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Recent updates on electrochemical degradation of bio-refractory

organic pollutants using BDD anode: a mini review

Xinmin Yu & Minghua Zhou & Youshuang Hu &

K. Groenen Serrano & Fangke Yu

Abstract Boron-doped diamond (BDD) is playing an impor-
tant role in environmental electrochemistry and has been
successfully applied to the degradation of various bio-
refractory organic pollutants. However, the review concerning
recent progress in this research area is still very limited. This
mini-review updated recent advances on the removal of three
kinds of bio-refractory wastewaters including pharmaceuti-
cals, pesticides, and dyes using BDD electrode. It summarized
the important parameters in three electrochemical oxidation
processes, i.e., anodic oxidation (AO), electro-Fenton (EF),
and photoelectro-Fenton (PEF) and compared their different
degradation mechanisms and behaviors. As an attractive im-
provement of PEF, solar photoelectro-Fenton using sunlight
as UV/vis source presented cost-effectiveness, in which the
energy consumption for enrofloxacin removal was
0.246 kWh/(g TOC), which was much lower than that of
0.743 and 0.467 kWh/(g TOC) by AO and EF under similar
conditions. Finally the existing problems and future prospects
in research were suggested.

Keywords Boron-doped diamond . Anodic oxidation .

Electro-Fenton . Photoelectro-Fenton . Organic pollutant
degradation

Introduction

Every year, thousands tons of organic pollutants are
discharged into the environment, which have resulted in the
pollution of soil, surface water, ground water, and even drink-
ing water (Samet et al. 2010; Murugananthan et al. 2011;
Cavalcanti et al. 2013). Though lots of these pollutants can
be disposed effectively by conventional municipal sewage
treatment plants, the emergence of some bio-refractory organ-
ic pollutants such as pharmaceuticals, pesticides, and synthetic
dyes still brings huge challenges in treatment due to their
widespread, toxic effect, and long-term adverse potential risks
for the ecosystem, animals, and humans health even at trace
levels (Domínguez et al. 2010; Flox et al. 2006). Therefore, it
is urgent to develop sound treatment process to abate those
pollutants with high efficiency.

Recently, advanced oxidation processes (AOPs) have been
widely used to remove bio-refractory pollutants in wastewa-
ters, with the common feature of in situ generation of hydroxyl
radical (·OH) which has so high standard redox potential
(E0(·OH/H2O)=2.80 V vs SHE) that can react with most of
the organic pollutants non-selectively up to mineralization
(Skoumal et al. 2008). As one of the environmental-friendly
technologies among AOPs, electrochemical oxidation pos-
sesses advantages of easy implementation, no chemicals ad-
dition, and high efficiency (Zhu et al. 2009; Brillas et al.
2009). Nevertheless, the large energy consumption is one of
the main drawbacks of this method, and the development and
improvement of new anode materials and cost-effective pro-
cesses tend to relieve the problem (Aquino et al. 2011; Zhang
et al. 2013).
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Generally, an ideal anode for pollutant degradation must
have high O2 evolution over-potential to diminish the side
reactions of oxygen production (Chen et al. 2003). For this
purpose, different kinds of anodematerials have been tested, for
example, Pt, IrO2, RuO2, SnO2, and PbO2 (Ciríaco et al. 2009;
Frontistis et al. 2011). But because of some drawbacks such as
low activity, low stability, and/or durability, these electrode
materials are not adequate enough for electrochemical oxida-
tion. Up to now, it has been widely recognized that diamond
film has excellent properties of high resistance, high thermal
conductivity, and high chemical stability (Wu et al. 2009). After
boron-doped, the oxygen evolution potential and electrocata-
lytic performance of diamond film will be obviously improved,
and the as-prepared boron-doped diamond (BDD) also has
good conductive property and semiconductor property. So far,
several materials (Si, Nb, Ta, W, and Ti) have been proved
suitable for the deposition of BDD, and Si/BDD electrode is the
most widely used in wastewater treatment in spite of the limits
related to their industrial application owing to the fragility and
the relatively low conductivity of the Si substrate (Chen 2004;
Zhou et al. 2011). Compared with traditional electrode mate-
rials, BDD has many incomparably excellent characteristics,
such as good chemical and electrochemical stability, strong
corrosion resistant, high oxygen evolution potential (as high
as 2.8 V), low background current, and wide electrochemical
potential window (Wu et al. 2009; Martínez-Huitle and Brillas
2009; Sun et al. 2011, 2012).

Nowadays, diamond can be prepared under low pressure by
chemical vapor deposition (CVD) methods with appropriate
activation conditions, including the most common and effective
hot-filament CVD (HFCVD) and microwave plasma-assisted
CVD (MPCVD). Generally, the preparation procedure of BDD
can be simplified as follows (Luong et al. 2009; Pecková et al.
2009): Carbon-containing gases such as CH4 and CO are
activated at high gas temperature (2,200–2,800 °C) and deposit
on the target substrate (Si, Ti, and so on) under proper temper-
ature, pressure, and reaction time. Boron doping is usually
achieved by adding B2H6 or B(OCH3)3 to the gas stream or
placing boron powder near the edges of the substrate prior to
inserting into the CVD chamber. Although BDD preparation is
a tedious work needing relatively large cost, BDD possesses
some incomparable properties that mentioned above and thus
has shown promising for the treatment of organic wastewater.

As an ideal anode material, BDD electrode has been applied
to the removal of pollutants by various electrochemical technol-
ogies including anodic oxidation (AO), electro-Fenton (EF), and
photoelectro-Fenton (PEF) (Liu et al. 2009; Sirés and Brillas
2012). This research area has attracted considerable interests;
however, the review papers in recent years are still very limited
(Panizza and Cerisola 2005; Quiroz Alfaro et al. 2006).
Therefore, the present work is focused on the electrochemical
degradation of pharmaceuticals, pesticides, and dyes using BDD
electrode by anodic oxidation, electro-Fenton, and photoelectro-

Fenton, which would update the applications in recent years. It
should be noted that the referred wastewaters in this work were
all synthetic organic wastewaters.

