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Abstract

We discuss whether position measurements in quantum mechanics can be contradictory
with Bohmian trajectories, leading to what has been called “surrealistic trajectories” in the
literature. Previous work has considered that a single Bohmian position can be ascribed to
the pointer. Nevertheless, a correct treatment of a macroscopic pointer requires that many
particle positions should be included in the dynamics of the system, and that statistical av-
erages should be made over their random initial values. Using numerical as well as analytical
calculations, we show that these surrealistic trajectories exist only if the pointer contains a
small number of particles; they completely disappear with macroscopic pointers.

With microscopic pointers, non-local effects of quantum entanglement can indeed take
place and introduce unexpected trajectories, as in Bell experiments; moreover, the initial
values of the Bohmian positions associated with the measurement apparatus may influence
the trajectory of the test particle, and determine the result of measurement. Nevertheless,
a detailed observation of the trajectories of the particles of the pointer reveals the nature of
the trajectory of the test particle; nothing looks surrealistic if all trajectories are properly
interpreted.

**********

De Broglie and Bohm (dBB) have introduced an interpretation of quantum mechanics where
material particles are described, not only by wave functions as in standard quantum mechanics,
but also by point positions that are guided by the wave function [1, 2]. Trajectories in the
configuration space can then be associated with the time evolution of any system made of mas-
sive particles. These trajectories can be projected into ordinary 3D space, which provides the
trajectory of each constituent particle. Such projections sometimes exhibit unexpected prop-
erties. They are interesting, since their study may reveal unexpected quantum properties that
could otherwise remain unnoticed inside the standard equations. General reviews of Bohmian
mechanics and trajectories in various situations can be found for instance in [3], [4] or [5].

In the context of standard theory, the study of these trajectories leads to nothing but a
visualization of the motion of the usual probability current. Because the dBB language is
convenient, in this article we will speak of positions and trajectories of the particles, instead
of streamlines of the probability. Nevertheless, the reader who is allergic to the very idea of
particle positions in quantum mechanics can easily translate every statement in terms of the
trajectories of the elements of the probability fluid. Our purpose here is not to plead in favor of
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one interpretation or another, but just to provide a more precise analysis of the dBB trajectories
in the presence of quantum non-local effects. In particular, we will not study the trajectories
defined within the consistent history interpretation [6], which are different.

In 1992, Englert, Scully, Süssmann and Walther proposed an interesting thought experiment
[7] where a test particle crosses a two slit interferometer, while another quantum system (the
“pointer”) plays the role of a “Welcher Weg” (which way) detector, indicating through which slit
the test particle went. These authors argue that, if one observes the position of the pointer after
the test particle has crossed the interference region, in some cases the pointer seems to indicate
that the particle crossed one slit, while a reconstruction of the past Bohmian trajectory of the
particles shows that it went through the other. The reason behind this unexpected conclusion
is that, when two wave packets of the test particle cross in the interference region, the Bohmian
position of the particle may “jump” from one wave packet to the other, leading to a curved
Bohmian trajectory without any force from outside. The authors of [7] consider that, even under
these conditions, the indication of the pointer still provides a correct measurement of which slit
was really crossed by the test particle; since some Bohmian trajectories nevertheless cross the
other slit, they express strong doubts about the real physical interest of these trajectories, and
call them “surrealistic”.

Several authors have discussed the question and reached various conclusions. A first reaction
by Dürr et al. [8] in 1993 was very general: these authors pointed out that this property of
Bohmian trajectories is no more paradoxical than the orthodox point of view where the particles
goes through two slits at the same time; in their opinion, the qualification of “surrealistic”
could arise only from a naive version of operationalism. Also in 1993, Dewdney, Hardy and
Squires published an article [9] where a Mach-Zhender interferometer is studied; they argue
that this simpler version of the thought experiment reveals nothing surrealistic about Bohmian
trajectories, but only illustrates the well-known non-local influence of the quantum potential
introduced by Bohm [2]. Three years later, Aharonov and Vaidman discussed the relation
between position measurements and Bohmian positions in general, but also in the context of weak
and protective measurements [10]. In 1998, Scully stated again that, in his opinion, Bohmian
trajectories do not always provide a trustworthy physical picture of particle motion [11]; he
nevertheless concludes that he agrees Bohmian mechanics offers an interesting line of thought. In
1999, Aharonov, Englert and Scully studied the relation between “protective measurements” and
Bohmian trajectories, and concluded that the results challenge any realistic interpretation of the
trajectories [12]. But, in 2006, Hiley expressed again the opinion that surreal trajectories occur
only from an incorrect use of the Bohm approach [13]. In 2007, Wiseman pointed out that the
measurement of weak values can lead to an experimental determination of Bohmian trajectories
[14]; see also Ref. [15]. Bohmian trajectories can also be reconstructed with a generalization of
the technique of quantum state reconstruction [16]. Gisin [17] has pointed out that surrealistic
trajectories occur only if the pointer of the measurement apparatus is “slow”, i.e. if it indicates
which slit the particle crossed with a delay, only after the particle has left the interference region.
We conclude this brief review by noting that related experiments have been performed. In 2011,
Kocsis et al. have observed the average trajectories of single photons in a two slit interferometer
[18]. Of course, photons are relativistic particles, which stricto sensu have no quantum position
operator, and therefore neither a Bohmian position nor a trajectory. Nevertheless, Braveman
and Simon [19] have pointed out that, in the paraxial approximation, the propagation of an
electromagnetic field obeys an equation that is identical to the Schrödinger equation for a 2D
massive particle; the same authors have proposed to observe the non-locality of trajectories with
entangled photons. In 2016, Mahler et al. have indeed observed non-local and surreal Bohmian
trajectories, and conclude that the trajectories seem surreal only if one ignores their manifest
non-locality [20].

A common feature of these publications is that their theoretical analysis assigns a single
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Bohmian position to the pointer of the measurement apparatus; the corresponding object may
for instance be the center of mass of the pointer, and therefore have a macroscopic mass. Never-
theless, in a real measurement apparatus, the pointer necessarily contains many particles, which
are described by a large number of degrees of freedom. It then becomes necessary to assign
a large number of Bohmian positions to the pointer; the purpose of this article is to discuss
their role. As we will see, their presence radically changes the situation, since the fraction of
“surrealistic” trajectories decreases when the number of positions increases. In other words, we
will check that non-local effects vanish in the macroscopic limit for the pointer, as one could
expect. Moreover, even with microscopic pointers, if quantum effects are properly taken into
account, no actual contradiction appears between the trajectories and the indications given by
the pointer. Actually, the pointer positions can be used to obtain correct information, not only
on the slit crossed by the test particle, but also quantum non-local effects taking place in the
interference region.

