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ABSTRACT
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High spatial and temporal resolution surface soil moisture is required for

most hydrological and agricultural applications. The recently developed Dis-

PATCh (DISaggregation based on Physical And Theoretical scale Change) al-

gorithm provides 1-km resolution surface soil moisture by downscaling the

40-km SMOS (Soil moisture Ocean Salinity) soil moisture using MODIS

(MODerate-resolution Imaging Spectroradiometer) data. However, the tem-

poral resolution of DisPATCh data is constrained by the temporal resolution

of SMOS (a global coverage every 3 days) and further limited by gaps in

MODIS images due to cloud cover. This paper proposes an approach to over-

come these limitations based on the assimilation of the 1-km resolution Dis-

PATCh data into a simple dynamic soil model forced by (inaccurate) precip-

itation data. The performance of the approach was assessed using ground

measurements of surface soil moisture in the Yanco area in Australia and the

Tensift-Haouz region in Morocco during 2014. It was found that the analyzed

daily 1-km resolution surface soil moisture compared slightly better to in situ

data for all sites than the original disaggregated soil moisture products. Over

the entire year, assimilation increased the correlation coefficient between es-

timated soil moisture and ground measurement from 0.53 to 0.70, whereas

the mean ubRMSE slightly decreased from 0.07 m3 m−3 to 0.06 m3 m−3

compared to the open-loop force-restore model. The proposed assimilation

scheme has significant potential for large scale applications over semi arid ar-

eas, since the method is based on data available at global scale together with

a parsimonious land surface model.
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1. Introduction43

Soil moisture is an important variable of the terrestrial hydrosphere. Whereas precipitation44

provides the amount of available water at the surface, soil moisture impacts the partitioning of45

rainfall into runoff, evaporation and infiltration. Moreover, soil moisture is highly variable in46

space and time, as a result of (1) the alternation between wetting and drying events, and (2)47

the heterogeneity in land cover, topography and soil properties. An accurate and continuous48

description of soil moisture in space and time is therefore critical for understanding the continental49

water cycle and for achieving efficient and sustainable water management (Entekhabi 1995; Gao50

et al. 2014; Rodriguez-Iturbe 2000).51

52

Satellite remote sensing is often the most practical and effective method to observe the land53

surface soil moisture over large geographical areas. The recent Soil Moisture and Ocean Salinity54

(SMOS) mission, launched in 2009, operates at L-band (the optimal microwave band to estimate55

soil moisture (Kerr 2007; Njoku and Entekhabi 1996)) and provides near-surface soil moisture56

(SSM) with a resolution of about 40 km (Kerr et al. 2012). This mission has been complemented57

by the SMAP (Soil Moisture Active Passive) satellite mission launched in 2015; ensuring the58

continuity of L-band passive microwave data for global SSM monitoring (Entekhabi et al. 2010b).59

Recent studies, based on the temporal stability of soil moisture (Vachaud et al. 1985), have shown60

that even coarse scale satellite soil moisture can add a benefit in hydrological modeling (Pauwels61

et al. 2001; Draper et al. 2011; Brocca et al. 2012; Alvarez-Garreton et al. 2015; Chen et al.62

2014; Massari et al. 2015; Lievens et al. 2015b). Nevertheless, the current spatial resolution63

of microwave radiometers is too coarse for most hydrological and agricultural applications.64

Therefore, downscaling methodologies have been developed to improve the spatial resolution of65
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passive microwave-derived SSM data (Das et al. 2014; Fang et al. 2013; Kim and Hogue 2012;66

Merlin et al. 2008a; Piles et al. 2011; Sánchez-Ruiz et al. 2014; Srivastava et al. 2013). For67

example, DisPATCh (DISaggregation based on Physical And Theoretical scale Change) estimates68

the SSM variability within a 40 km resolution SMOS pixel at 1 km resolution using MODIS69

(MODerate-resolution Imaging Spectroradiometer) data (Merlin et al. 2012, 2013). However, the70

temporal resolution of DisPATCh data based on SMOS and MODIS data is limited by 1) gaps71

in MODIS images due to cloud cover, and 2) the 2-3 day temporal resolution of global SMOS72

coverage (Djamai et al. 2016).73

74

A land surface model (LSM) forced by uncertain meteorological inputs and constrained with75

discontinuous disaggregated soil moisture through data assimilation could both address the76

issue of discontinuity in the soil moisture products and as well as improve the SSM estimate.77

Several studies have been undertaken to assimilate the observed satellite brightness temperature78

directly (Crow and Wood 2003; Dumedah et al. 2011; Margulis et al. 2002; Reichle et al. 2007;79

Lievens et al. 2015a, 2017) and/or the satellite SSM retrieval (Reichle et al. 2008; Draper et al.80

2011; Brocca et al. 2012; Dumedah and Walker 2014; Ridler et al. 2014; Kumar et al. 2014;81

Wanders et al. 2014; Lievens et al. 2015b; Leroux et al. 2016) into LSMs. Others studies have82

assimilated coarse scale SSM into a fine land surface models to produce fine model predictions83

and consistently improve soil moisture and other land surface variables (Reichle et al. 2001b,84

2010; Parada and Liang 2004; Pan et al. 2009a,b; De Lannoy et al. 2010, 2012; De Lannoy and85

Reichle 2016; Sahoo et al. 2013; Lievens et al. 2016, 2017). These approaches are based on spatial86

error correlations that are modeled within the assimilation system. Moreover, Djamai et al. (2016)87

estimated SSM at 1 km resolution during cloudy days by combining DisPATCh data and the88

Canadian Land Surface Scheme (CLASS), forced by a 30 km atmospheric re-analysis. However,89
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the SSM DisPATCh estimates were not improved by the combination of DisPATCh and CLASS90

when compared to in situ measurements of the SMAP Validation Experiments data set in 201291

over Winnipeg in Canada. In a similar context, Dumedah et al. (2015) assimilated DisPATCh data92

into the Joint UK Land and Environment Simulator (JULES) to estimate root zone soil moisture93

over the Yanco area in Australia. The assimilation of DisPATCh data into the JULES model had94

a limited positive impact on the SSM estimation accuracy compared to DisPATCh and open-loop95

JULES simulation.96

97

These results demonstrate that data assimilation remains one of the most promising approaches98

to link satellite based SSM with LSMs, while accounting for uncertainties in the observation data99

and the simulated output from the model (Calvet et al. 1998; Entekhabi et al. 1994; Jackson et al.100

1981; Reichle et al. 2001a; Sabater et al. 2007). However, assimilation strategies still need to be101

improved. Two aspects should be addressed when assimilating downscaled SSM data into a LSM:102

1) the number of state variables in the LSM should be consistent with the available observations103

in order to eliminate equifinality (Beven 1989; Franks et al. 1997), and 2) the accuracy in forcing104

data at the application scale. Most of surface models developed since the 80s (Sellers et al. 1986;105

Noilhan and Planton 1989) have a large number of variables which cannot be directly measured106

at the model application scale (Demaria et al. 2007; Franks et al. 1997). As over-parameterization107

is the main limitation for implementation of such complex models in an operational context,108

there is a need to develop simplified modeling approaches that are forced by available remote109

sensing and meteorological data (Allen et al. 1998). A number of studies have shown the potential110

of this approach (Albergel et al. 2008; Ceballos et al. 2005; Pellarin et al. 2006; Wagner et al.111

1999) for representing components of the surface water budget. One of the main issues is that112

large-scale data sets of meteorological variables are currently unavailable at 1 km (or higher)113
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spatial resolution. Nevertheless, a disaggregation/assimilation coupling scheme is potentially114

capable of compensating errors in atmospheric (mainly precipitation) forcing data available at a115

coarse scale only (Merlin et al. 2006).116

117

Within this context, the objective of this study was to develop a new methodology based on118

an assimilation scheme for interpolating DisPATCh SSM in a sub-optimal manner using global119

(meteorological and soil map) datasets. Since DisPATCh is a physically-based method to provide120

natively SSM at 1 km resolution using 1 km resolution MODIS data, the native resolution of the121