Anodic oxidation

Among the electrochemical methods, anodic oxidation is
perhaps the most popular one for the treatment of wastewaters
containing persistent organic pollutants (POPs) (Brillas et al.
2010). The pollutants are supposed to be removed at a high
oxygen evolution potential anode by the generated hydroxyl
radicals (·OH) (Panizza and Cerisola 2009; Moreira et al.
2013). When BDD is used, hydroxyl radical BDD(·OH) can
be formed on the BDD surface (Eq. 1) (Isarain-Chávez et al.
2010). Thus, BDD is powerful enough to mineralize refracto-
ry pollutants and their degradation intermediates including
carboxylic acids and possesses much higher oxidation power
than other common anodes (Guinea et al. 2010).

BDDþ H2O→ BDD ˙OH
� �

þ Hþ þ e− ð1Þ

Table 1 lists the degradation of different organic pollutants
by anodic oxidation, in which the TOC removal for pharma-
ceuticals, pesticides, and dyes differed much but the removal
efficiency of pollutant was usually very high (>90 %). It can be
seen that the substrate of BDD is usually silicon, but the cathode
material was different. Graphite, platinum, dimensional stable
electrode (DSA), stainless steel, and air diffusion electrode
(ADE) are frequently used as cathodic materials. When graph-
ite or ADE is used as cathode, it is often fed with air or pure
oxygen to generate H2O2 through the electrochemical reduction
of O2. This process is called AO-H2O2 which also belongs to
the scope of anodic oxidation. As to the supporting electrolyte,
Na2SO4 is usually selected for the following reasons: (1) rela-
tively cheap, (2) it could be oxidized into S2O8

2− which also
participated in the degradation of organics, and (3) it would not
produce hazardous compounds during treatment; the presence
of Na2SO4 would promote degradation (Özcan et al. 2008).

Current density is one of the most important parameters in
AO. As shown in Table 1, among the investigated ranges (10–
500 mA/cm2), higher current density could lead to better
treatment performance for pollutant or TOC removal, i.e.,
removal contaminants within less time or reaching higher
removal within the same period. For instance, using bisphenol
A of 20 mg/L as the model pollutant, it would require 10, 9,
and 5 h for complete degradation of bisphenol A and 24, 16,
and 14 h for complete removal of TOC when the applied
current density was 14.28, 25, and 35.7 mA/cm2, respectively
(Murugananthan et al. 2008). Similar conclusions could be
drawn on the degradation of methyl violet, in which the
removal efficiency was 49, 92, and 97 % in 10 h and the



Table 1 Degradation of different organic pollutants by anodic oxidation

Pollutant Initial
concentration

Electrode Other parameters Electrolyte Current/
voltage

Pollutant
removal

TOC removal MCE Reference

17-Estradiol (E2) 500 μg/L Anode: Si/BDD (4 cm2) Batch 0.1 M Na2SO4 12.5 mA/cm2 100 % (40 min) 58 % (4.5 h) 2.04–1.13 % Murugananthan
et al. 2007Cathode: Pt (8 cm2) pH=6.0 25 mA/cm2 100 % (40 min) 80 % (4.5 h) –

V=500 mL 50 mA/cm2 100 % (30 min) 94 % (4.5 h) 1.02–0.874 %

Atenolol 2.25 μM Anode: Si/BDD
(11.25 cm2)

Batch 0.1 M Na2SO4 4.44 mA/cm2
– 80 % (25 h) – Murugananthan

et al. 2011
Cathode: Pt pH=6.0 8.88 mA/cm2

– 96 % (25 h) –

V=250 mL 13.3 mA/cm2
– 100 % (20 h) –

Chloroxylenol 100 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33 mA/cm2 100 % (420 min) >96 % (5 h) 14 % (3 h) Skoumal et al. 2008
Cathode: stainless steel pH=3.0 100 mA/cm2 100 % (240 min) >96 % (5 h) 5.5 % (3 h)

V=100 mL 150 mA/cm2 100 % (180 min) >96 % (5 h) 4.0 % (3 h)

Bisphenol A 20 mg/L Anode: Si/BDD (7 cm2) Batch 0.1 M Na2SO4 14.28 mA/cm2 100 % (10 h) 100 % (24 h) 3.4 % Murugananthan
et al. 2008Cathode: Pt pH=6.0 25 mA/cm2 100 % (9 h) 100 % (16 h) –

V=250 mL 35.7 mA/cm2 100 % (5 h) 100 % (14 h) 2.65 %

Clofibric acid 179 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33 mA/cm2 100 % (540 min) 100 % (10 Ah/L) – Sirés et al. 2006
Cathode: stainless steel pH=12 100 mA/cm2 100 % (420 min) 100 % (21 Ah/L) –

V=100 mL 150 mA/cm2 100 % (360 min) 100 % (27 Ah/L) –

Diclofenac 175 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 50 mA/cm2 93.1 % (360 min) 78 % (6 h) – Brillas et al. 2010
pH=6.5 100 mA/cm2 98.9 % (360 min) 85 % (6 h) –

Cathode: stainless steel V=100 mL 300 mA/cm2 100 % (300 min) 97 % (6 h) –

450 mA/cm2 100 % (200 min) 99 % (6 h) –

Dipyrone 100 mg/L Anode: Ti/BDD
(14.4 cm2)

Flow, flow rate—50 L/h 0.1 M H2SO4 3.5 V 100 % (120 min) 8 % – Reis et al. 2013
4.0 V 100 % (90 min) 15 % –

Cathode: DSA V=2.0 L 0.1 M K2SO4 4.5 V 100 % (45 min) 30 % –

5.0 V 100 % (25 min) 44 % –

Enrofloxacin 158 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33 mA/cm2 78 % (360 min) >97 % (6 h) – Guinea et al. 2010
pH=3.0

Cathode: ADE V=100 mL

Ibuprofen 1.75 mM Anode: Si/BDD
(20 cm2)

Batch 0.035 M Na2SO4 10 mA/cm2
– 85 % (6 h) – Ciríaco et al. 2009

Cathode: stainless
steel foils

20 mA/cm2
– 90 % (6 h) –

30 mA/cm2
– 95 % (6 h) –

Omeprazole 169 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33.3 mA/cm2 100 % (75 min) 45 % (6 h) 10 % (6 h) Cavalcanti et al. 2013
Cathode: ADE pH=7.0 66.6 mA/cm2 100 % (80 min) 54 % (6 h) 6.0 % (6 h)

V=100 mL 100 mA/cm2 100 % (150 min) 78 % (6 h) 5.8 % (6 h)