In § 1, we introduce the model used to make the numerical computations in this article. In
the original scheme of Ref. [7], the Welcher Weg quantum system was a micromaser enclosed in a
cavity, possibly complemented by a second massive particle taking a trajectory that depends on
the state of radiation inside the cavity. In order to avoid the introduction of Bohmian variables
associated with the electromagnetic field, in this article we will assume that the Welcher Weg
apparatus contains only (one or several) massive particles having Bohmian positions. In § 2,
we assume that the pointer is made of a single particle and we discuss the characteristics of the
trajectories in different situations: pointers providing Welcher Weg information almost imme-
diately, or only delayed information, or intermediate cases. In § 3, we assume that one or two
pointers contain several particles, each of them associated with its Bohmian position. Numerical
calculations then show that the trajectories strongly depend on the number of these positions;
quantum non-local effects may still take place only if the number of Bohmian positions is not
too high. In § 4, the pointer is assumed to be macroscopic; it contains an enormous number
of particles (some fraction of the Avogadro number). An analytic argument shows that non-
local effects then disappear: surrealistic Bohmian trajectories no longer exist when the pointer
is macroscopic (this analytic argument is expanded in an Appendix, where we show that this
disappearance is a consequence of the multiplication of the effective velocity of the pointer by
a factor

√
N , where N is the number of particles N contained in the pointer). Finally, in § 5,

we conclude that adequate observations of the pointer trajectories allows one to understand
the detailed characteristics of the test particle trajectory in all cases: as soon as the non-local
dynamics of the coupled quantum systems is well understood, the trajectories cease to look
surrealistic. A preliminary account of this work can be found in [21].

1 Pointer with one degree of freedom, numerical model

We first study a pointer having one degree of freedom (it contains only one particle moving in
1-dimension space), which allows us to introduce the model and the notation.

1.1 Wave functions

The test particle is assumed to move in a 2-dimension space, with a wave function depending
on coordinates x and y, as shown schematically in Figure 1. The coordinate variable of the
1-dimension pointer is z. Just after the test particle has crossed the screen pierced with two
slits, it is entangled with the variable of the pointer; the total wave function is the sum of two
components:

Ψ(x, y, z; t) = Φ+(x, y, z; t) + Φ−(x, y, z; t) (1)
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where t is the time. In (1), each component is the product of a wave function for the test
particle (which is itself a product of functions ϕx

± of x and ϕy of y), and of a wave function for
the pointer χ± containing the z dependence:

Φ±(x, y, z; t) = ϕx
±(x; t) ϕ

y(y; t) χ±(z; t) (2)

Note that both components of (1) contain the same function ϕy: for the sake of simplicity, we
assume that the motion of the test particle in direction Oy (perpendicularly to the screen) is
independent of the slit crossed by the particle.

Figure 1: Scheme of the experiment discussed in the text. The wave function of a test particle
crosses the two slits of a screen, and then propagates to a region of space where interferences
may take place. The horizontal lines in this region schematize the positions of the fringes. A
pointer particle plays the role of a Welcher Weg apparatus. When the test particle crosses the
upper slit, the pointer starts moving in one direction, but in the opposite direction when the
test particle crosses the lower slit. The pointer may be either fast (it indicates a result before
the test particle reaches the interference region), slow (it indicates a result only after the test
particle has crossed this region), or intermediate.

Functions ϕ and χ are assumed to be simple Gaussian wave packets (Gaussian slits):

ϕx
±(x; t) ∼

[

a4 +
4ℏ2t2

m2

]−1/4

exp

{

∓i
mvxx

ℏ
− [x∓ d± vxt]

2

a2 + 2iℏt
m

}

(3)

which at time t = 0 is centered at a position x = ±d, and has initial velocity ∓vx (the signs are
chosen so that the wave packets of the test particle cross in the interference region if vx > 0);
m is the mass of the test particle. For the second coordinate y of the test particle, we set:

ϕy(y; t) ∼
[

b4 +
4ℏ2t2

m2

]−1/4

exp

{

i
mvyy

ℏ
− [y − vyt]

2

b2 + 2iℏt
m

}

(4)

which has an initial width b, is centered at y = 0, and has an initial velocity vy. Finally, for the
wave function of the pointer, we choose:

χ±(z; t) ∼
[

c4 +
4ℏ2t2

M2

]−1/4

exp

{

±i
MV z

~
− [z ∓ V t]2

c2 + 2iℏt
M

}

(5)
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where M is the mass of the pointer particle. This wave packet has an initial width c and an
initial velocity +V if the test particle crosses the upper slit, −V if it crosses the lower slit (with
this convention, the signs of the velocities of the wave packets associated with the test and
pointer particles are opposite if vx and V are both positive). This corresponds to what Ref. [22]
calls a “Bohmian velocity detector”.

1.2 Motion of the Bohmian positions

We now introduce Bohmian positions X and Y for the test particle, and Z for the pointer
particle. The guiding equation of the Bohmian position of the test particle reads:

dX

dt
=

ℏ

2im |Ψ(X,Y,Z)|2
[

Ψ∗ (X,Y,Z)
∂Ψ

∂x
(X,Y,Z)− c.c.

]

dY

dt
=

ℏ

2im |Ψ(X,Y,Z)|2
[

Ψ∗ (X,Y,Z)
∂Ψ

∂y
(X,Y,Z)− c.c.

]

(6)

(c.c. means “complex conjugate”; the time dependence is not explicitly written for simplicity).
Equivalently, this Bohmian velocity can also be written in terms of the gradient of the phase of
the wave function. As for the motion of the pointer Bohmian position, it is given by:

dZ

dt
=

ℏ

2iM |Ψ(X,Y,Z)|2
[

Ψ∗ (X,Y,Z)
∂Ψ

∂z
(X,Y,Z)− c.c.

]

(7)

Since the wave function is factorized with respect to the y variable, the Bohmian motion
along axis Oy is independent of the other variables: there is actually no X or Z dependence in
the second equation (6). The motion of Y (t) is therefore given by:

dY

dt
= vy +

4~2t

m

Y − vyt

b4 + 4~2t2

m2

(8)

The solution of this equation is:

Y (t) = vyt+ Y0

√

1 +
4~2t2

m2b4
(9)

where Y0 is the initial value of Y at time zero. The motion of Y (t) is therefore relatively simple:
a uniform motion along Oy plus a correction introduced by the diffraction of the wave packet.