DisPATCh SSM products developed is 1 km resolution. The approach was tested using ground122

measurements of soil moisture and precipitation over two semi arid sites: 1) the Yanco area in123

the Murrumbidgee river catchment, Australia and 2) the Tensift-Haouz basin located in central124

Morocco.125

2. Sites description126

a. Yanco: Murrumbidgee catchment (Australia)127

The Murrumbidgee catchment, located in southeastern of Australia, covers about 82,000 km2
128

(34◦S to 37◦S, 143◦E to 150◦E) and is a part of the Murray Darling basin. The Yanco study site129

is a 55 km x 55 km area located in the center of the Murrumbidgee western plains where the130

topography is flat, with very few geological outcropping. The soil texture is predominantly sandy131

loam. The climate is semi-arid, with an average annual precipitation of about 300 mm while132

evaporative demand is about 1,200 mm per year, according to the reference evapotranspiration133

(ET0), derived from the Food and Agriculture Organization (FAO) Penman Monteith equation134

(Allen et al. 1998). The land use in the west of the site comprises irrigation, while elsewhere land135
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use is composed of rain-fed crops and native pasture with scattered trees.136

137

The Yanco region has been intensively monitored for remote sensing studies since 2001 (Smith138

et al. 2012). This area has been selected as a core site for the calibration/validation of the SMOS139

(Peischl et al. 2012), SMAP (Panciera et al. 2014), and GCOM-W1 (Mladenova et al. 2011) mis-140

sions, and has also been the focus of field experiments dedicated to algorithm development studies141

for the SMOS and SMAP missions: National Airborne Field Experiment 2006 (NAFE06; Merlin142

et al. (2008b)); Australian Airborne Cal/Val Experiments for SMOS (AACES-1, -2; Peischl et al.143

(2012)) and Soil Moisture Active Passive Experiments (SMAPex-1, -2, -3; Panciera et al. (2014)).144

To assess the ERA-interim precipitation product, OzNet ground based precipitation measurements145

using tipping bucket rain gauges were used (Smith et al. 2012). These data are available on the146

World Wide Web at http://www.oznet.org.au/. Seven sites presenting the best data quality and147

continuity were selected for this study (Yanco 1, 2, 8, 9, 10, 12 and 13). Table 1 displays the site148

characteristics, and their locations are shown in Fig. 1. These sites are representative of the 3 main149

land uses of the region (Fig. 1): irrigated crops (Yanco 9), rain-fed crops (Yanco 1 and 11; typi-150

cally wheat and fallow), and grazing (Yanco 2, 8, 10, 13; typically perennial grass type vegetation).151

152

Fig. 1153

b. Tensift-Haouz basin (Morocco)154

The Tensift-Haouz basin covers about 24,000 km2 (30.75◦N 32.40◦N and 7.05◦E to 9.9◦W)155

around the city of Marrakech, in central Morocco (Fig. 2). The climate is semi-arid, typically156

Mediterranean, with an average annual precipitation of about 250 mm (Chehbouni et al. 2008)157

concentrated between November and April over the Haouz plain, where the study site is located.158
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Evaporative demand is about 1,600 mm per year.159

160

In the Tensift-Haouz basin, the Sidi Rahal monitoring station was installed on a rain-fed wheat161

field (Fig. 2) in December 2013, in the framework of the Joint International Laboratory TREMA162

(a French acronym for Remote Sensing and Water Resources in the Semi-arid Mediterranean;163

http://trema.ucam.ac.ma; Jarlan et al. (2015)). It is equipped with micro-meteorological instru-164

ments to estimate latent and sensible heat fluxes at the soil-vegetation-atmosphere interface,165

and probes for the measurements of soil water content at different depths. The automatic166

meteorological station installed in the vicinity was equipped with sensors for the measurement167

of rainfall, global radiation, temperature, relative humidity, and wind speed at a half-hourly time168

step. The soil texture is predominantly loams. Information about the monitoring stations is169

provided in Table 1 and Fig. 2.170

171

Fig. 2 and Table 1172

3. Materials and method173

a. Globally available data174

1) SMOS SOIL MOISTURE DATA175

The SMOS level 3 one day global SSM (MIR CLF31A\D, version 7.72 in reprocessing mode176

RE04) product is used in this study as input to DisPATCh algorithm and assimilation scheme.177

These products are presented in NetCDF format on the EASE grid, with a grid spacing of v25178

x 25 km in cylindrical projection. Note that L3 data is a 25 km grid representation of the 40 km179

data. Details on the processing algorithms can be found in the Algorithm Theoretical Baseline180
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Document (Jacquette et al. 2013) and in the Level 3 data product description (Kerr et al. 2014).181

For comparison purpose, the assimilation scheme was applied at 1 km resolution using the non-182

disaggregated (25 km) SMOS L3 data by oversampling the 25-km product.183

2) DISPATCH SOIL MOISTURE DATA184

DisPATCh provided 1 km resolution SSM data from 40 km SMOS SSM and 1 km MODIS185

LST (Land Surface Temperature), MODIS NDVI (Normalized Difference Vegetation Index) and186

GTOPO30 DEM (Digital Elevation Model) data. MODIS-derived soil temperature was used187

to estimate Soil Evaporative Efficiency (SEE), which is known to be relatively constant during188

the day on clear sky conditions (Merlin et al. 2012). MODIS-derived 1 km resolution SEE was189

finally used as a proxy for SSM variability within the low-resolution pixel using a first-order190

series expansion around the SMOS observation. The disaggregated SSM products are expressed191

in m3 m−3. The current version of the DisPATCh methodology is fully described in Molero et al.192

(2016). Note that only ascending SMOS overpass (6 am) was used in this paper.193

194

The DisPATCh product was derived from the average of an output ensemble for each SMOS195

overpass time. This output ensemble was obtained by applying DisPATCh to 1) four SMOS196

re-sampling grids by taking advantage of the Level 3 SMOS data oversampling, 2) three MODIS197

overpass dates by taking into account the MODIS data collected within plus or minus one day198

around the SMOS overpass, and 3) two daily MODIS observations aboard Terra and Aqua.199

The number of elements used to compute this average (a maximum of 24 elements per SMOS200

overpass) is called the DisPATCh count. Note that the DisPATCh count is often smaller than 24201

due to gaps in MODIS data associated with cloud cover and/or limited overlap with the SMOS202

swath. The error of the DisPATCh product is taken as the standard deviation from the output203
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ensemble computing. This error accounts for the downscaling and retrieval errors (more details in204

Merlin et al. (2012); Malbéteau et al. (2016)).205

206

DisPATCh outputs have been validated mostly in semi-arid conditions where SEE is well con-207

strained by the SSM: the Murrumbidgee catchment in Australia (Bandara et al. 2015; Malbéteau208

et al. 2016; Molero et al. 2016), the Little Washita watershed in Oklahoma, Walnut Gulch in Ari-209

zona over USA (Molero et al. 2016), the Tensift-Haouz basin in central Morocco (Merlin et al.210

2015) and the Lleida area in Spain (Escorihuela and Quintana-Seguı́ 2016; Merlin et al. 2013).211

3) VEGETATION INDEX212

In order to estimate evapotranspiration, the vegetation cover (fv) was derived from the 1 km213

resolution MODIS NDVI data. The NDVI dataset was extracted from the version-5 MODIS/214

Terra vegetation indices 16-day Level-3 global 1-km grid product (MOD13A2). Fractional fv was215

computed using the linear relationship between NDVI of the fully-covered vegetation and NDVI216

of the bare soil proposed by Gutman and Ignatov (1998).217

4) METEOROLOGICAL DATASET218

The ECMWFs (European Centre for Medium-Range Weather Forecasts) Interim re-analysis219

product (ERA-interim; Dee et al. (2011)) was used for meteorological (relative humidity, air220

temperature, wind speed, pressure, shortwave and longwave radiations and precipitation) forc-221

ing. ERA-Interim is produced at the highest resolution of about 0.125◦ with a 3-hourly time222

step covering the period from January 1979 to present, with product updates at approximately223