Paracetamol 157 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 100 mA/cm2
– 64 % (4 h) 15 % (4 h) Brillas et al. 2005

Cathode: graphite pH=3.0 300 mA/cm2 100 % (150 min) 91 % (4 h) 7.2 % (4 h)

V=100 mL 450 mA/cm2
– 98 % (4 h) 5.2 % (4 h)

4-CPA 100 mg/L (TOC) Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33.3 mA/cm2 100 % (540 min) 54 % (3 h) 16 % (3 h) Brillas et al. 2004
Cathode: graphite bar pH=3 100 mA/cm2

– 61 % (3 h) 6.0 % (3 h)



Table 1 (continued)

Pollutant Initial
concentration

Electrode Other parameters Electrolyte Current/
voltage

Pollutant
removal

TOC removal MCE Reference

V=100 mL 166.7 mA/cm2
– 70 % (3 h) 4.6 % (3 h)

MCPA 33.3 mA/cm2 100 % (480 min) 58 % (3 h) 18 % (3 h)
100 mA/cm2

– 61 % (3 h) 6.4 % (3 h)

166.7 mA/cm2
– 66 % (3 h) 6.6 % (3 h)

2,4-D 33.3 mA/cm2 100 % (420 min) 57 % (3 h) 16 % (3 h)

100 mA/cm2
– 70 % (3 h) 6.5 % (3 h)

166.7 mA/cm2
– 94 % (3 h) 5.8 % (3 h)

2,4,5-T 33.3 mA/cm2 100 % (360 min) 59 % (3 h) 15 % (3 h)

100 mA/cm2

166.7 mA/cm2
– 77 % (3 h) 6.7 % (3 h)

2,4-DP 217 mg/L Anode: Si/BDD (17 cm2) Batch 0.05 M Na2SO4 100 mA/cm2 100 % (300 min) 63 % (4 h) 14 % Brillas et al. 2007
Cathode: graphite

(3 cm2)
pH=3.0 300 mA/cm2

– 82 % (4 h) 6.1 %

V=100 mL 450 mA/cm2
– 97 % (4 h) 4.8 %

Desmetryne 110 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 100 mA – 27 % (3 h) 9.9 % Borràs et al. 2011
pH=3.0 300 mA 100 % (80 min) 60 % (3 h) 7.3 %

Cathode: ADE 450 mA – 68 % (3 h) 5.5 %

220 mg/ V=100 mL 300 mA – 51 % (3 h) 12.3 %

440 mg/L 300 mA – 49 % (3 h) 23.7 %

Mecoprop 178 mg/L Anode: Si/BDD (20 cm2) Flow, flow rate—130 L/h 0.05 M Na2SO4 50 mA/cm2 100 % (15 min) 100 % (14 Ah/L) – Flox et al. 2006
Cathode: stainless steel pH=3.0 100 mA/cm2 100 % (15 min) 100 % (18 Ah/L) –

V=1.8 L 150 mA/cm2 100 % (17 min) 100 % (27 Ah/L) –

Propham 0.5 mM Anode: Nb/BDD Batch 0.05 M Na2SO4 30 mA 100 % (180 min) 62 % (3 h) 77.68 % (180 min) Özcan et al. 2008
50 mA 100 % (180 min) 77 % (3 h) 58.44 % (180 min)

pH=3.0 100 mA 100 % (180 min) 84 % (3 h) 31.72 % (180 min)

300 mA 100 % (180 min) 94 % (3 h) 11.92 % (180 min)

Cathode: Pt gauze 500 mA 100 % (180 min) 95 % (3 h) 7.2 % (180 min)

V=0.15 L 0.1 M NaNO3 100 mA 100 % (180 min) 43 % (3 h) 16.22 % (180 min)

0.1 M LiClO4 100 mA 100 % (180 min) 82 % (3 h) 31.08 % (180 min)

0.1 M NaCl 100 mA 100 % (15 min) 69 % (3 h) 26.16 % (180 min)

Cyanazine 55 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 100 mA/cm2
– 68 % (4 h) 2.8 % (4 h) Borràs et al. 2013

110 mg/L pH=3.0 33.3 mA/cm2
– 37 % (4 h) 8.9 % (4 h)

Cathode: ADE 100 mA/cm2 91 % (60 min) 66 % (4 h) 5.2 % (4 h)

V=100 mL 150 mA/cm2
– 69 % (4 h) 3.7 % (4 h)

145 mg/L 100 mA/cm2
– 59 % (4 h) 6.1 % (4 h)

Acid black 210 500 mg/L Anode: Si/BDD
(20 cm2)

Flow, flow rate—90 L/h 0.20 mol phosphate
buffer

25 mA/cm2
– 51 % (3 h) – Costa et al. 2009

Cathode: stainless steel pH=6.8 50 mA/cm2
– 74 % (3 h) –



Table 1 (continued)

Pollutant Initial
concentration

Electrode Other parameters Electrolyte Current/
voltage

Pollutant
removal

TOC removal MCE Reference

V=250 mL 100 mA/cm2
– 100 % (3 h) –

Methyl orange 50 mg/L Anode: Si/BDD (3 cm2) Batch 0.1 M Na2SO4 50 mA/cm2
– 25 % – Zhou et al. 2011

Cathode: stainless steel pH=3.0 0.1 M Na2SO4 & 0.05 M
NaCl

– 56 % –

V=200 mL

Methyl violet 200 mg/L (TOC) Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 33.3 mA/cm2 49 % (600 min) 56 % (4 h) 42 % (max) Hamza et al. 2009
Cathode: stainless steel pH=3.0 100 mA/cm2 92 % (600 min) 83 % (4 h) 27 % (max)

V=100 mL 150 mA/cm2 97 % (600 min) 90 % (4 h) 17 % (max)

Orange II 750 mg/L Anode: Ti/BDD Flow 2 g/L Na2SO4 100 A/m2
– 97 % (COD) 58.3 % Chen and Chen 2006

200 A/m2
– 92 % (COD) 54.9 %

400 A/m2
– 84 % (COD) 50.7 %

Cathode: stainless steel Batch 1.5 g/L Na2SO4 100 A/m2
– 82 % (COD) –

pH=8.5 200 A/m2
– 91 % (COD) –

V=35 mL 400 A/m2
– 98 % (COD) –

Reactive Orange 16 85 mg/L Anode: Si/BDD
(1.44 cm2)