1.3 Dimensionless variables

We now introduce dimensionless variables by setting:

x′ =
x

a
y′ =

y

b
z′ =

z

c

X ′ =
X

a
Y ′ =

Y

b
Z ′ =

Z

c
(10)

and:

d′ =
d

a
(11)

All positions are then expressed in terms of the initial width of the corresponding wave packet.
We also introduce a dimensionless time t′ by:

t′ =
vyt

b
(12)
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The velocities are defined in terms of the variables:

ξx =
mvxa

ℏ
ξy =

mvyb

ℏ
Ξ =

MV c

~
(13)

Equation (9) then simplifies into:

Y ′(t′) = t′ + Y ′
0

√

1 +
4(t′)2

ξ2y
(14)

Finally, it is also convenient to introduce the dimensionless parameters:

r =
a

b
R =

a

c
µ =

m

M
(15)

The equations of motion of the Bohmian positions of the test and pointer particles then become:

dX ′

dt′
=

1

2ir2ξy |Ψ|2
[

Ψ∗ ∂

∂x′
Ψ−Ψ

∂

∂x′
Ψ∗

]

dZ ′

dt′
=

µR2

2ir2ξy |Ψ|2
[

Ψ∗ ∂

∂z′
Ψ−Ψ

∂

∂z′
Ψ∗

]

(16)

The initial values of the Bohmian positions are denoted as X0, Y0 and Z0 respectively
(with added primes for dimensionless variables). For a given realization of the experiment, these
variables are random, with a distribution given by the squared modulus of the corresponding
wave function. For instance, X0 can fall at any place inside one of the two Gaussian slits; for
all figures of this article, we show the trajectories corresponding to 9 equidistant values inside
each slit. Since Y does not play an important role in the problem (it just increases smoothly in
time), we set Y0 = 0, so that Y (or Y ′) provides a rough measure of the time. Finally, to study
the impact of the values of Z0 on the trajectories, we make a random choice of Z0 inside its
Gaussian distribution.

The time at which the wave packets of the test particle cross in the interference region is
tcross ≃ d/vx, and the time at which the wave packets of the pointer become well separated
is tP ≃ c/V . The pointer thus gives a clear indication before the test particle reaches the
interference region if:

tcross
tP

≃ V d

vxc
> 1 (17)

In terms of the dimensionless variables introduced above, this condition becomes:

E =
V d

vxc
=

Ξ

ξx
R2d′µ > 1 (18)

For short, we will call (18) the “fast pointer condition”.
Bohmian trajectories may be obtained by straightforward time integration of the appropriate

set of coupled differential equations: Eq. (16) for a single-particle pointer, a set of 1+N similar
equations for the Bohmian positions associated to the test particle, X ′, and to the multi-particle
pointer(s), Z ′

1 to Z ′
N , see Appendix. With conventional numerical tools or dedicated software,

this is manageable on a personal computer for reasonably small values of N (and, possibly, any
type of wave packets).

For our Gaussian two-slit model, we have used Mathematica [23] for computation and plot-
ting of all trajectories. Solving this type of ordinary differential equations with Mathematica’s
generic tool and default options works well up to a few tens of pointer particles and time integra-
tion is fast (a fraction of a second up to N = 5, typically). For larger N values, we resorted to
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the (automatically) suggested optional method of simplification suited for the problem, which is
more robust but slower. The computing time increases exponentially with the number of pointer
particles, ranging from 5 sec. for N = 10 to 3.5 hours for N = 200 on a computer equipped
with a 3.2 GHz Intel Core i3-550 CPU, for example, or 1.5 h for N = 200 on a 4.0 GHz Intel
Core i7-6700K CPU.

One way to substantially reduce the computational load is to use the explicit analytical
expressions of the Bohmian velocities, which can be derived for Gaussian wave packets (see
Appendix, Section 2). Then a roughly 10-fold shorter time is needed for computation of all
trajectories.

Finally and more simply, as shown in Section 3 of the Appendix, the particle and pointer
trajectories may actually be obtained from the time integration of only 2 differential equations.
These two equations rule the evolution of X ′ and Σ̂, the Bohmian positions of the test particle
and of a single “new” particle associated to the pointer, respectively. The trajectories of all
pointer particles can be subsequently derived analytically, from the evolution of a new particle
that has an effective velocity parameter Ξ̂ = Ξ

√
N when the pointer includes N particles with

(dimensionless) velocity Ξ, and therefore moves
√
N times faster.

2 Single particle pointer

When the Welcher Weg pointer contains a single particle, the system under study is made of
two entangled particles, exactly as in EPR/Bell non-locality experiments. Various situations
can be considered, depending on the nature of the entanglement between the test particle and
the pointer. For the sake of simplicity, we first assume that they are not coupled, a case in
which no Welcher Weg information whatsoever is provided by the pointer; it has no effect on
the trajectory of the test particle. Next we consider the opposite situation, where the pointer
is strongly coupled to the test particle and and provides a Welcher Weg information before the
test particle reaches the interference region (fast pointer); the trajectories are then completely
different and look classical. We also study what happens if the pointer is slow and provides the
information only after the test particle has crossed the interference region, and finally consider
intermediate situations.

2.1 Immobile pointer providing no information

If we set Ξ = E = 0, the wave function (1) factorizes into a component for the test particle and
another for the pointer, so that the motions of their Bohmian positions become independent: the
motion of the test particle occurs as if the apparatus did not exist. Figure 2 shows the trajectories
obtained in this case. They exhibit the so-called “no-crossing rule”: trajectories cannot cross the
symmetry plane of the experiment, and they “bounce” on this plane in the interference region.
This is a simple consequence of the fact that, in the symmetry plane, the probability current is
contained inside the plane. In dBB quantum mechanics, it is well-known that interference effects
can curve trajectories in free space, so that an observation of the trajectory of the particle after
the interference region should not be extrapolated as a straight line backwards in time.

2.2 Pointer providing real-time information (fast pointer)

We now assume that the pointer is sufficiently coupled to the test particle to provide a real-
time information: it indicates the slit crossed by the particle before the interference region is
reached. This situation is obtained when condition (18) for E is met. As shown in Figure 3, the
trajectories then cross the interference region as almost straight lines. This was expected since,
in quantum mechanics, any Welcher Weg information stored in the pointer necessarily destroys

7



1 2 3 4 5 6

Y'

-1

-2

-3

-4

0

1

2

3

4

X'

Figure 2: (color on line) Trajectories obtained when the pointer particle is not coupled to the
test particle (Ξ = V = 0). The two particles are not entangled and their positions move
independently. The figure shows the trajectories of the test particle originating from 9 possible
initial values X0 inside each of the slits. The trajectories crossing the upper slit are drawn with
full lines (blue color on line), those crossing the lower slit in dashed lines (red color on line). All
trajectories of the test particle “bounce” on the symmetry plane of the experiment (no-crossing
rule).

the interference effects. One can then infer which slit was crossed by the test particle by a simple
backwards extrapolation of its trajectory along a straight line; no surrealistic trajectory appears.