1 month behind real-time. This study used the ERA-interim datasets provided daily at 0.125◦224

spatial resolution. Note that the product is generated at a much coarser resolution (a spectral225
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T255 horizontal resolution, which corresponds to approximately 79 km spacing grid) and then226

mapped to 0.125◦. The ERA-Interim atmospheric re-analysis is built upon a consistent assimila-227

tion of an extensive set of observations distributed worldwide from satellite remote sensing, in situ228

measurements, and radio-sounding. ERA-Interim data sets are free of charge and available via:229

www.ecmwf.int/en/research/climate-reanalysis/era-interim. The environmental parameters simu-230

lated by ERA-Interim have been widely validated by in situ and remote sensing observations at231

different spatio-temporal scales (Balsamo et al. 2015; Bao and Zhang 2013; Boisvert et al. 2015;232

Mooney et al. 2011; Su et al. 2013; Szczypta et al. 2011; Wang and Zeng 2012). Several stud-233

ies (Belo-Pereira et al. 2011; Pfeifroth et al. 2013; Szczypta et al. 2011; Zhang et al. 2013) have234

reported an overestimation of ECMWF precipitation data, but Balsamo et al. (2010) have shown235

that the original ERA-Interim products have reasonable skill for land applications at time scales236

from daily to annual over the conterminous US. The total annual amount and daily distribution of237

ECMWF precipitation is compared to meteorological stations in this study for the two test sites.238

5) GLOBAL SOIL TEXTURE239

The relative amounts of bound and free water are influenced by the soil texture (sand, clay and240

silt fractions) and bulk density. The map used for this study was a 0.01◦ resolution combination of241

the soil maps (Kim 2013) from 1) FAO (Food and Agriculture Organization) and 2) HWSD (Har-242

monized World Soil Database), and the regional datasets 1) STATSGO (State Soil GeographicUS),243

2) NSDC (National Soil Database Canada), and 3) ASRIS (Australian Soil Resources Information244

System). Note that this soil texture map is used by both SMOS (Kerr et al. 2012) and SMAP245

(Entekhabi et al. 2010b) level 2 SSM retrieval algorithms.246
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b. Land surface model (LSM)247

In an effort to reduce as much as possible the number of model parameters, while attempting248

to preserve the representation of the physics which controls the SSM dynamics, the LSM used in249

this study was based on the force-restore method developed by Deardorff (1977). This scheme is250

used in many LSMs including ISBA (Interactions between Soil Biosphere Atmosphere; Noilhan251

and Planton (1989)). The force-restore method appears to be a good tradeoff between realism252

(physics) and complexity (number of parameters) for calibration over large areas. In this semi-253

physical model, the dynamics of soil moisture is described within two layers: the SSM (noted Θ1)254

and the root zone soil moisture (noted Θ2). In this study, only the SSM dynamics were simulated255

with the root-zone soil moisture taken as a buffer variable to minimize possible biases between256

DisPATCh SSM and the force restore prediction for compensating errors in meteorological (mainly257

precipitation and irrigation) forcing data. The equation for SSM is:258

∂Θ1

∂ t
=

C1

ρwd1
(P−Eg)−

C2

τ
(Θ1−Θeq), (1)

with Θeq the equilibrium soil moisture, P the ERA-interim precipitation reaching the soil surface,259

Eg the evaporation at the soil surface, ρw the density of liquid water, τ the time constant taken as260

one day and d1 an arbitrary normalization depth of 10 cm. C1 and C2 are empirical parameters261

named force and restore coefficients, respectively representing the process of mass exchange be-262

tween the soil and the atmosphere, and the surface and the root-zone layer, respectively. The force263

and restore coefficients C1 and C2 are dimensionless and highly dependent upon both the soil mois-264

ture content and the soil texture. Note that coefficients C1 and C2 are spatially distributed based on265

Noilhan and Mahfouf (1996) and vary over time. They were calibrated against a multi-layer soil266

moisture model (Noilhan and Mahfouf 1996) such that267
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C1 =C1sat

(
Θsat

Θ1

)( β

2 +1)

, (2)

C2 =C2re f

(
Θ2

Θsat−Θ2 +Θl

)
, (3)

with Θsat being the saturated soil moisture for a given texture, β the slope of the retention curve,268

C1sat and C1re f hydraulic parameters and Θl a small numerical value equal to 0.001. Each pa-269

rameter was estimated from clay/sand fractions and default empirical parameters (equations are270

detailed in Noilhan and Mahfouf (1996)). Eg in equation 1 is expressed as in Allen (2000) and271

Allen et al. (2005) by272

Eg = ET0×Ke, (4)

with ET0 being the reference evapotranspiration estimated according to the FAO Penman-Monteith273

equation (Allen et al. 1998) and the ERA-interim meteorological forcing data (relative humidity,274

air temperature, wind speed, pressure, shortwave and longwave radiations). Ke the soil evaporation275

coefficient computed from276

Ke = (1− fv)Kr, (5)

with Kr the soil evaporation reduction coefficient derived from the SSM. Soil evaporation from277

the exposed soil was assumed to take place in two stages: an energy limiting stage and a falling278

rate stage. After rain, evaporation was only determined by the energy available for evaporation,279

thus Kr was set to 1; then when the soil surface dried out, Kr decreased linearly and evaporation280

was reduced. Kr was equal to zero when no significant water was left for evaporation, being when281
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SSM was smaller than 1
2Θwp (where Θwp was the soil moisture at wilting point) as reported by282

Allen et al. (1998).283

c. Assimilation scheme: A combined 2D variational and sequential approach284

The purpose of assimilating DisPATCh data into a LSM was to combine the downscaled snap-285

shots of DisPATCh SSM with the continuous LSM predictions, in order to obtain the best estimate286

of the SSM at 1 km every day. The simplified two-dimensional variational (2D VAR) method de-287

veloped by Balsamo et al. (2004) to analyze the root-zone soil moisture (as a buffer variable) was288

combined to a simplified Kalman filter approach to update the SSM state. The relation between289

surface and root-zone soil moisture is not physically based with the force-restore scheme. For that290

reason a linear variational algorithm may not be well suited for updating surface soil moisture by291

contrast with the root-zone. Moreover, the sequential approach is able to update the potentially292

rapid changes related to irrigation that are not represented by the LSM but are observed in Dis-293

PATCh data. Thus, the two-scheme procedure has the advantage to consider the two temporal294

dynamics, being (rapid) surface and (slow) root-zone soil moisture.295

The 2D VAR method was initially designed to analyze the root zone soil moisture using 2 m296

air temperature and humidity observations (Balsamo et al. 2004). It has been adapted by Sabater297

et al. (2007) to analyze the root zone soil moisture from SSM observations, and to the analysis of298

both above ground biomass and root zone soil moisture by Sabater et al. (2008). The simplified299

2D VAR has also been applied to the analysis of above-ground biomass from satellite-derived leaf300

area index products over West Africa (Jarlan et al. 2008). In the present study, Θ2 was taken as301

a buffer variable without any dynamic equation. Stated differently, this variable was left free to302

adjust the model prediction to DisPATCh SSM through the simplified 2DVAR approach. This first303
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step of the assimilation algorithm was necessary to represent SSM dynamics with consistency to304

the restore parameter. The analyzed state is given by:305

Θ
a = Θ

b +K(y−HΘ
b), (6)

where the superscripts a and b indicate the analysis and background, respectively; y is the Dis-306

PATCh SSM and H is the observation operator that allows the projection of the state vector in307

the observation space. In the 2D VAR approach, H is computed from a one side finite difference,308

while H is equal to 1 in the sequential approach. The SSM update step is close to that of the309

Kalman filter, but the propagation of the background error matrix was avoided here for simplicity310

purpose. K is called the gain and is calculated as:311

K = BHT (HBHT +R)−1, (7)

where B and R are the covariance matrices of the background and SSM observations errors, re-312

spectively. R is scalar values equal to σobs (DisPATCh error). B is calculated as313