Flow, flow rate—7
L/min

0.1 M Na2SO4 10 mA/cm2 60 % (0.25 Ah/L) – – Migliorini et al. 2011

pH=5.6 30 mA/cm2 100 % (0.20 Ah/L) – –

Cathode: Pt foil (2 cm2) V=300 mL 0.05 M NaCl 50 mA/cm2 100 % (0.10 Ah/L) – –

70 mA/cm2 100 % (0.06 Ah/L) – –

Reactive Blue 19 50 mg/L Anode: Ti/BDD (5 cm2) Batch 0.023 M Na2SO4 200 A/m2 100 % (90 min) 75 % (410 min) – Petrucci and
Montanaro 2011

Cathode: Pt wire 0.01 M Na2CO3 300 A/m2 100 % (60 min) 75 % (370 min) –

600 A/m2 100 % (30 min) 75 % (260 min) –

Remazol Brilliant
Blue

50 mg/L Anode: Si/BDD (5 cm2) Batch 0.05 M Na2SO4 200 A/m2 100 % (10 min) 45 % (160 min) – Montanaro and
Petrucci 2009Cathode: Pt wire pH=5.8 0.01 M NaCl 300 A/m2 100 % (8 min) 70 % (160 min) –

V=100 mL 400 A/m2 100 % (7 min) 100 % (160 min) –

Sunset Yellow FCF 290 mg/L Anode: Si/BDD (3 cm2) Batch 0.05 M Na2SO4 16.7 mA/cm2
– 45 % (3 Ah/L) – Moreira et al. 2013

Cathode: ADE pH=3.0 33.3 mA/cm2 95 % (360 min) 70 % (3 Ah/L) –

V=100 mL 100 mA/cm2
– 85 % (3 Ah/L) –



TOC removal was 56, 83, and 90 % in 4 h when the current
density was 33.3, 100, and 150 mA/cm2, respectively (Hamza
et al. 2009).

Although higher current density can lead to higher pollut-
ant and TOC removal, the applied current density should not
be too high because higher current density can also cause
higher energy consumption and lower mineralization current
efficiency (MCE) which could be calculated by Eq. 2,

MCE %ð Þ ¼
nFVΔ TOCð Þexp

4:32� 107 mIt
� 100 ð2Þ

where F is the Faraday constant (96,485 C/mol), V is the
solution volume (L), Δ(TOC)exp is the experimental TOC
removal, 4.32×107 is a conversion factor (3,600 s/h×
12,000 mg/mol), m is the number of carbon atoms of the
pollutant, I is the applied current (A), t is the electrolysis time
(h), and n is the number of electrons. Taken the degradation of
cyanazine as an example, it was not hard to find out that the
MCE declined gradually when the current density increased.
At 240 min, the MCE was 8.9, 5.2, and 3.7 %, respectively,
when the current density was 33.3, 100, and 150 mA/cm2

(Borràs et al. 2013). This phenomenon can be explained by
the acceleration of generating other weak oxidants such as
S2O8

2− (2SO4
2−
→ S2O8

2−+2e−) and the rise of side reactions
such as oxygen evolution reaction. In addition, the increase of
current density can also result in the detriment of the main
oxidant hydroxyl radical. So it is necessary to seek out an
optimal current density to balance the energy consumption
and current efficiency.

It is very important to summarize the influence of initial
concentration on the removal performance of pollutants. As a
general rule, with the increase of the initial concentration of
organics, the removal efficiency decreases, no matter the
pollutant or TOC removal, but the MCE increases (Borràs
et al. 2011, 2013). As far as the removal of desmetryne, the
TOC removal was 60, 51, and 49 % in 3 h, and the MCE was
7.3, 12.3, and 23.7 % when the initial concentration of
desmetryne was 110, 220, and 440 mg/L, respectively
(Borràs et al. 2011). So when the initial concentration of
pollutants in wastewater was too high and even surpassed a
certain value, the mineralization extent of organic pollutants
would be incomplete, requiring a longer treatment time or
pretreatment in advance to attain complete oxidation.

Electro-Fenton

Electro-Fenton is known as an indirect electro-oxidation treat-
ment based on the combined usage of H2O2 and Fe2+ as
catalyst (Sirés et al. 2007a; Brillas et al. 2009). In this process,
H2O2 is continuously supplied into the contaminated

wastewaters by the cathodic two-electron reduction of O2

(Eq. 3) (Murugananthan et al. 2011; Brillas et al. 2009). The
generated H2O2 and the added Fe

2+ then react with each other
to produce·OH from Fenton’s reaction (Eq. 4). This reaction
is catalytic and can be propagated by the reduction of Fe3+ to
Fe2+ occurred on the cathode (Eq. 5) (Borràs et al. 2013). In
addition, the sparged O2 could also be transformed into·O2

−

radical (E0=−0.33 V/NHE) in cathode compartment (Eq. 6)
(Irmak et al. 2006).

O2 þ 2Hþ þ 2e−→H2O2 ð3Þ

Fe2þ þ H2O2→ Fe3þ þ ˙OHþ OH− ð4Þ

Fe3þ þ e−→ Fe2þ ð5Þ

O2 þ e−→ ˙O2
− ð6Þ

The choice of electrode material is very important for EF
process. It has been confirmed that carbonaceous material, for
example, reticulated vitreous carbon, graphite felt, carbon felt,
activated carbon fiber, and ADE, has the ability to generate
enough H2O2 (Skoumal et al. 2008; Zhou et al. 2013). Among
these cathodes, ADE fed with air or pure oxygen can achieve a
high H2O2 production in acidic medium. The removal perfor-
mance of EF process can be greatly improved by using BDD
as anode instead of some common anode materials such as
DSA. In this case, ·OH is formed in two different ways: One is
produced on the surface of BDD, and the other is formed via
electro-Fenton reaction (Oturan et al. 2011). As a result, the
generation rate of·OH is enhanced and thus promotes the
oxidation of pollutants.

As an environmental friendly technique, EF is attracting
more and more attention for wastewater treatment. From
Table 2, it can be noticed that ADE is the most widely used
cathode, though carbon felt is also very common in the EF
process. Similar to AO process, Na2SO4 is also usually chosen
as the supporting electrolyte for EF. In common circumstance,
acidic environment (pH 2 to 4) is favorable for EF.