2.3 Pointer providing only delayed information (slow pointer)

We now assume that the pointer is slow: its wave packets separate significantly only after the
test particle has crossed the interference region. This situation corresponds to what Ref. [9]
calls “late measurements”. Figure 4 is obtained by changing parameter R from R = 1 (Figure 3)
to R = 0.2. At constant Ξ, this reduces the velocity of the pointer by a factor 5; moreover, at
constant a (no change of the wave packet of the test particle), this multiplies the width of the
wave packet of the pointer particle by a factor 5; altogether, parameter E is divided by 25 and
becomes equal to E = 0.12.

We then obtain a completely different situation. Initially, the pointer starts to move in a
direction that indicates the slit crossed by the Bohmian position of the test particle, as expected
(and as in Figure 3). But, when the test particle reaches the interference region, non-local
interference effects take place: the Bohmian positions can jump1 from one wave packet to the
other, so that both trajectories change directions. They remain consistent with each other,
inasmuch as the motion of the pointer particle (its velocity) constantly indicates the beam in
which the test particle propagates.

Nevertheless, if one extrapolates the behavior of a fast pointer to this case, one reaches a
contradiction. If for instance the test particle crossed the upper slit, at long times the pointer
is more likely to move downwards (as a fast pointer would do if the test particle had crossed
the lower slit, see Fig. 3). Ref. [7] considers that this motion of the pointer provides a correct
information on which slit was really crossed by the test particle; because the Bohmian trajectory
crossed the other slit, it becomes contradictory with (this interpretation of) the measurement,
therefore physically meaningless and “surrealistic”.

Another interesting feature of this situation is that the initial value Z0 of the Bohmian
position of the pointer plays an important role. It is a random variable with a probability

1We use the word “jump” as several other authors have done, because it is convenient. This does not mean

that there is a real jump is space, since the Bohmian trajectory remains perfectly continuous; one could also say

that the Bohmian positions change the wave on which they surf.
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Figure 3: (color on line) Trajectories obtained when the pointer particle is coupled to the test
particle and plays the role of a “fast pointer”(i.e. a pointer providing a Welcher Weg information
before the test particle reaches the interference region). The left part of the figure shows the
trajectories of the test particle, the right part the trajectories of the pointer particle. The values
of the input parameters used for the calculation are Ξ = ξx = 10, r = R = 1, d′ = 3, µ = 1,
corresponding to E = 3. The position of the pointer particle is assumed to be initially centered
(Z ′

0 = 0). It subsequently moves upwards if the test particle crosses the upper slit, downwards
if it crosses the lower slit. Because this information may be obtained before the test particle
reaches the interference region, no interference effect takes place, so that the trajectories of the
test particle are (almost) straight lines. Similarly, the trajectories of the pointer particle also
remain straight, and depend only on the slit crossed by the test particle, independently on its
position inside the slit. No trajectory can then be interpreted as “surrealistic”.

distribution that is determined by the squared modulus of the initial wave function χ±(z; t = 0).
Figure 4 corresponds to the case where Z0 = 0, when the initial position of the pointer is perfectly
centered, so that no slit is favored. In Figure 5, the dimensionless value of Z0 has been changed
to Z ′

0 = 0.5; we see that the trajectories are significantly different. We actually observe an
interesting non-local “predestination” effect: because the initial position of the pointer particle
seems to already point to one of the slits, in the interference region the trajectory of the test
particle is influenced by this indication. We have computed series of trajectories for numerous
random initial values of the position of the pointer particle. Systematically, the most frequently
selected direction seems to originate from the slit selected by the pointer from the beginning;
the measured system “follows” the initial indications of the measurement apparatus, so to say.

It is known that Bohmian trajectories can never cross each other. The apparent crossings
of Figure 5 are due to the fact that this figure is a projection over a 2D plane of a trajectory
that actually takes place in a 3D space, the third dimension being the position of the pointer
particle. Figure 6 illustrates how the trajectories avoid crossing in the third dimension.

This brief survey of the behavior of a microscopic pointer shows that the random initial
position of the pointer plays an important role, and may even influence the trajectory of the
test particle. The possible “surrealistic” character of the trajectory is interpretation dependent;
surrealism appears only if one interprets the indications of the pointer as providing information
about the past positions of the test particle. Nevertheless, at any time the motion of the pointer
particle gives an information that is consistent with the present motion of the test particle: just
after it crossed the slit, the position of the pointer moves in the corresponding direction; if the
test particle later jumps from one wave packet to the other, the pointer also reverses its motion,
providing an indication that remains consistent with the present trajectory of the test particle.
Nothing seems surrealistic if the non-local dynamics of the measurement process is duly taken
into account.
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Figure 4: (color on line) Trajectories obtained when the pointer particle is slow: it provides only
a delayed Welcher Weg information after the test particle has crossed the interference region.
Interference effects can then occur for the test particle. The only input parameter that has been
changed with respect to Figure 3 is R = 0.2 (this corresponds to E = 0.12). Most trajectories
now change direction during the crossing of the interference region by the test particle. These
curved trajectories are sometimes called “surrealistic trajectories” because the position of the
pointer, long after the crossing, has a behavior opposite of that of a fast pointer: it moves
downwards if the trajectory of the test particle crosses the upper slit, upwards if it crossed the
lower slit. A few trajectories remain “normal” and do not exhibit this apparent contradiction.
In this figure, we have assumed that the initial Bohmian position of the pointer particle vanishes
(Z ′

0 = 0); the trajectories, thus, form a perfectly symmetric pattern.
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Figure 5: (color on line) Same figure as Fig. 4, but Z ′
0 has been changed to Z ′

0 = 0.3, which
introduces an asymmetry. The proportion of situations where the pointer position ends up
moving upwards (and the test particle downwards) has increased. This illustrates how the
initial value of an “additional variable” of the measurement apparatus can influence the future
trajectory of the measured system, due to a quantum non-local effect. After the interference
region, the trajectory of the test particle takes more often a direction that seems to originate
from the slit corresponding to the initial indication of the pointer (“predestination effect”).