B =

 σΘ2 0

0 σΘ1

 (8)

with σΘ1 is Θ1 background error and σΘ2 is Θ2 background error.314

Considering a 1-day assimilation window, H equals to :315

H =

 ∆Θ1(t)
∆Θ2(t−1) 0

0 1

 (9)

1) IMPLEMENTING AND EVALUATING THE DATA ASSIMILATION ALGORITHM316

(i) Background error covariance matrix317

The parameters B, P and R determine the relative weight given to the background, forecast318
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and to the observations covariance, respectively, while σobs corresponds to the observation319

(DisPATCh) error (see section DisPATCh soil moisture data). Observation errors are correlated320

in space. An accurate estimation of the background error is likely to be the most difficult task321

in the error prescription (Bouttier 1994; Reichle et al. 2002). Thus, a sensitivity analysis to322

background error on SSM and root zone soil moisture was carried out; a set of σΘ1 and σΘ2 were323

compared in order to estimate both background errors since there is no propagation equation of324

the background error covariance matrix using variational assimilation. In practice, an ensemble of325

10 perturbations from 0.02 to 0.1 m3 m−3 was built for both the background error terms and the326

global statistics (correlation coefficient r, Root Mean Square Error RMSE, and mean bias) were327

computed based on the analyzed and in situ SSM comparison. Results of the sensitivity study are328

displayed in Fig. 3. The optimal choices obtained from this sensitivity study were about 0.04329

m3 m−3 and 0.09 m3 m−3 for σΘ1 and σΘ2 , respectively. Note that the same sensitivity study330

has been performed at 25 km, and the optimal choices obtained are 0.05 m3 m−3 and 0.06 m3
331

m−3 for σΘ1 and σΘ2 , respectively. Nevertheless, the range of bias and RMSE were low (about332

0.009 m3 m−3) for the whole range of potential values. This means that the sensitivity analysis333

for both background errors presented limited choices. Interestingly, a Θ1 background error lower334

than that of Θ2 seems also consistent with the objective of the study, since Θ2 was considered as a335

buffer variable to minimize biases on Θ1. Finally, this quite low value of background error on Θ1336

was also certainly to be attributed to the good quality of ERA-interim data, which were the main337

forcing of the Θ1 dynamics. Based on this analysis, the sub-optimal values of background error338

were chosen for the implementation of the data assimilation algorithm.339

340

Fig. 3341
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(ii) Statistical metrics342

It was important to assess the performance of the method, not only in terms of linear dependency343

and error, but also in terms of relative variability of the original and updated dataset. Therefore, r,344

RMSE, ubRMSE (unbiased-RMSE) and the mean bias were used to fully assess the accuracy345

of SSM (Entekhabi et al. 2010a). Moreover, a new metric called the Gain of DOWNscaling346

(GDOWN), introduced by Merlin et al. (2015), was also used. The gain is a measure of the347

statistical improvement dedicated to disaggregated SM products. The gain can range from -1 to348

1, where positive values indicate better correspondence with in situ than low resolution products349

such as SMOS data. One key advantage of GDOWN, with regards to other performance metrics,350

is to provide an estimate of the overall improvement in soil moisture data with a single value.351

4. Results and discussion352

The DisPATCh/assimilation approach has been run over the entire year 2014 for both areas353

(Yanco in Australia and Tensift-Haouz in Morocco). First, ERA-interim precipitation products354

were assessed and validated using ground measurements. After, the analyzed SSM was evaluated355

at the time of DisPATCh availability. Finally, the analyzed SSM was assessed for the entire year356

datasets.357

a. ERA-interim precipitation assessment358

Although the assimilation scheme can compensate error on precipitation input data, a good359

agreement of ERA-Interim with ground rainfall in term of frequency (instead of quantity)360

is preferable to update the SSM state on a daily basis. A preliminary comparison between361

ERA-interim precipitation and the station data showed that ERA-interim presented too frequent362

low rainfall events (between 0.1 and 3 mm/day). This has already been observed by Ibrahim et al.363
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(2012) and Diaconescu et al. (2015) over another semi-arid region in the West African Sahel. The364

general overestimation of wet days is due to the fact that precipitation in reanalyses is mainly365

model generated, and therefore highly related to forecast-model physical parameterizations366

(surface pressure, temperature and wind). In this study, the precipitation values during low rainfall367

events (< 3 mm/day) were set to zero (Ibrahim et al. 2012; Diaconescu et al. 2015). After this368

pre-procesing, ERA-interim precipitation were in better agreement with local station data (not369

shown). The daily ERA-interim precipitations were compared to the in situ data using 24-h370

accumulation from the raw 30 minutes observations. Fig. 4 and Table 2 reported the annual371

amounts and differences between the two precipitation data sets for each site. With an average372

bias of 27 mm/year and a r of 0.48, ERA-interim annual amounts matched quite well the in situ373

observations considering the large resolution of ERA-interim data and the high spatial variability374

of precipitation in semi-arid regions. Apart from sites Yanco 10 and Sidi Rahal, biases remained375

below 40 mm/year. Fig. 4 and Table 2 showed also that timing was well reproduced at ± 1 day,376

based on the correlation coefficient value when using a 3-days accumulated precipitation. For377

instance, daily ERA-interim precipitations at the Sidi Rahal site were really well correlated (r of378

0.93) with the ground measurements. Regarding Yanco 10 site, the daily r was low; however it379

increased greatly using the 3-days accumulated precipitation (from 0.18 to 0.51). These results380

were similar to results found in Balsamo et al. (2010). In particular, none of the big storms events381

recorded by the local stations were missed by ERA-interim. Both timing and event amount were382

particularly well reproduced on Yanco 1 and 2. Two anomalies were noted at the Sidi Rahal site:383

the ERA-interim precipitation was underestimated compared with in situ observations, whereas384

the ERA-interim precipitation was overestimated at Yanco 10 station. For both sites, all events385

were well detected but the amounts of water were under and overestimated for Sidi Rahal and386

Yanco 10 sites, respectively. On average, ERA-interim precipitation data compared quite well387
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with in situ stations apart from moderated biases. The ERA-interim data set was thus used388

in the data assimilation algorithm in order to evaluate the performance of the approach when389

precipitation data are inaccurate, which is a very likely situation when no meteorological station390

is available.391

392

Fig. 4 and Table 2393

b. Assimilation results394

Herein, the performance of the approach was assessed by comparing SMOS, DisPATCh, open395

loop and analyzed SSM with in situ measurements at the time of DisPATCh availability, in396

order to check if the analyzed SSM shows an improvement with regards to disaggregated SSM.397

All statistics were estimated on a yearly basis to evaluate the capability of a dynamical model398

to interpolate and, potentially, to improve DisPATCh SSM data. Table 3 showed the yearly399

statistics for each monitoring station and the number of comparison days. In this section, the400

number of days used was strongly dependent on the number of SMOS overpasses and cloud401

coverage. When comparing the statistics obtained over both areas, it was observed that the402

disaggregation and the assimilation scheme reduced bias by approximately 0.02 m3 m−3, while403

r was systematically higher after data assimilation. The disaggregation at 1 km (DisPATCh)404

has the advantage to produce SSM at a spatial resolution closer to the representativeness scale405

of ground measurements; it has been shown that this reduces the bias (Malbéteau et al. 2016).406

The mean r over the Yanco area rose from 0.62 to 0.77 after disaggregation and up to 0.80 after407

application of the assimilation scheme. Regarding Yanco 2, r improved from 0.69 to 0.79; bias408

reduced from 0.03 to 0.01 m3 m−3 and ubRMSE decreased from 0.07 to 0.05 m3 m−3. Similar409

results were observed for Sidi Rahal as r increased from 0.82 to 0.87 after assimilation while410
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bias was closer to 0, and ubRMSE decreased slightly from 0.05 to 0.04 m3 m−3. Across all411

sites, the assimilation scheme does not improve significantly SSM in terms of statistics when412

using a limited (DiPATCh) time series for validation. Differences can be appreciated more easily413

through qualitative inspection of scatter plots. Sidi Rahal (Fig. 5b), Yanco 9 (Fig. 6b) and414