In fact, current density is also a very important parameter
for EF, and its impact on the removal efficiency andMCE is as
the same as those in AO. In degradation of chlorophene by EF,
the TOC removal efficiency was 33, 45, 85, and 97 % in 11 h,
and the MCE was 19, 14, 12, and 10 % in 60 min when the
applied current density was 60, 100, 200, and 300 mA/cm2,
respectively (Sirés et Al. 2007a). The improvement of remov-
al efficiency with current density was attributed to the produc-
tion of higher amounts of·OH due to the quicker generation of



Table 2 Degradation of different organic pollutants by electro-Fenton

Pollutant Initial
concentration

Electrode Other parameter Electrolyte Current/voltage Fe2+/Fe3+

(mM)
Pollutant
removal

TOC removal MCE Reference

Ibuprofen 41 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 3.3 mA/cm2 0.5 – 68 % (DOC, 6 h) – Ciríaco et al. 2009
pH=3.0 13.3 mA/cm2

– 92 % (DOC, 6 h) –

Cathode: ADE O2 flow rate—20 mL/min 33.3 mA/cm2 100 % (30 min) 92 % (DOC, 6 h) 4.7–8.7 %
V=100 mL

Enrofloxacin 158 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33 mA/cm2 0.1 – 59 % (4 h) – Guinea et al. 2010
pH=3.0 0.2 – 64 % (4 h) –

Cathode: ADE O2 flow rate—20 mL/min

V=100 mL 0.5 – 67 % (4 h) –

Chlorophene 84 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 60 mA/cm2 4.0 (Fe3+) – 33 % (11 h) 19 % (60 min) Sirés et al. 2007a
pH=3.0 100 mA/cm2

– 45 % (11 h) 14 % (60 min)

Cathode: ADE O2 flow rate—20 mL/min 200 mA/cm2
– 85 % (11 h) 12 % (60 min)

V=200 mL 300 mA/cm2 100 % (90 min) 97 % (11 h) 10 % (60 min)

Chloroxylenol 100 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33 mA/cm2 1.0 100 % (20 min) 82 % 24 % (max) Skoumal et al. 2008
pH=3.0

Cathode: ADE O2 flow rate—20 mL/min

V=100 mL

Atenolol 158 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 50 mA 0.5 88 % (60 min) 77 % (360 min) 18–50 % (360 min) Murugananthan
et al. 2011pH=3.0

Cathode: ADE O2 flow rate—20 mL/min

V=100 mL

Propranolol 154 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 10 mA/cm2 0.5 – 78 % (420 min) 75 % (max) Isarain-Chávez
et al. 2010

pH=3.0 20 mA/cm2
– 80 % (420 min) 47 % (max)

Cathode: ADE O2 flow rate—20 mL/min 40 mA/cm2 100 % (29 min) 85 % (420 min) 24 % (max)

V=100 mL 60 mA/cm2
– 88 % (420 min) 16 % (max)

80 mA/cm2
– 91 % (420 min) 11 % (max)

Sulfamethazine 193 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33.3 mA/cm2 0.5 100 % (20 min) 81 % (DOC, 420 min) – El-Ghenymy
et al. 2013pH=3.0 66.7 mA/cm2 100 % (10 min) 90 % (DOC, 420 min) –

Cathode: ADE Air flow rate—300 mL/min 100 mA/cm2 100 % (5 min) 94 % (DOC, 420 min) –

V=100 mL

Sulfamethoxazole 0.208 mM Anode: Nb/BDD
(25 cm2)

Batch 0.05 M Na2SO4 30 mA 0.2 – 86 % (600 min) – Dirany et al. 2010
pH=3.0 60 mA 100 % (25 min) 88 % (600 min) –

Cathode: carbon felt Air flow rate—1.0 L/min 100 mA 100 % (20 min) 94 % (600 min) –

V=220 mL 200 mA 100 % (15 min) 96 % (600 min) –

300 mA 100 % (15 min) 98 % (600 min) –

Triclosan 50 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 60 mA 0.2 100 % (120 min) – – Sirés et al. 2007b
pH=3.0

Cathode: ADE O2 flow rate—12 mL/min 300 mA 100 % (90 min) – –

Triclocarban 5 mg/L V=200 mL 60 mA 100 % (120 min) – –

Atrazine 0.20 mM Anode: Si/BDD
(15 cm2)

Batch 0.05 M Na2SO4 250 mA 0.1 – 48 % (2 h) – Balci et al. 2009
pH=3.0



Table 2 (continued)

Pollutant Initial
concentration

Electrode Other parameter Electrolyte Current/voltage Fe2+/Fe3+

(mM)
Pollutant
removal

TOC removal MCE Reference

Cathode: carbon felt Air flow rate—1 L/min – 72 % (5 h) –

V=150 mL – 82 % (10 h) –

2,4-DP 217 mg/L Anode: Si/BDD
(10 cm2)

Batch 0.05 M Na2SO4 100 mA/cm2 1.0 100 % (25 min) 82 % (4 h) 18 % (4 h) Brillas et al. 2007
O2 flow rate—20 mL/min

Cathode: ADE pH=3.0 300 mA/cm2
– 88 % (4 h) 6.6 % (4 h)

V=100 mL 450 mA/cm2
– 97 % (4 h) 4.7 % (4 h)

Cyanazine 55 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 100 mA/cm2 0.5 – 87 % (240 min) 3.5 % (4 h) Borràs et al. 2013
110 mg/L pH=3.0 33.3 mA/cm2

– 47 % (240 min) 11.3 % (4 h)

Cathode: ADE O2 flow rate—20 mL/min 100 mA/cm2 95 % (60 min) 82 % (240 min) 6.6 % (4 h)

V=100 mL 150 mA/cm2
– 87 % (240 min) 4.7 % (4 h)

Desmetryne 55 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 300 mA 0.5 – 68 % (3 h) 4.1 % (3 h) Borràs et al. 2011
110 mg/L O2 flow rate—12 mL/min 100 mA – 36 % (3 h) 13.1 % (3 h)

300 mA 100 % (45 min) 78 % (3 h) 9.5 % (3 h)

Cathode: ADE pH=3.0 450 mA – 88 % (3 h) 7.1 % (3 h)