3 One or two pointers containing several particles

3.1 Description of the model

We now generalize (2) by assuming that each of the two components of the wave function
contains the product of N individual wave functions associated with particles contained in one
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Figure 6: (color on line) Same figure as Fig. 5, but in a three dimension representation showing
the simultaneous motion of the test and pointer particle. This illustrates how the trajectories
avoid each other in the third dimension. 2D projections, showing the trajectories of the test
particle and of the pointer, are also plotted in thin lines and gray color.

or several pointers. With the same dimensionless variables as defined above, we write:

Φ±(x, y, z1, z2,..,zN ; t) ∝

exp











−

[

x′ ∓ d′ ± ξx
r2ξy

t′
]2

1 + 4t′2

r4ξ2
y

− [y′ − t′]2

1 + 4t′2

ξ2
y

−
N
∑

n=1

[

z′n − µΞ±
n R2

r2ξy
t′
]2

1 + 4µ2R4t′2

r4ξ2y











× exp











i







(

±ξxx
′ + ξyy

′ +

N
∑

n=1

Ξ±
n z′n

)

+
2t′

r2ξy

[

x′ ∓ d′ ± ξx
r2ξy

t′
]2

1 + 4t′2

r4ξ2
y

+
2t′

ξy

[y′ − t′]2

1 + 4t′2

ξ2
y

+

N
∑

n=1

2µR2t′

r2ξy

[

z′n − µΞ±
n R2

r2ξy
t′
]2

1 + 4µ2R4t′

r4ξ2y

















(19)

Each zn is the 1D spatial coordinate of one pointer particle; a different origin may be chosen
for each value of n, meaning that the wave packets do not necessarily coincide at time t = 0.
The parameters Ξ±

n define the initial velocities of the wave packets of the pointer particles: if
the test particle crosses the upper slit, the (dimensionless) velocity is Ξ+

n ; if it crosses the lower
slit, it is Ξ−

n . Of course, if there is only one pointer, all the pointer particles belong to the same
solid object, and we will assume that all these wave packets move at the same speed; we then
simply choose:

Ξ±
n = ±Ξ (20)

But we can also assume that two independent pointers are used to detect the test particle:
for instance, one pointer starts moving if this particle crosses the upper slit, but remains still
otherwise; the other pointer operates in the same way for the lower slit. The simplest case is
obtained if each pointer contains only one particle (N = 2), and with the following choice of
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parameters:

Ξ+
1 = Ξ Ξ−

1 = 0

Ξ+
2 = 0 Ξ−

2 = Ξ (21)

We now study this latter case.

3.2 Two independent pointers
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Figure 7: (color on line) Trajectories obtained with two slow pointers, with the same values of
the input parameters as in Figure 4. The initial positions of the pointer particles Z ′

1,0 and Z ′
2,0

are both equal to 0.01. The upper part of the figure shows two trajectories of the test particle,
one originating from the upper slit (full line, blue on line) and one originating from the lower
slit (dashed line, red on line). The trajectories of the two pointers are shown in the lower part
of the figure: on the left the pointer associated with the upper slit, on the right that associated
with the lower slit.
Initially, the motions of the positions are exactly those one could naively expect: the position
of the pointer located near the slit crossed by the particle moves, while the other remains
still. Later, when the test particle crosses the interference region, the Bohmian position in the
configuration space “jump” from one wave packet to the other, resulting in the simultaneous
appearance of curved trajectories for each constituent particle. The test particle then changes
direction, the first pointer particle stops, and the second pointer particle starts to move. This
non-local effect, similar to that shown in Figure 5, is called “surrealistic trajectory” in the
literature.

We consider two microscopic pointers, each made of a single particle with parameters given
by (21). Figure 7 shows two trajectories that are obtained in this case, with the same set of
input parameters as for Figures 4 and 5. For clarity, only one trajectory is displayed for each
slit, assuming that the test particle crosses it at the center. Initially, when the test particle
crosses the upper slit, the position of the upper pointer moves upwards, while the position of
the lower pointer remains still; this is exactly as expected. Later, when the test particle reaches

12



1 2 3 4 5 6

Y'

-1

-2

-3

-4

0

1

2

3

4

X'

1 2 3 4 5 6

t'

0.5

0.6

0.7

0.8

Z1'

1 2 3 4 5 6

t'

0.7

0.8

0��

1.

Z2'

Figure 8: (color on line) Same figure as Fig. 7, but with different initial values for the positions
of the pointers (Z ′

1,0 = 0.5 and Z ′
2,0 = 0.9) corresponding to a larger average value than in that

figure. In this case, after crossing the interference region, the trajectory of the test particle takes
a direction that is determined by the initial positions of the pointer particles, revealing a strong
effect of the additional variables of the measurement apparatus.

the interference region, it can bounce and the velocity can change its direction; this introduces
curvatures in the trajectories of all three particles. The position of the upper pointer stops, and
that of the lower pointer starts moving up, according to the new velocity of the test particle
– clearly a quantum non-local effect. Nevertheless, the successive positions of the pointers
give a perfectly correct real-time information on the actual trajectory of the test particle. No
contradiction appears between the indications of the pointers and the trajectory of the test
particle, provided the motion of the pointers are interpreted as measurements of the velocity of
the test particle at the same time; this is an interesting illustration of how a quantum non-local
measurement apparatus can operate.

The initial values of the Bohmian positions of the pointer particles are of course random. It
may happen that they are for instance both positive, and seem to indicate the presence of the
test particle in one slit even before the measurement has begun. Figure 8 shows another example,
with the same input parameters as in 5, but different initial values of the positions of the pointer
particles. These values are such that, initially, the two pointers have positions corresponding to
a detection of the particle in the upper slit. We then observe the same “predestination” effect
as in Figure 5: in the interference region, the trajectory of the test particle takes more often a
direction that is consistent with this initial value.

This analysis shows that the Bohmian trajectories of the pointer particles always remain
consistent with that of the test particle: before the crossing of the interference region, the
trajectory of the pointer particles indicates which slit has been crossed, and after the crossing
it indicates in which beam the test particle propagates. Non-local effects are also visible on
the pointer trajectories during the crossing time, and constantly reflect the behavior of the test
particle. In the words of Ref. [22], this phenomenon is a “dramatic demonstration” of the
consequences of non-locality on the interpretation of measurements.
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3.3 Single pointer with more particles

Coming back to the case where the measurement apparatus consists in a single pointer, but
assuming that this pointer contains N particles, we have plotted a number of trajectories.
The input parameters are the same as in § 2; the only difference is that N = 10, and that 10
initial positions Z ′

n,0 of the pointer particles are randomly chosen within their common Gaussian
distribution. Since it would be inconvenient to plot 10 separate trajectories, in the figures we
show the trajectory of the averaged variable (also used in the Appendix):

Σ̂′ =
1√
N

∑

n

Z ′
n (22)

Figure 9 shows a case where the initial value of Σ̂′ is zero, a case in which the initial dBB
state of the pointer is neutral (no “preference” for one result or the other). We then observe that
the various trajectories of the test particle are symmetrical with respect to the symmetry plane
of the interference device. Some of them still bounce on this plane, as in Figure 4, but a larger
proportion of trajectories crosses the interference region: the number of surrealistic trajectories
is therefore reduced when the pointer contains more particles.

