1 " ´q´3 2 id V . This completes the proof of Theorem 4.5.

em:norm-factors Remark 4.6. Note that when constructing representations of the Artin braid group, one has the freedom of multiplying the R-matrices by an invertible scalar. However the sliding relations remove this freedom in the definition of the functor p F (cf. Remark 3.8).

hm:functor-quot Theorem 4.7. The functor p F : RT ÝÑ O int of Theorem 4.5 factors through MT Lpq, q `1q.

Proof. It follows from the property of Ř given in Lemma 4.4 that the functor p F respects the first two skein relations of MT Lpq, Ωq. By Lemma 3.4 it therefore also respects the free loop removal relation (cf. also (4.3)). We now set Ω " q `1. eq:omega-value (4.18) We want to show that p F preserves the third skein relation of MT Lpq, Ωq (see Lemma 3.15). We have

ξ :" p F ¨‹ ‹ ‹ ‹ '
" ŘV,M ŘM,V .

In the case M " M p q, if ‰ ´1, we have M b V " M p `1q ' M p ´1q. Hence ξ " ŘV,M ŘM,V has two eigenvalues q χ ˘, which we can compute by using (4.14) to obtain

χ ˘" 1 2 p ˘1qp `2 ˘1q ´1 2 p `2q ´3 2 " ˘p `1q ´1.
Hence ξ satisfies the quadratic relation pqξ ´Ωqpqξ ´Ω´1 q " 0. eq:skein-3 (4. [START_REF] Lehrer | The Brauer category and invariant theory[END_REF] If " ´1, we do not have such a decomposition for M b V . However, we can directly verify the skein relation. Since ŘV,M ŘM,V is a U q psl 2 q-morphism, we only need to verify this for the two vectors m `b v 1 and m `b v ´1, as they generate

M b V . It is clear that m `b v 1 is an eigenvector of R T M,V R M,V
with eigenvalue q ´1. For the vector m `b v ´1, we use (4.7) and (4.13) to obtain the following relations.

R T M,V R M,V pm `b v ´1q " qm `b v ´1 `q´1 pq ´q´1 qF m `b v 1 , pR T M,V R M,V q 2 pm `b v ´1q " p2 ´q´2 qm `b v ´1 `2q ´2pq ´q´1 qF m `b v 1 .
Combining these we arrive at p ŘV,M ŘM,V ´q´1 q 2 pm `b v ´1q " 0. Hence we have proved that in this case pqξ ´1q 2 " 0.

For M " V p q, we only need to consider ě 0, since V p q " M p q if ă 0. We have V p q b V " V p `1q ' V p ´1q for ą 0 , and V p0q b V " V . It follows from these decompositions that the relation (4.19) is also satisfied in this case.

This proves that p F preserves the third skein relation for MT Lpq, q `1q. We now verify the tangled loop removal relation for both M p q and V p q. We note that for any linear transformation φ of V , Ĉpφ b id V q Čp1q " ´qpφv 1 , v ´1q `pφv ´1, v 1 q " ´tr V pKφq.

Hence

Φ :" p F ¨‹ ‹ ‹ ' " ´tr V `p1 b Kq ŘV,M ŘM,V ˘.
It follows from [28, Proposition 1] that Φ is a scalar multiple of id M . To compute the scalar, we consider the action of Φ on the highest weight vector m `of M . Using (4.15), we obtain Φm `" ´tr ˆˆq 0 0 q ´1˙ˆq q ´1pq ´q´1 q 0 q ´ ˙˙m `" ´pΩ `Ω´1 qm `.

This leads to Φ " ´pΩ `Ω´1 qid M , and hence p F respects the tangled loop removal relation.

This completes the proof of Theorem 4.7.

sect:CT-cat 4.