220 mg/L V=100 mL 300 mA – 63 % (3 h) 15.2 % (3 h)

440 mg/L 300 mA – 55 % (3 h) 26.6 % (3 h)

Acid Yellow 36 80 mg/L Anode: Si/BDD
(2 cm2)

Batch 0.05 M Na2SO4 8 mA/cm2 0.3 95.2 % – – Ruiz et al. 2011
pH=3.0 15 mA/cm2 98.7 % – –

Cathode: Si/BDD Air flow rate—1 L/min 23 mA/cm2 94.1 % – –

V=100 mL

108 mg/L Anode: Si/BDD
(20 cm2)

Flow 0.1 M Na2SO4 0.5 A 0.5 – 46 % (360 min) 56 % (max)

pH=3.0 1 A 100 % (27 min) 54 % (360 min) 45 % (max)

Cathode: ADE Liquid flow rate—200 L/h 2 A – 61 % (360 min) 32 % (max)

V=2.5 L 3 A – 71 % (360 min) 30 % (max)

40 mg/L Anode: Si/BDD
(0.785 cm2)

Batch – Anodic potential—2.5 v 1 94 % (180 min) – –

6 69 % (180 min) – –

Cathode: Pt wire 8 69 % (180 min) – –

12 58 % (180 min) – –

Direct Yellow 4 200 mg/L Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 25 mA/cm2 0.5 – 68 % (240 min) – Garcia-Segura
et al. 2012pH=3.0 33.3 mA/cm2

– 74 % (240 min) –

Cathode: ADE Air flow rate—0.3 mL/min 66.6 mA/cm2
– 85 % (240 min) –

V=100 mL 100 mA/cm2
– 83 % (240 min) –

4-CPA 100 mg/L
(TOC)

Anode: Si/BDD
(3 cm2)

Batch 0.05 M NaSO4 33.3 mA/cm2 0.5 100 % (15 min) 75 % (3 h) 22 % (3 h) Brillas et al. 2004
100 mA/cm2

– 80 % (3 h) 7.9 % (3 h)

O2 flow rate—20 mL/min 166.7 mA/cm2
– 87 % (3 h) 5.7 % (3 h)

MCPA 33.3 mA/cm2 100 % (30 min) 76 % (3 h) 24 % (3 h)

pH=3.0 100 mA/cm2
– 87 % (3 h) 9.1 % (3 h)

Cathode: ADE 166.7 mA/cm2
– 90 % (3 h) 6.3 % (3 h)

2,4-D 33.3 mA/cm2 100 % (12 min) 78 % (3 h) 22 % (3 h)



H2O2 of reaction (3) at the ADE cathode and BDD(·OH) by
increasing the rate of reaction (1). As to the decrease of MCE,
there were also some reasons. The waste reactions involve the
oxidation of BDD(·OH) to O2 by reaction (7), as well as the
dimerization of·OH to H2O2 by reaction (8) or its destruction
with H2O2 and Fe2+ by reactions (9) and (10), respectively.
Moreover, the relative proportion of generated BDD(·OH) can
also be reduced by the formation of weaker oxidants such as
S2O8

2− by reaction (11) and ozone by reaction (12) (Isarain-
Chávez et al. 2010)

2BDD ˙OH
� �

→ 2BDDþ O2 þ 2Hþ þ 2e− ð7Þ

2̇ OH→H2O2 ð8Þ

H2O2 þ ˙OH→HO2̇ þ H2O ð9Þ

Fe2þ þ ˙OH→ Fe3þ þ OH− ð10Þ

2SO4
2−
→ S2O8

2− þ 2e− ð11Þ

3H2O→O3 þ 6Hþ þ 6e− ð12Þ

Theoretically, the removal performance of EF is better than
AO under similar conditions due to two sources for the pro-
duction of·OH. This has been verified by degradation of
several pollutants in these two systems under similar condi-
t i o n s . Th e i n i t i a l TOC conc en t r a t i o n s o f 4 -
chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chloro-
phenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid
(2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were
all 100 mg/L, and Si/BDD was both used as the anode in two
systems, while graphite bar and ADE were used as cathode in
AO and EF system, respectively. 4-CPA, MCPA, 2,4-D, and
2,4,5-T can be completely removed in 540, 480, 420, and
360 min in AO system while in EF system the required time
dramatically decreased to 15, 30, 12, and 10 min when the
applied current density was 33.3 mA/cm2. The MCE was 16,
6.5, and 5.8 % in AO system and enhanced to 22, 8.4, and
6.1 % in EF system when the applied current was 33.3, 100,
and 166.7 mA/cm2, respectively (Brillas et al. 2004). So such
EF process using BDD is more promising for application due
to the combination of AO and Fenton reaction, achieving a
higher removal performance andMCE. Thus, this method canT
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also achieve relatively satisfactory results for the degradation
of relatively high concentrated pollutants (Borràs et al. 2011).

Photoelectro-Fenton

In PEF process, the removal performance of organic pollutants
by EF is enhanced by irradiation with either artificial UVA
light or sunlight simultaneously (Almeida et al. 2012). Two
main processes can explain the catalytic roles of UVA light:

1. The photo-reduction of Fe(OH)2+, which is the predomi-
nant Fe(III) species in pH range 2.5–4.0, regenerating
greater amount of Fe2+ and producing more quantity of·
OH via reaction (13) (Ruiz et al. 2011):

Fe OHð Þ2þ þ hv→ Fe2þ þ ˙OH ð13Þ

2. The quick photolysis of Fe(III)–carboxylate complexes,
taken oxalic acid as example; the forms of Fe(III)–car-
boxylate complexes are Fe(C2O4)

+, Fe(C2O4)2
−, and

Fe(C2O4)3
3−, and these complexes can be mineralized

according to reaction (14) under irradiation (Ciríaco
et al. 2009):

2 Fe C2O4ð Þ
n

3−2n þ hv→ 2Fe2þ þ 2n − 1ð Þ C2O4
2− þ 2CO2

ð14Þ

Figure 1 shows a general degradation pathway of aromatic
organic pollutants by AO, EF, or PEF process (Brillas et al.
2004; Murugananthan et al. 2008). The target pollutant was
firstly attacked by BDD(·OH) and·OH, and as a result, it was
degraded into some aromatic derivatives and further induced
the cleavage of the benzene ring to form some typical acids
such as acetic acid, maleic acid, and fumaric acid, which could
be further transformed into oxalic acid and formic acid. These
pathways mentioned above were all occurred in all three AO,
EF, and PEF processes. In AO process, oxalic acid and formic
acid were difficult to be removed and remained as the main
products, resulting in the relatively low TOC removal efficien-
cy. In EF process, refractory Fe(III)–carboxylate complexes
could be formed due to the addition of Fe3+, which could not
be further degraded by·OH and thus inhibited the TOC re-
moval. But these complexes could be photolyzed by UVA light
in PEF, so PEF could produce more amount of Fe2+ and·OH
which accelerated the Fenton reaction and the oxidation of
organic pollutants. As a result, it could obtain the best removal
performance in PEF system than that in EF or AO system.