Figure 10 shows another case where the initial value of Σ̂′ is Σ̂′(0) = 0.3; this positive value
favors one indication of the pointer and, therefore, a “result of measurement”. In the interference
region, what is observed is that the trajectories of the test particle tend to deviate in order to
take a direction that seems to agree with this initial average value. The effect is even more
pronounced in Fig. 11 with a still larger initial value Σ̂′(0) = 1; now almost all trajectories of
the test particle take a final direction that is determined by this initial average. Interestingly,
we have a case where it is not the “hidden variable” associated with the measured particle that
determines the result of measurement, as often believed in the context of the dBB theory. What
matters here is the initial values of the “hidden variables” of the measurement apparatus, which
determine in advance which path will be taken by the test particle. This sort of “predestination
effect” is also a generalization of the “non-local steering of Bohmian trajectories” observed with
photons in Ref. [24].

We have also performed computations with a larger number of pointer particles, N = 200.
Figure 12 shows the results obtained with input parameters identical to those of Figure 11, but
for a pointer composed of 200 particles. Most trajectories of the test particle are now almost
straight lines.
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Figure 9: (color on line) Trajectories obtained with N = 10 pointer particles. The left part shows
the trajectory of the test particle, the right part the trajectory associated with the averaged
pointer variable Σ̂′ defined in (22). This variable is assumed to have an initial value Σ̂′(0) = 0.
Apart fromN , all parameters are the same as in Figure 4. A larger proportion of trajectories than
is that figure do not change direction, illustrating the decrease of the proportion of “surrealistic”
trajectories when N increases.
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Figure 10: Trajectories obtained with N = 10. The initial values of Σ̂′(0) is now 0.3, but
otherwise all parameters are the same as in Figure 9. Because the average value of the positions
of the pointer is positive, more trajectories of the test particle seem to originate from the upper
than from the lower slit, and go downwards after crossing the interference region.
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Figure 11: Same figure as 10, but with a still larger initial value Σ̂′(0) = 1. In this case,
all trajectories of the test particle after the interference region follow a trajectory that seem to
come from the upper slit and goes downwards: the “result of measurement” is determined by the
initial values of the additional variables attached to the measurement apparatus (“predestination
effect”).
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Figure 12: Trajectories obtained with the same input parameters as those of Fig 10, but 200
pointer particles instead of 10. Because the number of pointer particles has increased, the
trajectories are now all close to straight lines. The quantum non-local effects have completely
disappeared and no Bohmian trajectory can be called “surrealistic”.

The conclusion of this study is that, the larger the number of pointer particles, the weaker the
interference effects of the test particle, and therefore also the smaller the proportion of apparently
surrealistic trajectories. In the limit of very large values of N , they completely disappear, as we
now show analytically.
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4 Macroscopic pointer, relation to decoherence

We now give a brief analytic argument showing that, when the number of pointer particles tends
to infinity, all trajectories of the test particle cross the interference region as straight lines, even
if the pointer is slow. This is actually nothing but the extension of a brief argument given by
Bell already in 1980 [26], assuming fast pointers; it is interesting to note that he had already
discussed the essence of the phenomenon 12 years before the notion of surrealistic trajectories
was introduced [7].

As we have seen, in order to determine the trajectory of the test particle in the interference
region, the crucial element is the ratio between the two components of the wave function, evalu-
ated at the Bohmian positions of all particles: if the Bohmian positions of the pointer are such
that only one component remains active (the other takes negligible values), the Bohmian posi-
tion of the test particle follows a straight line, and no surrealistic trajectory occurs. We therefore
have to study the Zn dependence of the amplitudes associated with the two components Φ±

given by (1), which is contained in the last term of the first line of (19).
At time t = 0, when the test particle crosses one of the slits, it is the Bohmian position of

this particle that determines which of the two components Φ± is effective; the other is inactive,
what Bohm calls an “empty wave”. The Bohmian positions of the pointer particles have not yet
changed, and they give the same values to the two components of the wave function. Nevertheless
all these positions have an initial velocity that depends on the component of the wave function:
+V for the component where the test particles goes through the upper slit, −V in the other case.
The pointer Bohmian positions actually move together with their wave packet in the effective
wave, being insensitive to the empty wave that would induce an opposite motion.

Consider now a time δt that is smaller than the time tcross at which the wave packets of the
test particle reaches the interference region. The two wave packets of the pointer are then at a
mutual distance δz = 2V δt, so that they may take different values at the Bohmian positions.
Let us first consider just one particle of the pointer labeled n. The amplitude of the effective
wave function at the position Zn is proportional to :

|χa (Zn)| ∼ e−(Zn)
2/c2 (23)

(we shift the origin for the Zn coordinate at the center of this wave packet; c is width of the
packet, as defined in § 1). The amplitude of the the empty wave is proportional to:

|χb (Zn)| ∼ e−(Zn+δz)2/c2 (24)

The ratio between these amplitudes is therefore:
∣

∣

∣

∣

χb (Zn)

χa (Zn)

∣

∣

∣

∣

= e−2Zn δz/c2e−(δz/c)2 (25)

If one takes into account all particles in the pointer, the ratio K between the amplitudes of
the effective and empty waves becomes:

K = exp

{

−
N
∑

n=1

[

2Znδz

c2
+

(

δz

c

)2
]}

= exp

{

−N

c2

[

2 〈Z〉 δz + (δz)2
]

}

(26)

where 〈Z〉 is the average of the Bohmian positions:

〈Z〉 = 1

N

∑

n

Zn (27)
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The Bohmian positions take random values; 〈Z〉 fluctuates from one realization of the experiment
to the next. Nevertheless, when N is large we have:

〈Z〉 ≃ c√
N

(28)

so that, if N > c2/δz2 :

K ≃ exp

{

−N
(δz)2

c2

}

= exp

{

−4N
(V δt)2

c2

}

(29)

A high value of N can therefore reduce the values of the empty wave at the Bohmian positions
of the pointer by a large factor: if the pointer contains 1020 particles, a factor 1020 enters in the
exponential!

More precisely, the empty wave takes negligible values as soon as:

δt ≥ τ =
c

V
√
N

(30)

The time during which the N particle wave packets still overlap has significantly decreased: it is
reduced by a factor

√
N , which can be 1010 or more. With a macroscopic pointer, in practice this

time is always shorter than the time at which the test particle reaches the interference region.
Then, even if the Bohmian position of a single pointer particle can no longer cancel the empty
wave, the cumulative effect of the Bohmian positions will perform this task. The occurrence of
surrealistic trajectories would require an extremely unlikely distribution of the positions where
their average value 〈Z〉 is 〈Z〉 ≃ −δz/2, in other words an impossible situation when N tends
to infinity.