3. An equivalence of categories. In this section, we take V " V p1q and M " M p q for ě ´1. Let T be the full subcategory of the category O int of U q psl 2 q-modules with objects M b V br for r " 0, 1, . . . . Regard T LBpq, q `1q, the Temperley-Lieb category of type B, as a full subcategory of MT Lpq, q `1q. Theorem 4.5 enables us to define the following functors.

Definition 4.8. Let F : MT Lpq, q `1q ÝÑ O int be the functor defined by the commutative diagram

RT pqq p F / / O int MT Lpq, q `1q. F 8 8 
It is clear that F sends objects and morphisms in T LBpq, q `1q to T . Hence the restriction of the functor F to T LBpq, q `1q leads to a covariant functor F 1 : T LBpq, q `1q ÝÑ T . thm:main Theorem 4.9. Let V " V p1q and M " M p q. Then for all ě ´1, the functor F 1 :

T LBpq, q `1q ÝÑ T is an equivalence of categories, where T is the full subcategory of the category O int with objects M b V br for r " 0, 1, . . . . Proof. We will prove the equivalence of categories by showing that the functor F 1 is essentially surjective and fully faithful. We set Ω " q `1 in this proof. The essential surjectivity is clear, since F 1 pm, v r q " M b V br for all r. Since V is self dual, Hom T pM bV br , M bV bs q -Hom T pM, M bV bpr`sq q as vector spaces for all r and s. In view of Lemma 3.19, we have Hom T LBpq,Ωq ppm, v r q, pm, v s qq -Hom T LBpq,Ωq pm, pm, v r`s qq. Hence in order to prove that the functor F 1 is fully faithful, it suffices to show that F 1 defines isomorphisms Hom T LBpq,Ωq pm, pm, v r qq " ÝÑ Hom T pM, M b V r q for all r. We shall do this by showing that for all r, dim Hom T pM, M b V br q " dim Hom T LBpq,Ωq pm, pm, v r qq, and eq:dim-1 (4. [START_REF] Lejczyk | A graphical description of pD n , A n´1 q Kazhdan-Lusztig polynomials[END_REF] dim F 1 pHom T LBpq,Ωq pm, pm, v r qqq " dim Hom T LBpq,Ωq pm, pm, v r qq. eq:dim-2 (4.21)

Consider first Hom T pM, M b V br q. We decompose V br with respect to the joint action of U q psl 2 q and TL r pqq to obtain V br " À t V ptq b W t prq, where the direct sum is over all t such that 0 ď t ď r and r ´t is even. Since ě ´1, we can apply part (2) of Lemm 4.2 to obtain

Hom Uqpsl 2 q pM, M b V br q " à t Hom Uqpsl 2 q pM, M b V ptqq b W t prq " à t V ptq 0 b W t prq
If r is odd, then all t are odd, hence all V ptq 0 " 0. If r " 2N is even,

Hom Uqpsl 2 q pM, M b V b2N q " N à t"0 V p2tq 0 b W 2t p2N q " N à t"0 W 2t p2N q.
In view of Lemma 3.24 and its proof, this establishes equation (4.20).

Next we consider F 1 pHom T LBpq,Ωq pm, pm, v r qqq.

Applying F 1 to the filtration (3.10) of W p2N q by TL 2N pqq-modules F t W p2N q, and writing F i W p2N q " F 1 pF i W p2N qq, we obtain

F N W p2N q Ą F N ´1W p2N q Ą ¨¨¨Ą F 1 W p2N q Ą F 0 W p2N q Ą H. eq:filtr-1 (4.22)
This is a filtration of modules for F 1 pEnd 0 p2N qq, which by [START_REF] Lehrer | A Temperley-Lieb analogue for the BMW algebra[END_REF]Thm. 3.5] is isomorphic to TL r p2N q. For any i, if the quotient W 1 2i p2N q :" F i W p2N q F i´1 W p2N q ‰ 0, then it must be isomorphic to the cell module W 2i p2N q as TL r p2N q-module. Therefore, if we can show that W 1 2i p2N q ‰ 0 for all i, then (4.21) follows in view of Lemma 3.24. Assume to the contrary that W 1 2i p2N q " 0 for some i. This happens precisely if, given any distinguished diagram D P F i W p2N q with i thin arcs entangled with the pole, there is an element D red P F i´1 W p2N q such that F 1 pDq ´F1 pD red q " 0. eq:contra-1 (4.23)