Tables 1, 2, and 3 all exhibit the removal performance of
2,4-DP (initial concentration 217 mg/L) using Si/BDD as the

anode under similar conditions. For AO system, the cathode
material was graphite; for EF and PEF, the added amounts of
Fe2+ were 1.0 mM, and the oxygen flow rate was 20 mL/min
as ADE was used as the cathode. For the PEF trials, a Philips
6-W fluorescent black light blue tube (λmax=360 nm) was
placed at the top of the open cell, supplying a photoioniza-
tion energy input of 140 μW/cm2 to the solution. 2, 4-DP
could be completely removed within 300 min in AO system,
but it was only reduced to 25 and 20 min in EF and PEF
system, respectively, when the applied current density was
100 mA/cm2. After 4 h, the TOC removal was 63, 82, and
97 % in AO system; 82, 88, and 97 % in EF system; and 83,
93, and 98 % in PEF system at the current density of 100,
300, and 450 mA/cm2. In addition, when the current density
was 100 mA/cm2, the MCE of PEF and EF was both 18 %,
but in AO system, it was only 14 % (Brillas et al. 2007).

Although the PEF process seems preferable to the AO and
EF, its application for water treatment in large-scale system is
limited by the high energy requirements of both the electro-
chemical cell and the artificial UVA lamp (Garcia-Segura et al.
2012). Recently, a much more economic PEF process, solar
photoelectro-Fenton (SPEF), has been developed using sun-
light as a free and renewable UV/Vis source. The very positive
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Fig. 1 A general pathway for aromatic pollutant degradation by AO, EF,
and PEF



Table 3 Degradation of different organic pollutants by photoelectro-Fenton

Pollutant Initial
concentration
(mg/L)

Electrode Other parameter Electrolyte Current/
voltage

Fe2+/Fe3+

(mM)
Pollutant
removal

TOC removal MCE Reference

Atenolol 158 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 50 mA 0.5 100 % (30 min) >95 % (360 min) 94 % (max) Murugananthan
et al. 2011O2 flow rate—20 mL/min

Cathode: ADE λmax=360 nm

pH=3.0

V=100 mL

Clofibric acid 179 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33 mA/cm2 1.0 100 % (15 min) >95 % (300 min) 31 % (max) Sirés et al. 2006
O2 flow rate—12 mL/min

Cathode: ADE λmax=360 nm

pH=3.0 100 mA/cm2
– >95 % (300 min) –

V=100 mL 150 mA/cm2
– >95 % (300 min) –

Enrofloxacin 158 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33 mA/cm2 0.2 100 % (20 min) 96 % (4 h) 44 % (max) Guinea et al. 2010
O2 flow rate—20 mL/min

Cathode: ADE λmax=360 nm

pH=3.0

V=100 mL

Ibuprofen 41 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 6.6 mA/cm2 0.5 100 % (60 min) 52 % (1.5 h) – Ciríaco et al. 2009
O2 flow rate—20 mL/min

Cathode: ADE λmax=360 nm 13.3 mA/cm2 100 % (50 min) 55 % (1.5 h) –

pH=3.0 33.3 mA/cm2 100 % (40 min) 58 % (1.5 h) 14 % (max)

V=100 mL 100 mA/cm2
– 59 % (1.5 h) –

Propranolol 154 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 10 mA/cm2 0.5 – 96 % (4 h) 114 % (max) Isarain-Chávez
et al. 2010O2 flow rate—20 mL/min

Cathode: ADE λmax=360 nm

pH=3.0

V=100 mL 40 mA/cm2 100 % (21 min) 96 % (3 h) 65 % (max)

Sulfamethazine 193 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33.3 mA/cm2 0.5 100 % (10 min) 86 % (6 h) 71 % (max) El-Ghenymy
et al. 2013Air flow rate—300 mL/min

Cathode: ADE λmax=360 nm

pH=3.0 66.7 mA/cm2 100 % (8 min) 96 % (6 h) 42 % (max)

V=100 mL 100 mA/cm2 100 % (6 min) 97 % (6 h) 32 % (max)

Cyanazine 55 Anode: Si/BDD 3 cm2) Batch 0.05 M Na2SO4 100 mA/cm2 0.5 – 91 % (4 h) 3.7 % (4 h) Borràs et al. 2013
110 O2 flow rate—20 mL/min 33.3 mA/cm2

– 45 % (4 h) 10.8 % (4 h)

Cathode: ADE λmax=360 nm 100 mA/cm2 100 % (40 min) 90 % (4 h) 7.2 % (4 h)

pH=3.0 150 mA/cm2
– 93 % (4 h) 5.0 % (4 h)

145 V=100 mL 100 mA/cm2
– 85 % (4 h) 8.8 % (4 h)

Cathode: ADE λmax=360 nm



Table 3 (continued)

Pollutant Initial
concentration
(mg/L)

Electrode Other parameter Electrolyte Current/
voltage

Fe2+/Fe3+

(mM)
Pollutant
removal

TOC removal MCE Reference

pH=3.0 66.7 mA/cm2 100 % (8 min) 96 % (6 h) 42 % (max)

V=100 mL 100 mA/cm2 100 % (6 min) 97 % (6 h) 32 % (max)

Cyanazine 55 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 300 mA 0.5 – 76 % (3 h) 4.6 % (3 h) Borràs et al. 2013
110 O2 flow rate—12 mL/min 100 mA – 38 % (3 h) 13.8 % (3 h)