Yanco 10 (Fig. 7b) illustrate the Table 3 results. In these three plots, the analyzed distribu-415

tion appears closer and more symmetric around the 1:1 line than for both DisPATCh and open loop.416

417

As illustrated in Table 4, GDOWN was approximately equal for both the disaggregated and the418

analyzed data. Moreover the only site with negative values (meaning that SMOS shows better419

results) was Yanco 12, because DisPATCh and the analyzed SSM had a larger mean bias than420

SMOS (Table 3). However, r was slightly improved after assimilation, which means that the SSM421

dynamics were better represented. Yanco 2 was the site with the best enhanced GDOWN, with422

values going from 0.35 to 0.53 before and after assimilation, respectively. This was mainly due423

to a large improvement of r (from 0.47 to 0.79) and of the bias (from -0.03 m3 m−3 to -0.01 m3
424

m−3). The assimilation scheme was also compared to the open loop estimates using the same425

statistics (Table 3). The assimilation clearly outperformed the open-loop prediction at the time of426

DisPATCh availability.427

428

As a summary, this new approach improved the r values and also reduced the ubRMSE with429

regards to either the satellite observations or the model open loop, indicating that the assimilation430

has the capability to improve the SSM estimates over the model results or DisPATCh alone.431

432

Table 3, Table 4, Fig. 5, Fig. 6 and Fig. 7433
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c. Soil moisture analysis434

In order to assess the potential of using the force-restore model and the assimilation scheme for435

infilling disaggregated SSM, a conventional validation strategy was adopted, by comparing the436

analyzed and in situ SSM datasets for the full time series. This strategy was useful to characterize437

the overall quality of the analyzed SSM over both areas. The open loop estimate of SSM438

estimates determined from the force restore-model forced by ERA-interim were also computed439

for comparison purposes, along with the assimilation scheme applied to the original SMOS L3440

product. This comparison evaluated the contribution of fine (instead of coarse) resolution soil441

moisture data. Table 5 displays temporal statistics for open loop, analyzed 25 km and analyzed442

1 km SSM estimates for all in situ stations. Overall results showed that r was about 0.7, while443

mean bias was equal to 0.03 m3 m−3 and ubRMSE was 0.06 m3 m−3 for the analyzed SSM444

estimates. The r values were found to be systematically higher after assimilation, whereas bias,445

RMSE and ubRMSE were equivalent for both data sets. Regarding Sidi Rahal station (Fig. 5446

and Table 5), r after data assimilation was about 0.83, while bias was close to 0.01 m3 m−3 and447

the ubRMSE was around 0.06 m3 m−3. The time series exhibited the dominant seasonal cycle448

very well and showed a similar dynamical response to precipitation events. Comparison between449

analyzed 25 km and 1 km statistics showed that DisPATCh SSM improved results for all sites,450

even though the original SMOS L3 data had a larger temporal repetition. In others words, the451

spatial information provided by DisPATCh provide superior assimilation results despite the data452

gaps associated with cloud coverage over the study sites. Figs. 6 and 7 illustrate time series for453

two sites in the Yanco area. Regarding Yanco 10 (Fig. 7a), data assimilation enhanced r from454

0.47 to 0.70, whereas the bias was larger by approximately 0.01 m3 m−3. The open loop SSM455

estimates showed a threshold for dry conditions at around 0.1 m3 m−3 due to Θ2 being forced456
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to 0.1 m3 m−3 by lack of information. The analyzed SSM was not constrained any more by this457

artificial threshold. This demonstrated the importance of the analysis of Θ2 for a correct estimate458

of Θ1. Interestingly, the best improvement was observed for the irrigated site Yanco 9 (Fig. 6a)459

where precipitation was supplemented by irrigation inputs that were not taken into account in the460

model run. Consequently, the assimilation of DisPATCh data improved r (from 0.42 to 0.74),461

while bias, RMSE and ubRMSE were similarly compared to open loop results. The time series462

in Fig. 6a showed water input events at day 140 and day 325 (for example) that were certainly463

due to irrigation. Thus this approach could be used to detect and retrieve irrigation information464

that is very difficult to obtain over large areas on a daily basis. This information is requested465

by managers to monitor and control irrigation, especially for the monitoring of groundwater (Le466

Page et al. 2012).467

468

The coupled scheme has the advantage of combining the spatial (but static) information469

provided by DisPATCh data with the temporal (but mono-dimensional) information provided by470

the force-restore scheme, in order to get SSM estimates every day at 1 km (Merlin et al. 2006).471

Fig. 8 and Fig. 9 showed the temporal average of SSM during one year over the Yanco area and472

the Tensift-Haouz basin, respectively. The irrigated areas are indicated for comparison purposes.473

Regarding the Australian case study, the Murrumbidgee river banks and irrigated areas appeared474

wetter than the dry grassland. The wet area located in the south of the study area is the floodplain475

of the Yanco Creek System, which is a tributary of the Murrumbidgee River downstream of476

Narrandera, flowing south-west. Over the Tensift-Haouz basin, the wetter pixels were mainly477

located in the irrigated areas. Nevertheless, it is important to keep in mind that the irrigated areas478

indicated may be inaccurate since many boreholes have been dug since the beginning of the479

2000s, and they are neither registered nor monitored. A wet zone was also shown in the south480
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east of the study area. This region corresponds to the Atlas Mountain and its piedmont. A large481

amount of water in the piedmont is provided by the water from Atlas snowmelt (Boudhar et al.482

2009). However, it is necessary to note that DisPATCh data may be unreliable in mountainous483

areas as the illumination effect on LST can be significant in steep-sided valleys (Malbéteau et al.484

2017), and no correction for such effects has been included in DisPATCh yet (Molero et al.485

2016). Note that the disaggregation images (fig. 8 and 9) present a slight boxy artifact at low486

(SMOS) resolution. Such an artifact is typical of downscaling methods like DisPATCh that apply487

a conservation law at low resolution (meaning that the average of disaggregated SM at SMOS488

resolution is set to SMOS observation).489

490

Table 5, Fig. 8 and Fig. 9491

492

As a summary, the proposed downscaling/assimilation scheme showed systematically higher493

r values with regards to the open loop and with regards to DisPATCh alone, indicating that the494

dynamic of the SSM at a daily time scale has been improved. The maps of yearly average SSM495

were consistent with the main hydrological characteristics of both catchment (rivers, wetlands and496

irrigated areas). This opens perspectives for the retrieval of irrigation water inputs.497

5. Conclusion498

The DisPATCh algorithm has been developed to improve the spatial resolution of readily499

available passive microwave-derived SSM data that is too coarse for many hydrological and500

agricultural applications. However, the temporal resolution of DisPATCh data based on SMOS501

and MODIS data is limited by the data gaps in MODIS images due to cloud cover, and by the502

temporal resolution of SMOS. This paper evaluated the potential of assimilating DisPATCh data503
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into the force-restore soil moisture model, forced by the ERA-interim precipitation data in order504

to obtain daily SSM at 1 km resolution. A variational scheme was used for root-zone soil moisture505

analysis taken as a buffer variable, together with a sequential approach for the update of SSM.506

The approach was tested during a one year period (2014) over two semi arid regions: 1) the Yanco507

zone in Australia and 2) the Tensift-Haouz basin in Morocco.508

509

The performance of the data assimilation was first evaluated at the time of DisPATCh availabil-510

ity in order to check if the analyzed SSM showed an improvement with regards to the original511

products. Results showed that the analyzed SSM series were closer to the in situ measurement512

than DisPATCh (1 km resolution), model open loop (12.5 km resolution) and L3 SMOS SSM513

estimates (25 km resolution). The temporal statistics, when DisPATCh data were available,514

indicate an increase of r from 0.61 to 0.77 for downscaled data and up to 0.81 after assimilation.515

The bias was also reduced from 0.04 to 0.02 m3 m−3 after downscaling, and ubRMSE decreased516

from 0.07 to 0.06 m3 m−3 after assimilation of DisPATCh. The second step consisted in evaluating517

the analyzed SSM for the full time-series in order to assess the potential of interpolating SSM518

when the DisPATCh data was not available. The assimilation of DisPATCh data into the simple519