Let D be given by the distinguished diagram in Figure 12. We shall show that

F 1 pDq R F 1 pF i´1 W p2N qq ... ... Figure 12. Diagram D : m Ñ pm, v 2N q fig:0-2N
Take the morphisms A : pm, v 2N q Ñ pm, v 2i q, I i : v i Ñ v i and S : pm, v 3i q Ñ pm, v i q, which are respectively given by A " ... 2i ... ,

I i " ... i , S " ... i ... .
We first compose D and the related D red with A to obtain AD and AD red , then tensor them with I i to obtain AD b I i and AD red b I i , and finally compose these morphisms with S to obtain SpADbI i q and SpAD red bI i q. Write D " δ ´N `iSpADb I i q and Dred " δ ´N `iSpAD red b I i q; these are both endomorphisms of pm, v i q. Now if W 1 2i p2N q " 0 for some i, equation (4.23) implies F 1 p Dq ´F1 p Dred q " 0. eq:contrad (4.24)

The diagram of D is given by Figure 13. The morphism Dred is spanned by diagrams with less than i thin arcs tangled with the thick arc. 

, v i q Ñ pm, v i q fig:i-i Let w " m `b v bi ´1, where v bi ´1 " v ´1 b v ´1 b ¨¨¨b v ´1 loooooooooooomoooooooooooon i
and let us compare F 1 p Dqpwq and F 1 p Dred qpwq. By (4.15), we have

F 1 p Dqpwq " i ÿ k"0 pq ´q´1 q k q ´i `kp `i´2kq vkw q ! F k m `b E k v bi ´1.
In particular, the vector F i m `b v bi 1 appears in F 1 p Dqpwq with a nonzero coefficient. This vector is nonzero since F i m `‰ 0 for all i in the Verma module M .

Turning to F 1 p Dred qpwq, we note that w " m `b v bi ´1 is annihilated by the images under F 1 of all diagrams from pm, v i q to pm, v i´2 q which have an arc U as depicted below, since the invariant form on V p1q satisfies pv ´1, v ´1q " 0. Using (4.15), we obtain

F 1 pΥ t qpwq " t ÿ k"0 pq ´q´1 q k q ´t `kp `t´2kq vkw q ! F k m `b E k v bt ´1 b v bpi´tq ´1
.

Note that for all t ă i, the vector F i m `b v bi 1 never appears in F 1 pΥ t qpwq with a non-zero coefficient. Thus (4.24) does not hold for any element D red P F i´1 W p2N q. Hence W 1 2i p2N q " W 2i p2N q for all i, and equation (4.21) is proved. We have now shown that F 1 is fully faithful, proving Theorem 4.9. 4.4. Quantum Schur-Weyl duality. The algebra TLB r pq, Qq, defined in Section 2 as the algebra of endomorphisms of r in the category TLBpq, Qq is generated [14, (5.7)] by the elements c i :" I bpi´1q b pU ˝Aq b I bpr´i´1q (i " 1, 2, . . . , r ´1) and c 0 :" C 0 b I bpr´1q , subject to the relations set out in [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF]Prop. (5.3)]. Likewise, the endomorphism algebra TLB r pq, Ωq of the object pm, v r q in T LBpq, Ωq has generators C i , i " 1, . . . , r ´1, defined in analogy with the c i using the elements I, A and U of §3.5, as well as the element L b I bpr´1q , which we refer to as L P TLB r pq, Ωq.

cor:tlb Corollary 4.10. For any integer r ą 0, there is an isomorphism of algebras TLB r pq, Qq ÝÑ TLB r pq, ? ´1Qq, which, in the notation explained above, takes the generators c i to C i (i " 1, . . . , r´1) and takes c 0 to ´?´1qL ´QI br , where ? ´1 is a fixed square root of ´1.