λmax=360 nm 300 mA 100 % (35 min) 88 % (3 h) 10.6 % (3 h)

Cathode: ADE pH=3.0 450 mA – 89 % (3 h) 7.2 % (3 h)

220 V=100 mL 300 mA – 67 % (3 h) 16.2 % (3 h)

440 300 mA 55 % (3 h) 26.6 % (3 h)

Acid Red 29 244 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 33.3 mA/cm2 0.5 – >97 % (3 h) 70 % (max) Almeida et al. 2012
Air flow rate—300 mL/min

Cathode: ADE λmax=360 nm

pH=3.0 66.6 mA/cm2
– >97 % (3 h) 50 % (max)

V=100 mL 100 mA/cm2
– >97 % (3 h) 30 % (max)

Acid Yellow 36 108 Anode: Si/BDD
(20 cm2)

Flow 0.1 M Na2SO4 0.5 A 0.5 – 95 % (6 h) 118 % (max) Ruiz et al. 2011
Liquid flow rate—200 L/h

Cathode: ADE λmax=360 nm 1 A 100 % (27 min) 95 % (5 h) 100 % (max)

pH=3.0 2 A – 95 % (4 h) 75 % (max)

V=2.5 L 3 A – 95 % (3 h) 60 % (max)

Direct Yellow 4 200 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 16.6 mA/cm2 0.5 – 83 % (6 h) – Garcia-Segura
et al. 2012Air flow rate—0.3 mL/min 25 mA/cm2

– 90 % (4 h) –

Cathode: ADE λmax=360 nm 33.3 mA/cm2
– 91 % (4 h) –

pH=3.0 66.6 mA/cm2
– 92 % (4 h) –

V=100 mL 100 mA/cm2
– 93 % (4 h) –

Sunset Yellow FCF 290 Anode: Si/BDD
(3 cm2)

Batch 0.05 M Na2SO4 16.7 mA/cm2 0.5 – 95 % (2 Ah/L) – Moreira et al. 2013
λmax=360 nm 33.3 mA/cm2 100 % (20 min) 95 % (4 Ah/L) –

Cathode: ADE pH=3.0

V=100 mL 100 mA/cm2
– 95 % (7 Ah/L) –

2,4-DP 217 Anode: Si/BDD
(10 cm2)

Batch 0.05 M Na2SO4 100 mA/cm2 1.0 100 % (22 min) 83 % (4 h) 18 % (4 h) Brillas et al. 2007

Cathode: ADE O2 flow rate—20 mL/min 300 mA/cm2
– 93 % (4 h) 6.9 % (4 h)

pH=3.0 450 mA/cm2
– 98 % (4 h) 4.8 % (4 h)



effect of sunlight and Fe2+ had been demonstrated for the
complete decolorization and mineralization of anthraquinonic
dyes, confirming that SPEF provided a more economical
approach for dye treatment (energy consumption of 11.0–
26.4 kWh/m3) (Salazar et al. 2012). Taken enrofloxacin of
the initial concentration of 158 mg/L as a sample, when the
applied current density was 50 mA/cm2, the TOC removal
ratio by SPEF reached 86 % after 300 min treatment, while
only 28 and 45 % by AO and EF, respectively. Moreover, the
energy consumption by AO, EF, and SPEF was 0.743, 0.467,
and 0.246 kWh/(g TOC), respectively (Guinea et al. 2010).
Therefore, this SPEF system seemed to be more attractive for
application.

Conclusions and prospect

BDD anode, for its unique and excellent properties, such as
good electrochemical stability and high oxygen evolution
potential, has attracted more and more attention in the research
area of electrochemical oxidation for organic pollutant degra-
dation in recent years. In this review, we illustrated the treat-
ment performance of three kinds of bio-refractory pollutants
including pharmaceuticals, pesticides, and synthetic dyes by
AO, EF, and PEF systems using BDD as anode. Various
works indicated that the performance for pollutants and
TOC removal was the best in PEF system, the EF system
was inferior, and AO system was the worst. Though electro-
chemical oxidation has not been widely used for real waste-
water treatment mainly due to high cost, it is no doubt that
BDD electrode has demonstrated promising prospect in
wastewater treatment especially for bio-refractory organic
pollutant mineralization. The following aspects were sug-
gested in future research:

1. Though satisfactory removal efficiency can be achieved
on the BDD, it still has some unsatisfactory disadvan-
tages, for instance, large area anode fabrication, high cost,
and electrode instability during wastewater treatment. So
how to improve fabrication process to promote the elec-
trical catalytic performance of BDD electrode in a large
scale is still a very key research area. Not like Si or Nb, the
material Ti, as a substrate of BDD film, has low cost and
high conductivity, so it is a necessity to strengthen the
research of Ti/BDD, resolving the problems of cracks and
detachment of BDD film. Further, BDD surface modifi-
cation is supposed to be useful to improve electrocatalytic
performance, for example, metallic materials in nano-
structure such as nanoparticles of metal (Pt, Ni, Au, Sb)
or metal oxide (SnO2). It was reported that a modified
BDD by evenly assembling Sb-doped SnO2 nanoparticles
on the surface was more suitable to degrade pollutants, in
which the reaction rate constant of 2,4-D was two times

and mineralization current efficiency at 30 min was 1.6
times than that on the bare BDD (Zhao et al. 2010).

2. As shown in Tables 1, 2, and 3, at present, most of the
works have been carried out in batch and in a small scale,
which is still far from industrial application. Thus, devel-
opment scale-up of BDD anode system seems to be very
critical, which would make electrochemical oxidation to
be a practical technology for wastewater treatment (Zhu
et al. 2011). In addition, the total consumption of the
process for organic pollutant mineralization is still a little
high, so it would be more cost-effective when combined
with other wastewater treatment technologies such as
biological process.

3. In recent years, a large number of emerging contaminants
(e.g., pharmaceuticals and personal care products,
endocrine-disrupting compounds, surfactants) enter into
the environment not only from industrial activities but
also from household activities. The removal of these
compounds has become a hot research area in the world.
Since the polluted wastewaters containing drugs, pesti-
cides, and dyes can be effectively removed in these three
BBD-based systems, it is expected to receive good results
for these kinds of compounds. However, how tomake this
method to be more efficient to meet the real case of low
contaminants and low electrolyte concentration in water
environment would be a big challenge.
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