LSM improved quasi systematically the dynamic of the SSM with respect to the open-loop,520

as evidenced by enhanced r (from 0.53 to 0.70) and ubRMSE (from 0.07 to 0.06 m3 m−3).521

These results showed that the disaggregated SSM was able to improve the representation of the522

surface processes occurring at both fine and coarse scales, even when coarse scale and inaccurate523

meteorological data including rainfall were used. These results corroborate the study of Merlin524

et al. (2006), based on synthetic data showing that assimilation of a SSM downscaled product525

can compensate error on precipitation input data for the monitoring of SSM. Another interesting526

result was that the maps of yearly average SSM were consistent with the main hydrological char-527
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acteristics of both catchment (rivers, wetlands and irrigated areas). As future work, this approach528

will be applied and evaluated using the entire time series of SMOS/DisPATCh (6 years) to capture529

the inter-annual variability, and on other validation sites covering different eco-climatic conditions.530

531

This study opens perspectives for developing new remote sensing-based methods in order to532

retrieve irrigation water inputs at 1 km resolution, and/or to improve precipitation estimates. In533

particular, several studies have been undertaken to estimate and/or improve precipitation estimates534

based on remotely sensed coarse-scale SSM (Brocca et al. 2013, 2014; Pellarin et al. 2008, 2013).535

A continuous SSM data in space and time could allow the disaggregation of coarse-scale pre-536

cipitation data from re-analysis data sets at 1 km resolution for hydrological and agronomical537

applications. Likewise, 1 km daily irrigation input data set could help improve knowledge on how538

water is used for irrigation purposes.539
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Bandara, R., J. P. Walker, C. Rüdiger, and O. Merlin, 2015: Towards soil property retrieval from574

space: An application with disaggregated satellite observations. Journal of Hydrology, 522,575

582–593, doi:10.1016/j.jhydrol.2015.01.018.576

Bao, X., and F. Zhang, 2013: Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-577

40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Jour-578

nal of Climate, 26 (1), 206–214, doi:10.1175/JCLI-D-12-00056.1.579

Belo-Pereira, M., E. Dutra, and P. Viterbo, 2011: Evaluation of global precipitation data sets580

over the Iberian Peninsula. Journal of Geophysical Research, 116 (D20), D20 101, doi:10.1029/581

2010JD015481.582

Beven, K., 1989: Changing ideas in hydrology - The case of physically-based models. Journal of583

Hydrology, 105 (1-2), 157–172, doi:10.1016/0022-1694(89)90101-7, arXiv:1011.1669v3.584

Boisvert, L. N., D. L. Wu, T. Vihma, and J. Susskind, 2015: Verification of air/surface humidity585

differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic.586

Journal of Geophysical Research: Atmospheres, 120 (3), 945–963, doi:10.1002/2014JD021666.587

Boudhar, A., L. Hanich, G. Boulet, B. Duchemin, B. Berjamy, and A. Chehbouni, 2009: Eval-588

uation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two589

snow-cover estimates. Hydrological Sciences Journal, 54 (March 2015), 1094–1113, doi:590

10.1623/hysj.54.6.1094.591

29



Bouttier, F., 1994: A Dynamical Estimation of Forecast Error Covariances in an Assimilation Sys-592

tem. Monthly Weather Review, 122 (10), 2376–2390, doi:10.1175/1520-0493(1994)122〈2376:593

ADEOFE〉2.0.CO;2.594

Brocca, L., T. Moramarco, F. Melone, and W. Wagner, 2013: A new method for rainfall estimation595

through soil moisture observations. Geophysical Research Letters, 40 (5), 853–858, doi:10.596

1002/grl.50173, 1403.6496.597

Brocca, L., T. Moramarco, F. Melone, W. Wagner, S. Hasenauer, and S. Hahn, 2012: Assimilation598

of surface- and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE599

Transactions on Geoscience and Remote Sensing, 50 (7 PART1), 2542–2555, doi:10.1109/600

TGRS.2011.2177468.601

Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from602

satellite soil moisture data. Journal of Geophysical Research: Atmospheres, 119 (9), 5128–603

5141, doi:10.1002/2014JD021489.604

Calvet, J.-C., J. Noilhan, and P. Bessemoulin, 1998: Retrieving the Root-Zone Soil Moisture from605

Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Mea-606

surements. Journal of Applied Meteorology, 37 (4), 371–386, doi:10.1175/1520-0450(1998)607

037〈0371:RTRZSM〉2.0.CO;2.608

Ceballos, A., K. Scipal, W. Wagner, and J. Martı́nez-Fernández, 2005: Validation of ERS609

scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydro-610

logical Processes, 19 (8), 1549–1566, doi:10.1002/hyp.5585.611

Chehbouni, A., and Coauthors, 2008: An integrated modelling and remote sensing approach for612

hydrological study in arid and semiarid regions: the SUDMED Programme. International Jour-613

30



nal of Remote Sensing, 29 (17-18), 5161–5181, doi:10.1080/01431160802036417.614

Chen, F., W. T. Crow, and D. Ryu, 2014: Dual Forcing and State Correction via Soil Moisture As-615

similation for Improved RainfallRunoff Modeling. Journal of Hydrometeorology, 15 (5), 1832–616

1848, doi:10.1175/JHM-D-14-0002.1.617

Crow, W. T., and E. F. Wood, 2003: The assimilation of remotely sensed soil brightness tem-618

perature imagery into a land surface model using Ensemble Kalman filtering: A case study619

based on ESTAR measurements during SGP97. Advances in Water Resources, 26 (2), 137–149,620

doi:10.1016/S0309-1708(02)00088-X.621

Das, N. N., D. Entekhabi, E. G. Njoku, J. J. C. Shi, J. T. Johnson, and A. Colliander, 2014: Tests622

of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Ob-623

servations and Simulated Data. IEEE Transactions on Geoscience and Remote Sensing, 52 (4),624

2018–2028, doi:10.1109/TGRS.2013.2257605.625

De Lannoy, G. J. M., and R. H. Reichle, 2016: Assimilation of SMOS brightness temperatures626

or soil moisture retrievals into a land surface model. Hydrology and Earth System Sciences,627

20 (12), 4895–4911, doi:10.5194/hess-20-4895-2016.628

De Lannoy, G. J. M., R. H. Reichle, K. R. Arsenault, P. R. Houser, S. Kumar, N. E. C. Verhoest, and629

V. R. N. Pauwels, 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer-630

EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover631

fraction observations in northern Colorado. Water Resources Research, 48 (1), doi:10.1029/632

2011WR010588, URL http://doi.wiley.com/10.1029/2011WR010588.633

De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, K. R. Arsenault, N. E. C. Verhoest,634

and V. R. N. Pauwels, 2010: Satellite-Scale Snow Water Equivalent Assimilation into a635

31



High-Resolution Land Surface Model. Journal of Hydrometeorology, 11 (2), 352–369, doi:636

10.1175/2009JHM1192.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2009JHM1192.1.637

Deardorff, J. W., 1977: A Parameterization of Ground-Surface Moisture Content for Use in638

Atmospheric Prediction Models. Journal of Applied Meteorology, 16 (11), 1182–1185, doi:639

10.1175/1520-0450(1977)016〈1182:APOGSM〉2.0.CO;2.640

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of641

the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 (656),642

553–597, doi:10.1002/qj.828.643

Demaria, E. M., B. Nijssen, and T. Wagener, 2007: Monte Carlo sensitivity analysis of land surface644

parameters using the Variable Infiltration Capacity model. Journal of Geophysical Research,645

112 (D11), D11 113, doi:10.1029/2006JD007534.646

Diaconescu, E. P., P. Gachon, J. Scinocca, and R. Laprise, 2015: Evaluation of daily precipitation647

statistics and monsoon onset/retreat over western Sahel in multiple data sets. Climate Dynamics,648

45 (5-6), 1325–1354, doi:10.1007/s00382-014-2383-2.649

Djamai, N., R. Magagi, K. Goı̈ta, O. Merlin, Y. Kerr, and A. Roy, 2016: A combination of650

DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture es-651

timation at fine scale during cloudy days. Remote Sensing of Environment, 184, 1–14, doi:652

10.1016/j.rse.2016.06.010.653

Draper, C., J. F. Mahfouf, J. C. Calvet, E. Martin, and W. Wagner, 2011: Assimilation of ASCAT654

near-surface soil moisture into the SIM hydrological model over France. Hydrology and Earth655

System Sciences, 15 (12), 3829–3841, doi:10.5194/hess-15-3829-2011.656

32



Dumedah, G., A. A. Berg, and M. Wineberg, 2011: An Integrated Framework for a Joint Assimila-657

tion of Brightness Temperature and Soil Moisture Using the Nondominated Sorting Genetic Al-658

gorithm II. Journal of Hydrometeorology, 12 (6), 1596–1609, doi:10.1175/JHM-D-10-05029.1.659

Dumedah, G., and J. P. Walker, 2014: Evaluation of Model Parameter Convergence when Using660

Data Assimilation for Soil Moisture Estimation. Journal of Hydrometeorology, 15 (1), 359–375,661

doi:10.1175/JHM-D-12-0175.1.662

Dumedah, G., J. P. Walker, and O. Merlin, 2015: Root-zone soil moisture estimation from assimi-663

lation of downscaled Soil Moisture and Ocean Salinity data. Advances in Water Resources, 84,664

14–22, doi:10.1016/j.advwatres.2015.07.021.665

Entekhabi, D., 1995: Recent advances in land-atmosphere interaction research. Reviews of Geo-666

physics, 33 (95), 995, doi:10.1029/95RG01163.667

Entekhabi, D., H. Nakamura, and E. Njoku, 1994: Solving the inverse problem for soil mois-668

ture and temperature profiles by sequential assimilation of multifrequency remotely sensed669

observations. IEEE Transactions on Geoscience and Remote Sensing, 32 (2), 438–448, doi:670

10.1109/36.295058.671

Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, 2010a: Performance Metrics for672

Soil Moisture Retrievals and Application Requirements. Journal of Hydrometeorology, 11 (3),673

832–840, doi:10.1175/2010JHM1223.1.674

Entekhabi, D., and Coauthors, 2010b: The Soil Moisture Active Passive (SMAP) Mission. Pro-675

ceedings of the IEEE, 98 (5), 704–716, doi:10.1109/JPROC.2010.2043918.676

33



Escorihuela, M. J., and P. Quintana-Seguı́, 2016: Comparison of remote sensing and simulated soil677

moisture datasets in Mediterranean landscapes. Remote Sensing of Environment, 180, 99–114,678

doi:10.1016/j.rse.2016.02.046.679

Fang, B., V. Lakshmi, R. Bindlish, T. J. Jackson, M. Cosh, and J. Basara, 2013: Passive Microwave680

Soil Moisture Downscaling Using Vegetation Index and Skin Surface Temperature. Vadose Zone681

Journal, 12 (3), doi:10.2136/vzj2013.05.0089.682

Franks, S. W., K. J. Beven, P. F. Quinn, and I. R. Wright, 1997: On the sensitivity of soil-683

vegetation-atmosphere transfer (SVAT) schemes: Equifinality and the problem of robust cal-684

ibration. Agricultural and Forest Meteorology, 86 (1-2), 63–75, doi:10.1016/S0168-1923(96)685

02421-5.686

Gao, X., P. Wu, X. Zhao, J. Wang, and Y. Shi, 2014: Effects of land use on soil moisture varia-687

tions in a semi-arid catchment: implications for land and agricultural water management. Land688

Degradation & Development, 25 (2), 163–172, doi:10.1002/ldr.1156.689

Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from690

NOAA/AVHRR data for use in numerical weather prediction models. International Journal691

of Remote Sensing, 19 (8), 1533–1543, doi:10.1080/014311698215333.692

Ibrahim, B., J. Polcher, H. Karambiri, and B. Rockel, 2012: Characterization of the rainy season693

in Burkina Faso and it’s representation by regional climate models. Climate Dynamics, 39 (6),694

1287–1302, doi:10.1007/s00382-011-1276-x.695

Jackson, T. J., T. J. Schugge, A. D. Nicks, G. A. Coleman, and E. T. Engman, 1981: Soil mois-696

ture updating and microwave remote sensing for hydrological simulation / La remise à jour de697
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TABLE 1. Main characteristics of validation sites.

Country Station Longitude WGS84 (◦) Latitude WGS84 (◦) Elevation (m) Land use SM 0-5 cm (% of obs) Precipitation (mm) Irrigation

Morocco Sidi Rahal -7.3535 31.7035 767 Dryland crop/grazing 91.5 398

Australia

Yanco 1 145.8490 -34.6288 120 Dryland crop/grazing 67.7 294

Yanco 2 146.1103 -34.6547 130 Grazing 100.0 323

Yanco 8 146.4140 -34.8470 149 Grazing 98.6 374

Yanco 9 146.0163 -34.9678 122 Crop 100.0 329 X

Yanco 10 146.3099 -35.0054 119 Grazing 95.3 368

Yanco 12 146.1689 -35.0696 120 Crop/grazing 79.2 345

Yanco 13 146.3065 -35.0903 121 Gazing 66.0 368
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TABLE 2. Comparison between in situ and ERA-interim precipitation: annual bias and correlation coefficient

r for accumulating precipitation of 1, 3, 5 and 10 days; n is the number of comparison days.

913

914

Country Station n Precipitation in situ Precipitation ECMWF bias (mm) r r 3days r 5days r 10days

Morocco Sidi Rahal 334 393 265.3 127.7 0.93 0.94 0.95 0.96

Australia

Yanco 1 245 294.6 258.7 35.9 0.44 0.6 0.62 0.63

Yanco 2 365 358.6 323.3 35.3 0.48 0.59 0.6 0.59

Yanco 8 No data No data 350.8 No data No data No data No data No data

Yanco 9 365 299.2 329.2 -30 0.5 0.64 0.67 0.66

Yanco 10 342 187.6 327.3 -139.7 0.18 0.51 0.62 0.69

Yanco 12 256 260.2 242.9 17.3 0.66 0.76 0.79 0.8

Yanco 13 249 249.4 282.9 -33.5 0.59 0.69 0.72 0.74

Average 274.9 302.2 -27.2 0.48 0.63 0.67 0.69
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TABLE 3. Temporal statistics and their 95% confidence intervals are provided of all stations between SMOS

L3, DisPATCh, open loop and analyzed SSM with respect to in situ measurement; r is the correlation coefficient,

RMSE is the root mean square error, ubRMSE is the unbiased-RMSE and n is the number of comparison days.

With a p-value <0.01 for all sites, statistics are significant.

915

916

917

918

r bias (m3 m−3) RMSE (m3 m−3) ubRMSE (m3 m−3)

Country Stations n SMOS DisPATCh OL Analysed SMOS DisPATCh OL Analysed SMOS DisPATCh OL Analysed SMOS DisPATCh OL Analysed

Morocco Sidi Rahal 104 0.64(±0.12) 0.82(±0.06) 0.74(±0.06) 0.87(±0.05) -0.01(±0.01) -0.01(±0.01) 0.01(±0.01) -0.01(±0.01) 0.06(±0.01) 0.05(±0.01) 0.06(±0.01) 0.04(±0.01) 0.06(±0.01) 0.05(±0.01) 0.06(±0.01) 0.04(±0.01)

Australia

Yanco 1 104 0.69(±0.10) 0.76(±0.08) 0.63(±0.12) 0.80(±0.07) 0.06(±0.01) 0.02(±0.01) 0.08(±0.01) 0.04(±0.01) 0.08(±0.01) 0.06(±0.01) 0.09(±0.01) 0.06(±0.01) 0.06(±0.01) 0.06(±0.01) 0.05(±0.01) 0.05(±0.01)