It is evidently a consequence of Theorem 4.9 and Corollary 4.10 that:

prop:end-tlb cor:alg-iso Proposition 4.11. Let V " V p1q and M " M p q with ě ´1. Then for each r " 1, 2, . . . , there are the following isomorphisms of associative algebras TLB r pq, q `1q " ÝÑ End Uqpsl 2 q pM b V br q " ÝÑ TLB r pq, ? ´1q `1q.

Remark 4.12. A similar Schur-Weyl duality between classical sl n and the degenerate affine Hecke algebra was established in [START_REF] Arakawa | Duality between sln(C) and the degenerate affine Hecke algebra[END_REF]. Our main result is that when n " 2 one can frame an equivalence, which may extend to the case where q is a root of unity (cf.

[2] for the classical case).

4.5. Semisimplicity of endomorphism algebras. It is apparent that analysis of the algebras TLB n pq, Qq may be approached through their cellular structure outlined above. This makes it possible to analyse the representations M p q b V p1q br . In this section we determine precisely when End Uqpsl 2 q pM p q b V p1q br q is semisimple. For ease of exposition, we assume throughout this section that Q and Ω are both in the field K 0 and we have chosen a fixed square root ? ´1 P K 0 .

4.5.1. Semisimplicity of TLB r pq, Ωq. This may be approached as in [7] for positive characteristic. However here we shall use the approach of [START_REF] Graham | The representation theory of affine Temperley-Lieb algebras[END_REF][START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF] which relates TLB r pq, Qq to the (unextended) affine Temperley-Lieb algebra T a r pqq as in [START_REF] Graham | Diagram algebras, Hecke algebras and decomposition numbers at roots of unity[END_REF], as well as the complete analysis of its cell modules W t,z prq given in [START_REF] Graham | The representation theory of affine Temperley-Lieb algebras[END_REF]. The results we quote as background may all be found in [14, § §6,10].

For each integer r ě 0 define the following sets of parameters:

eq:params eq:params (4.25)

Λprq " tt P Z | 0 ď t ď r and r ´t P 2Zu Λ B prq " tt P Z | |t| P Λprqu Λ a prq " tpt, zq P Z ˆK0 | t P Λprqu{ ", where in the third line, we declare p0, zq " p0, z ´1q.

The sets Λprq and Λ B prq are posets, with Λprq being ordered in the obvious way, Λ B prq ordered according to |t|, with |t| ě t. The set Λ a prq indexes the cell modules of T a r pqq, among which all homomorphisms are known. Any cellular algebra is semisimple if and only if there are no non-trivial homomorphisms among its cell modules [START_REF] Henning | Cellularity of certain quantum endomorphism algebras[END_REF]. The key to the semisimplicity of TLB r pq, Qq is therefore the following result. For the notation, the reader is referred to [14, §5]. (1) For 1 ď i ď r ´1, let t i " c i `q P TLB r pq, Qq, and let t 0 " c 0 `Q. There is a surjective homomorphism g : T a r pqq ÝÑ TLB r pq, Qq defined by gpf i q " c i for i " 1, . . . , r ´1, and gpτ q " ? ´1q

1 2 pn´2q t 0 t 1 . . . t r´1 , where τ is the "twist" diagram in T a r pqq.

(2) Denoting by g ˚pM q the pullback to T a r pqq of a TLB r pq, Qq-module M , we have, for t P Λ B prq, g ˚pW t prqq -W |t|,z ε t t prq, where ε t " t |t| " ˘1 and z t " p´1q t`1 2 q ´t 2 Q ´1. Since all homomorphisms among the modules W t,z are known, Theorem 4.13 may be used to determine whether TLB r pq, Qq is semisimple, since TLB-homomorphisms among the W t prq are precisely T a -homomorphisms among the lifts. We begin by explaining when we have a non-trivial homomorphism between two cell modules W t,z .