The variables of the pointer play the role of an environment for the test particle, so that the
disappearance of curved trajectories is reminiscent of a decoherence phenomenon. But, in the
situations we have studied, decoherence has already fully taken place from the beginning. This
is because, in the two components Φ± of the total wave function, the two initial states of the
test particle are quasi-orthogonal (because of their spatial separation); this is also the case of
the states of the pointer particles (because they do not overlap in momentum space if Ξ ≫ 1).
Since we have chosen Ξ = 10 for all figures (except for Fig. 2 where entanglement was canceled
by setting Ξ = 0), the off diagonal elements of the reduced density matrix of the test particle
have an initial value close to zero. What we have studied is therefore rather a post-decoherence
effect, a change from a situation where the test particle is still influenced by two effective waves,
to another situation where only one wave plays a role. This can also be seen as a change of the
conditional quantum potential acting on the test particle: a relaxation from a large value in the
interference region to a practically zero value. The study of this relaxation effect requires, as
we have seen, that all degrees of freedom of the environment, including their Bohmian positions
(the pointer positions in our case), should be taken into account. Related effects are discussed
in Ref. [25], which show how averages over the Bohmian positions of the environment leads to
a reduction of the “effective wave functions”.

The reasoning can be generalized to other symmetric (non-Gaussian) distributions by using
a Taylor expansion of its logarithm around the center (1/c2 then becomes the second derivative
of the distribution at the origin); higher moments of the Z distribution may then appear, but
the essence of the results remains similar. The evolution at long times can also be studied: in
the Appendix, assuming Gaussian distributions, we show that the scaling of the characteristic
evolution time in 1/

√
N remains valid at any time. Another generalization is to assume that

several pointers detect the passage of the test particle, for instance one pointer per slit as in
§ 3.2; this does not change the structure of the calculations, and the results remain basically the
same.
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5 Conclusion

Our conclusion is that, strictly speaking, “late measurements of quantum trajectories” cannot
really “fool a detector” [9], or at least not fool the physicist who makes careful observations of
this detector: no problem, or contradiction, occurs if the coupled dynamics of the positions is
properly understood. It is true that the dynamics of a microscopic pointer may be complex, so
that the interpretation of the results of measurements requires a detailed analysis of how the test
particle interacts with the measurement apparatus, and of how the pointer moves as a result of
this interaction. In particular, since the motion of a pointer may change its direction, a simple
extrapolation to the past may lead to incorrect results. Generally speaking, it is known that
the mechanism of empty waves and conditional wave functions provides a dBB dynamics for the
reduction of the wave function; the examples we have studied show that this dynamic may be
rather rich.

If the pointer is macroscopic, the final result remains simple: it always behaves as a “fast
pointer”, and neither curved Bohmian trajectories nor non-local effect take place. As we have
seen, this simple behavior is not predicted if the pointer is treated as a single particle with
a single Bohmian position. It remains of course perfectly legitimate to introduce a collective
variable, for instance the position of the center of mass of the pointer, and to study its evolution.
But, when a partial trace operation over all the variables of the pointer is required, it becomes
indispensable to ascribe a Bohmian position to every particle of the pointer and to study its
contribution. It is also necessary to perform a statistics over the initial values of all Bohmian
positions associated with the pointer; the average value of these positions and their dispersion
plays a significant role. The morale of the story is that, when a trace operation is necessary in
quantum mechanics to evaluate the decoherence induced by the pointer on the test particle, in
dBB theory all degrees of freedom of the pointer that are traced out must be taken into account,
including every Bohmian position. We mention in passing that this is also important if one
wishes to avoid apparent contradictions concerning the measurement of correlation functions
within dBB theory [27, 28, 21].

If the pointer is microscopic (or mesoscopic) and contains a relatively small number of par-
ticles, quantum non-local effects may indeed take place. The variety of possible phenomena is
significantly richer than the simple bounce of trajectories on the symmetry plane generally dis-
cussed in the literature. Nevertheless, no contradiction appears between the whole trajectory
of the test particle and the results of measurements (assumed to be contained in the successive
positions of the pointer particles). As soon as the position of the test particle “jumps” from
one wave packet to the other, the positions of the pointer particles do the same, so that their
trajectory constantly reflects that of the test particle. In fact, all the information is contained
in the pointer trajectories, ensuring the consistency of the dBB interpretation. An interesting
feature is that, in some cases, the result of measurement is not determined by the additional
variable attached to the measured test particle, but by the initial values additional variables of
the pointer. We then have an interesting “predestination effect” where the result is determined
by the variables of the measurement apparatus rather than by that of the measured system.

Any impression of surrealism disappears if one understands that the velocity of the particles
of the pointer provides information about the velocity of the position of the test particle at
the same time; this is what a detailed analysis of the coupled dynamics of the particle and
the pointer shows. Long after the test particle crossed the interference region, the motion of
the pointer indicates in which beam the test particle propagates at this time, not which slit
it went through in the past. Actually, one can even argue that the trajectories in question are
more real than surreal, since their characteristics (including the changes of directions) should
be experimentally accessible by observing the successive positions of the pointer particles with
sufficient accuracy.
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APPENDIX

The wave functions studied in this article have the general form:

Ψ = R1e
iS1 +R2e

iS2 (31)

where R1, R2, S1 and S2 are real functions of the position variables of all particles; the square
norms of R1 and R2 are both assumed to be 1/2.

(i) General expression of the velocity

The probability current associated with a particle of mass m reads:

J =
ℏ

2im

{

[

R1e
−iS1 +R2e

−iS2

]

[

R1e
iS1

(

i∇S1 +
∇R1

R1

)

+R2e
iS2

(

i∇S2 +
∇R2

R2

)]

−
[

R1e
iS1 +R2e

iS2

]

[

R1e
−iS1

(

−i∇S1 +
∇R1

R1

)

+R2e
−iS2

(

−i∇S2 +
∇R2

R2

)]}

(32)

where the gradients are taken with respect to the coordinates of this particular particle; for the
pointer particles, m is replaced by M . We then have:

J =
ℏ

m

{

(R1)
2
∇S1 + (R2)

2
∇S2

}

+
ℏ

m
R1R2

{

cos(S1 − S2) [∇S1 +∇S2] + sin(S1 − S2)

[

∇R1

R1
− ∇R2

R2

]}

(33)

The velocity V of this particle is then given by:

V =
ℏ

m

(R1)
2

ρ
∇S1 +

ℏ

m

(R2)
2

ρ
∇S2

+
ℏ

m

R1R2

ρ

{

cos(S1 − S2) [∇S1 +∇S2] + sin(S1 − S2)

[

∇R1

R1
− ∇R2

R2

]}

(34)

where ρ is the local density:

ρ = (R1)
2 + (R2)

2 + 2R1R2 cos(S1 − S2) (35)

The first line of (34) gives the average of the velocities associated with the two waves, with
weights given by their intensities. Ref. [22] gives a discussion of the approximation where this
term only is included. But other contributions also arise; they contain, not only the gradients
of the phases of the two waves, but also the gradients of their amplitudes. If we set:

S1,2 = S̄ ± δS

2
(36)

we can rewrite the velocity in the more compact form:

V =
ℏ

m

{

∇S̄ +
(R1)

2 − (R2)
2

2ρ
∇δS +

R1R2

ρ
sin(δS)

[

∇R1

R1
− ∇R2

R2

]

}

(37)

The only parts of (34) of (37) that are particle-dependent are the gradients, which are taken
with respect to the coordinates of the particle under study, and the value of the mass, m or
M . Otherwise, R1, R2, ρ and δS are functions the Bohmian positions X, Y and Zn defined in
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the configuration space, which have the same values for all particles. We notice that, in these
coefficients, the functions R1 and R2 appear only though their ratio Ω = R1/R2.