Yanco 2 111 0.47(±0.14) 0.69(±0.09) 0.65(±0.11) 0.79(±0.07) -0.03(±0.01) -0.03(±0.01) 0.03(±0.01) -0.01(±0.01) 0.08(±0.01) 0.08(±0.01) 0.07(±0.01) 0.06(±0.01) 0.07(±0.01) 0.07(±0.01) 0.06(±0.01) 0.05(±0.01)

Yanco 8 100 0.62(±0.12) 0.84(±0.06) 0.46(±0.16) 0.85(±0.05) 0.06(±0.01) 0.02(±0.01) 0.04(±0.01) 0.02(±0.01) 0.08(±0.01) 0.04(±0.01) 0.07(±0.01) 0.04(±0.00) 0.06(±0.01) 0.04(±0.01) 0.06(±0.01) 0.03(±0.00)

Yanco 9 122 0.66±0.10) 0.82±0.06) 0.50±0.12) 0.84±0.05) -0.02(±0.01) 0.01(±0.01) -0.01(±0.01) 0.01(±0.01) 0.07(±0.01) 0.06(±0.01) 0.06(±0.01) 0.05(±0.01) 0.06(±0.01) 0.06(±0.01) 0.05(±0.01) 0.05(±0.01)

Yanco 10 114 0.68(±0.10) 0.84(±0.05) 0.69(±0.10) 0.88(±0.04) 0.04(±0.01) 0.02(±0.01) 0.04(±0.01) 0.03(±0.01) 0.08(±0.01) 0.05(±0.01) 0.06(±0.01) 0.04(±0.00) 0.07(±0.01) 0.04(±0.01) 0.04(±0.01) 0.03(±0.00)

Yanco 12 79 0.65(±0.13) 0.66(±0.13) 0.62(±0.14) 0.70(±0.12) -0.04(±0.01) -0.08(±0.01) -0.04(±0.01) -0.06(±0.01) 0.07(±0.01) 0.10(±0.01) 0.07(±0.01) 0.08(±0.01) 0.06(±0.01) 0.06(±0.01) 0.06(±0.01) 0.05(±0.01)

Yanco 13 69 0.52(±0.17) 0.74(±0.11) 0.52(±0.17) 0.78(±0.09) 0.04(±0.02) 0.01(±0.01) 0.02(±0.01) 0.0(±0.01) 0.09(±0.02) 0.05(±0.01) 0.06(±0.01) 0.04(±0.01) 0.08(±0.02) 0.04(±0.01) 0.05(±0.01) 0.04(±0.01)

average 0.62 0.77 0.60 0.81 0.04 0.02 0.04 0.02 0.08 0.06 0.07 0.05 0.07 0.05 0.05 0.04
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TABLE 4. GDOWN results.

Country Site DisPATCh Analyzed

Morocco Sidi Rahal 0.232 0.330

Australia

Yanco 1 0.119 0.112

Yanco 2 0.352 0.530

Yanco 8 0.571 0.314

Yanco 9 0.014 0.067

Yanco 10 0.108 0.235

Yanco 12 -0.111 -0.066

Yanco 13 0.282 0.220

average 0.196 0.218
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TABLE 5. Temporal statistics and their 95% confidence intervals of open loop and analyzed SSM at all

stations with respect to in situ measurement; r is the correlation coefficient, RMSE is the root mean square error,

ubRMSE is the unbiased-RMSE and n is the number of comparison days. With a p-value <0.01 for all sites,

statistics are significant.

919

920

921

922

r bias (m3 m−3) RMSE (m3 m−3) ubRMSE (m3 m−3)

Country Station n OL Analysed 25 km Analysed 1 km OL Analysed 25 km Analysed 1 km OL Analysed 25 km Analysed 1 km OL Analysed 25 km Analysed 1 km

Morocco Sidi Rahal 334 0.73(±0.05) 0.66(±0.08) 0.83 (±0.03) 0.00(±0.01) 0.01(±0.01) 0.01(±0.01) 0.07(±0.00) 0.06(±0.00) 0.06(±0.00) 0.07(±0.00) 0.06(±0.00) 0.06(±0.00)

Australia

Yanco 1 247 0.60(±0.08) 0.49(±0.10) 0.64(±0.07) 0.08(±0.01) 0.06(±0.01) 0.05(±0.01) 0.10(±0.01) 0.08(±0.01) 0.08(±0.01) 0.06(±0.01) 0.05(±0.01) 0.06(±0.01)

Yanco 2 365 0.66(±0.05) 0.30(±0.12) 0.71(±0.05) 0.03(±0.01) 0.01(±0.01) 0.03(±0.01) 0.07(±0.01) 0.07(±0.01) 0.08(±0.01) 0.06(±0.01) 0.07(±0.01) 0.08(±0.01)

Yanco 8 360 0.40(±0.08) 0.56(±0.09) 0.66(±0.06) 0.03(±0.01) 0.04(±0.01) 0.04(±0.01) 0.08(±0.00) 0.07(±0.01) 0.07(±0.00) 0.07(±0.00) 0.05(±0.00) 0.06(±0.00)

Yanco 9 365 0.42(±0.08) 0.52(±0.09) 0.74(±0.05) 0.02(±0.01) 0.03(±0.01) 0.02(±0.01) 0.07(±0.00) 0.06(±0.00) 0.07(±0.00) 0.07(±0.00) 0.06(±0.00) 0.06(±0.00)

Yanco 10 348 0.47(±0.07) 0.63(±0.08) 0.70(±0.04) 0.03(±0.01) 0.04(±0.01) 0.04(±0.01) 0.08(±0.00) 0.06(±0.00) 0.07(±0.00) 0.07(±0.00) 0.05(±0.00) 0.06(±0.00)

Yanco 12 289 0.56(±0.07) 0.37(±0.13) 0.70(±0.06) 0.05(±0.01) 0.04(±0.01) 0.05(±0.01) 0.10(±0.01) 0.08(±0.01) 0.09(±0.01) 0.07(±0.01) 0.07(±0.01) 0.07(±0.01)

Yanco 13 241 0.35(±0.10) 0.41(±0.14) 0.61(±0.07) 0.02(±0.01) 0.02(±0.01) 0.04(±0.01) 0.08(±0.01) 0.07(±0.01) 0.07(±0.01) 0.08(±0.01) 0.06(±0.01) 0.07(±0.01)

average 0.53 0.49 0.70 0.03 0.03 0.03 0.08 0.08 0.07 0.07 0.06 0.06
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FIG. 1. The experimental Yanco area located in southeastern Australia showing the SMOS L3 grid corner

(red cross), DisPATCh grid (black cross), the selected OzNet stations, and the irrigated area.
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FIG. 2. The Tensift Haouz basin located in central Morocco showing the SMOS L3 grid corner (red cross),

DisPATCh grid (black cross), Sidi Rahal station, and the irrigated area.
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FIG. 3. Sensitivity analysis for background errors. An ensemble of 10 perturbations from 0.02 to 0.1 m3 m−3

was built for both the background error terms (Θ1 and Θ2). The global statistics (correlation coefficient, Root

Mean Square Error RMSE, and mean bias) were computed based on the analyzed and in situ SSM comparison.
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In situ 

ERA-interim

FIG. 4. Cumulative daily precipitation (mm) for all sites. The blue lines are the ERA-interim precipitation at

0.125◦ spatial resolution distributed by the ECMWF and the red lines are the in situ precipitation. Note that in

situ data are not available for Yanco 8.
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FIG. 5. (a) Time series evaluation of the DisPATCh (black circle) with the errors bars representing standard

deviation of DisPATCh, open loop (blue dots), and the analyzed (red dots) SSM against in situ (black line)

measurements and cumulative daily precipitation (blue bars) for Sidi Rahal station. (b) Scatterplot of DisPATCh

(black dots), open loop (blue dots), analyzed (red dots) SSM versus in situ measurements.
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FIG. 6. As for fig. 5 but for Yanco 9 station
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FIG. 7. As for fig. 5 but for Yanco 10 station
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FIG. 8. Image of yearly (2014) average of analyzed SSM over Yanco area. Black lines represent the irrigated

fields.
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FIG. 9. Image of yearly (2014) average of analyzed SSM over Tensift Haouz region. Black lines represent the

irrigated fields.
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