Define a preorder on Λ a prq as follows. Say that pt, zq ă ps, yq (pt, zq, ps, yq P Λ a prq) if for some ε " ˘1 we have eq:preorder eq:preorder (4.26) s " t `2m for some m ą 0, y " q ´εm z, and z 2 " q εs .

A short calculation using the equations (4.26) reveals that there is a non-zero homomorphism of cell modules W s prq ÝÑ W t prq for TLB r pq, Qq (t, s P Λ B prq) if and only if either W t prq -W ´tprq (see Corollary 4.14) for some t ą 0 or if the following conditions hold: eq:homs eq:homs (4.27) piq Dt, s P Λprq such that s " t `2m ą t ě 0, and Q " ? ´1q Moreover, again by the above statement, W t prq -W ´tprq if and only if z t " z ´1 ´t . Using the value of z t given in Theorem 4. [START_REF] Graham | The representation theory of affine Temperley-Lieb algebras[END_REF] (2), one sees easily that this happens if and only if Q 2 " ´1. 4.5.2. Semisimplicity of endomorphism algebras. Our final result uses the cellular structure to give a precise criterion for the semisimplicity of the endomorphism algebra End Uqpsl 2 q pM p q b V p1q br q, which may also be deduced from results in [5].

thm:ss Theorem 4.15. Assume that q is not a root of unity in K 0 . The endomorphism algebra End Uqpsl 2 q pM p q b V p1q br q is non-semisimple for all r if " ´1. For ě 0, it is semisimple if and only if r ď `1.
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 23 The morphisms are generated by the following elementary diagrams under tensor product and composition, b, c P C " tm, vu with b ‰ c or b " c " v. (The defining relations among the above generators are as follows. (a) Over and under crossings are inverses of each other: for all a, b such that either a ‰ b or a " b " v, Braid relation: for all a, b, c at most one of which is equal to m, Sliding relations: for all a P C,

def:atlc Definition 3 . 3 .

 33 The multipolar Temperley-Lieb category MT Lpqq is the quotient category of RT pqq obtained by imposing locally the skein relations (3.3) and (3.4) below.

  is x TL a r pqq, the extended affine Temperley-Lieb algebra [14, Definition (4.1)].

Lemma 3 . 9 .

 39 The elements z 1 and z 2 are central in MT Lpqq in the following sense.

  m:tensor-atl-tl Lemma 3.16. The tensor product functor on RT induces a bi-functor b : MT Lpq, Ωq ˆMT Lpqq ÝÑ MT Lpq, Ωq, which is defined on morphisms by juxtaposition of diagrams. It restricts to a bifunctor b : T LBpq, Ωq ˆT Lpqq ÝÑ T LBpq, Ωq.

Definition 3 . 18 .

 318 Call a tangle diagram in T LBpq, Ωq a Temperley-Lieb diagram if it satisfies the following conditions:

Figure 6 .

 6 Figure 6. A diagram pm, v 7 q Ñ pm, v 5 q

( 1 )

 1 Concatenation of diagrams. Concatenate the diagrams D and D 1 by joining the points on the top of D with those on the bottom of D 1 . (2) Reduction to Temperley-Lieb diagrams. Apply locally the skein relation, free loop removal and tangled loop removal to turn the resulting diagram into a linear combination of Temperley-Lieb diagrams B Ñ U . (3) The result of step (2) is the composition D 1 ˝D of the morphisms D and D 1 .

Figure 8 .

 8 Figure 8. A diagram m Ñ pm, v 12 q

Figure 9 .Figure 10 .

 910 Figure 9. A distinguished diagram m Ñ pm, v 10 q

Figure 11 .

 11 Figure 11. Generators of the subcategory T Lpqq

  part (2) of Lemma 3.23 that Corollary 3.26. Any Temperley-Lieb diagram can be expressed as a linear combination of standard diagrams.