(ii) Gaussian wave functions, trajectory of the center of mass

For the calculation that follows, it is convenient to rewrite the wave function (3) in the form:

ϕx
±(x; t) ∼ exp

{

− a2

a4 + 4ℏ2t2

m2

[

x2 + (d− vxt)
2 ∓ 2x (d− vxt)

]

}

× exp

{

i

a4 + 4ℏ2t2

m2

[

2ℏt

m

[

x2 + (d− vxt)
2
]

∓
[

mvxx

ℏ
a4 +

4ℏdxt

m

]]

}

(38)

We assume that there is only one pointer, and therefore that the parameter V (or Ξ) is the same
for all pointer particles. The wave function of each pointer particle has a very similar expression,
obtained by substituting z to x, M to m, c to a, V to −vx, and finally cancelling d in (38).

The Bohmian velocities are obtained from the values of the wave functions at the Bohmian
positions x = X, y = Y and zn = Zn. We then obtain:

Ω =
R1

R2
= exp

{

4 (d− vxt)X

a2 + 4 ℏ2t2

m2a2

}

exp

{

N
∑

n=1

4V t Zn

c2 + 4 ℏ2t2

M2c2

}

(39)

as well as:

δS = S1 − S2 = −2

[

mvxX

ℏ
+

4ℏdXt

ma4

]

a4

a4 + 4ℏ2t2

m2

X +
N
∑

n=1

2MV

~

c4

c4 + 4ℏ2t2

M2

Zn (40)

A remarkable property is that, with the Gaussian wave packets we consider, both functions Ω
and S1 − S2 depend on the variables Zn only through their sum Σ:

Σ =

N
∑

n=1

Zn (41)

which is nothing but the position of the center of mass of the pointer multiplied by N . Reference
[29] gives a general discussion of the motion of the center of mass in dBB theory.

For the test particle, the gradients appearing in the velocity are obtained by taking the
derivative of the phase and modulus of (38):

∇xS1,2 =
1

a4 + 4ℏ2t2

m2

[

4
ℏtX

m
∓
(

mvx
ℏ

+
4ℏdt

m

)]

(42)

and:
∇xR1,2

R1,2
= −2

X ∓ (d− vxt)

a2 + 4 ℏ2t2

m2a2

(43)

The velocity of the test particle is therefore a function of X, of the time, and of Σ only through
the Σ dependence of δS and Ω.

For every pointer particle, the gradients are:

∇znS1,2 =
1

c4 + 4ℏ2t2

M2

[

4
ℏtZ

M
∓ MV

ℏ

]

(44)

and:
∇znR1,2

R1,2
= −2

[Zn ∓ V t]

c2 + 4 ℏ2t2

M2c2

(45)
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To obtain the time evolution of Σ, we have to add the velocities of all positions Zn, that is the
values of these gradients for all values of n. Relation (37) then leads to :

d

dt
Σ = VΣ =

c4

c4 + 4ℏ2t2

M2

ℏ

M

[

4ℏt

Mc4
Σ+

Ω2 − 1

1 + Ω2 + 2Ω cos(δS)

MNV

ℏ

+
Ω

1 + Ω2 + 2Ω cos δS
sin(δS) 4

NV t

c2

]

(46)

When the sum of the Zn is replaced by Σ in (39) and (40), all the individual Zn have disappeared
from the equations; a closed system of equations is obtained for the dynamics of X and Σ.

(iii) Change of variables, effective velocity

In (46), the parameters N and V appear only through their product NV , but this is not the
case in (39) and (40). We therefore change variables and set:

Σ = Σ̂
√
N (47)

to obtain:

Ω =
R1

R2
= exp

{

4 (d− vxt)X

a2 + 4 ℏ2t2

m2a2

}

exp

{

4V t
√
N Σ̂

c2 + 4 ℏ2t2

M2c2

}

(48)

as well as:

δS = −2
a4

a4 + 4ℏ2t2

m2

[

mvxX

ℏ
+

4ℏdXt

ma4

]

X +
2MV

√
N

~

c4

c4 + 4ℏ2t2

M2

Σ̂ (49)

Similarly, (46) becomes:

d

dt
Σ̂ =

c4

c4 + 4ℏ2t2

M2

ℏ

M

[

4ℏt

Mc4
Σ̂ +

Ω2 − 1

1 + Ω2 + 2Ω cos(δS)

MV
√
N

ℏ

+
Ω

1 + Ω2 + 2Ω cos δS
sin(δS) 4

V
√
N t

c2

]

(50)

We now obtain a closed system of evolution equations for X and Σ̂ where the parameters N
and V appear only through the product V

√
N . We therefore obtain the same evolution as for

a single pointer particle of position Σ/
√
N , except that the velocity V is multiplied by

√
N . If

N is of the order of 1020, the pointer always behaves as a fast pointer, so that no “surrealistic”
trajectory can occur.
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[1] L. de Broglie, “La mécanique ondulatoire et la structure atomique de la matière et du ray-
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Gauthier-Villars, Paris (1956).

[2] D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables”,
Phys. Rev. 85, 166–179 and 180–193 (1952).

[3] P.R. Holland, The Quantum Theory of Motion, Cambridge University Press (1993).

21



[4] X. Oriols and J. Mompart, “Overview of Bohmian mechanics”, Chapter 1 of Applied

Bohmian mechanics: from nanoscale systems to cosmology, 15-147, Editorial Pan Stan-
ford Publishing Pte. Ltd. (2012) ; arXiv:1206.1084v2 [quant-ph].

[5] J. Bricmont, Making sense of quantum mechanics, Springer (2016).

[6] R.B. Griffiths, “Bohmian mechanics and consistent histories”, Phys. Lett. A 261, 227-234
(1999).

[7] B.G. Englert, M.O. Scully, G. Süssmann, and H. Walther, “Surrealistic Bohm trajectories”,
Z. Naturforschung 47a, 1175–1186 (1992).
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