... i Figure 13 .

 i13 Figure 13. Diagram D : pm, v i q Ñ pm, v i q

Figure 14 .

 14 Figure 14. A diagram in Dred

  thm:pullback Theorem 4.13. [14, Cor (5.11), Thm. (6.15)]

  :int Remark 3.21. There is a partial order on the thin arcs in a Temperley-Lieb diagram which are entangled with the pole, which is defined by containment of their corresponding polar intervals. Two such arcs are parallel if they are comparable in this partial order. 2N q distinguished if any pair of thin arcs which entangle the pole are parallel, and standard if no two thin arcs tangling with the pole are parallel. In view of Remark 3.21, a diagram is distinguished (resp. standard) if those among its arcs which entangle the pole are totally ordered (resp. have no two arcs which are comparable) in the partial order on pole-entangled arcs.

remf:stand-disting Definition 3.22. Call a Temperley-Lieb diagram m Ñ pm, v

  With the above notation, for each t ą 0, there is a non-trivial homomorphism : W t prq ÝÑ W ´tprq if and only if W t prq -W ´tprq. Moreover this condition is satisfied if and only if Q " ? ´1. Proof. It follows from Theorem 4.13 that there is a homomorphism : W t prq ÝÑ W ´tprq if and only if there is a non-trivial homomorphism of T a r pqq-modules : W t,zt prq ÝÑ W t,z ´1 ´t prq. But this happens if and only if W t,zt prq -W t,z ´1 ´t prq, whence the first statement.

´pt`mq ; piiq Dt ă 0, s ą 0 P Λ B prq, such that t " ´2m, s " 4m and Q " ? ´1q m ; piiiq Dt ă 0, s ă 0 P Λ B prq, such that |s| " |t| `2m ą |t| and Q " ? ´1q ´m. cor:cellpm Corollary 4.14.
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Proof. When " ´1, Q " ? ´1. Hence by Corollary 4.14, there are coincidences among the cell modules of TLB r pq, Qq, whence the endomorphism algebra is neither semisimple nor quasi-hereditary. This proves the first statement. Now assume ą ´1. We apply the criteria in (4.27) in the case where Q " ? ´1q ´p `1q . For the criterion (i) to apply, we require t `m " `1 ą 0; (ii) cannot apply in any case, while for (iii) we require m " `1 ą 0. Now in case (i) we require t `2m " `1 `m ď r for some m ą 0, so r ě `2. In case (iii), we require m " `1 and |t| `2m ď r, i.e. r ą 2p `1q ě `3. This shows that End Uqpsl 2 q pM p q b V p1q br q is semisimple for r ě `1.

Consider now the case r " `2 (where ě 0). We show that there is always a non-trivial homomorphism : W `2p `2q ÝÑ W p q p `2q. For this, observe that in the notation above, z " p´1q `3 2 q 2 `1?

´1 and z `2 " p´1q `3 2 q 2 `1?

´1 " q ´1z . Now take t " , m " 1 and ε " 1 in (4.26). one concludes that p , z q ă p `2, z `2q. This proves that End Uqpsl 2 q pM p q b V p1q br q is not semisimple for r ě `2 and r " (mod 2q.

A similar argument applies for r ě `2 with r " `1(mod 2q, and the proof is complete.

sect:ext-ATL 4.6. Remarks on categories related to T LBpq, Ωq. Note that our functor F is defined on the multipolar category MT Lpqq. It would be interesting to determine other cases, possibly when even one restricts to the affine subcategory T L a pqq, where one still has an equivalence. We mention finally that endomorphisms of MT Lpqq and MT Lpq, Ωq in the multipolar case give rise to algebras closely related to the affine Temperley-Lieb algebra, e.g., End MT Lpqq pm, v r , mq and End MT Lpq,Ωq pm, v r , mq. The functor F enables us to investigate the representation theory of such algebras via the quantum group U q psl 2 q.