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ABSTRACT
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High spatial and temporal resolution surface soil moisture is required for
most hydrological and agricultural applications. The recently developed Dis-
PATCh (DISaggregation based on Physical And Theoretical scale Change) al-
gorithm provides 1-km resolution surface soil moisture by downscaling the
40-km SMOS (Soil moisture Ocean Salinity) soil moisture using MODIS
(MODerate-resolution Imaging Spectroradiometer) data. However, the tem-
poral resolution of DisPATCh data is constrained by the temporal resolution
of SMOS (a global coverage every 3 days) and further limited by gaps in
MODIS images due to cloud cover. This paper proposes an approach to over-
come these limitations based on the assimilation of the 1-km resolution Dis-
PATCh data into a simple dynamic soil model forced by (inaccurate) precip-
itation data. The performance of the approach was assessed using ground
measurements of surface soil moisture in the Yanco area in Australia and the
Tensift-Haouz region in Morocco during 2014. It was found that the analyzed
daily 1-km resolution surface soil moisture compared slightly better to in situ
data for all sites than the original disaggregated soil moisture products. Over
the entire year, assimilation increased the correlation coefficient between es-
timated soil moisture and ground measurement from 0.53 to 0.70, whereas
the mean ubRMSE slightly decreased from 0.07 m®> m—> to 0.06 m®> m—3
compared to the open-loop force-restore model. The proposed assimilation
scheme has significant potential for large scale applications over semi arid ar-
eas, since the method is based on data available at global scale together with

a parsimonious land surface model.
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1. Introduction

Soil moisture is an important variable of the terrestrial hydrosphere. Whereas precipitation
provides the amount of available water at the surface, soil moisture impacts the partitioning of
rainfall into runoff, evaporation and infiltration. Moreover, soil moisture is highly variable in
space and time, as a result of (1) the alternation between wetting and drying events, and (2)
the heterogeneity in land cover, topography and soil properties. An accurate and continuous
description of soil moisture in space and time is therefore critical for understanding the continental
water cycle and for achieving efficient and sustainable water management (Entekhabi 1995; Gao

et al. 2014; Rodriguez-Iturbe 2000).

Satellite remote sensing is often the most practical and effective method to observe the land
surface soil moisture over large geographical areas. The recent Soil Moisture and Ocean Salinity
(SMOS) mission, launched in 2009, operates at L-band (the optimal microwave band to estimate
soil moisture (Kerr 2007; Njoku and Entekhabi 1996)) and provides near-surface soil moisture
(SSM) with a resolution of about 40 km (Kerr et al. 2012). This mission has been complemented
by the SMAP (Soil Moisture Active Passive) satellite mission launched in 2015; ensuring the
continuity of L-band passive microwave data for global SSM monitoring (Entekhabi et al. 2010b).
Recent studies, based on the temporal stability of soil moisture (Vachaud et al. 1985), have shown
that even coarse scale satellite soil moisture can add a benefit in hydrological modeling (Pauwels
et al. 2001; Draper et al. 2011; Brocca et al. 2012; Alvarez-Garreton et al. 2015; Chen et al.
2014; Massari et al. 2015; Lievens et al. 2015b). Nevertheless, the current spatial resolution
of microwave radiometers is too coarse for most hydrological and agricultural applications.

Therefore, downscaling methodologies have been developed to improve the spatial resolution of
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passive microwave-derived SSM data (Das et al. 2014; Fang et al. 2013; Kim and Hogue 2012;
Merlin et al. 2008a; Piles et al. 2011; Sanchez-Ruiz et al. 2014; Srivastava et al. 2013). For
example, DisPATCh (DISaggregation based on Physical And Theoretical scale Change) estimates
the SSM variability within a 40 km resolution SMOS pixel at 1 km resolution using MODIS
(MODerate-resolution Imaging Spectroradiometer) data (Merlin et al. 2012, 2013). However, the
temporal resolution of DisPATCh data based on SMOS and MODIS data is limited by 1) gaps
in MODIS images due to cloud cover, and 2) the 2-3 day temporal resolution of global SMOS

coverage (Djamai et al. 2016).

A land surface model (LSM) forced by uncertain meteorological inputs and constrained with
discontinuous disaggregated soil moisture through data assimilation could both address the
issue of discontinuity in the soil moisture products and as well as improve the SSM estimate.
Several studies have been undertaken to assimilate the observed satellite brightness temperature
directly (Crow and Wood 2003; Dumedah et al. 2011; Margulis et al. 2002; Reichle et al. 2007;
Lievens et al. 2015a, 2017) and/or the satellite SSM retrieval (Reichle et al. 2008; Draper et al.
2011; Brocca et al. 2012; Dumedah and Walker 2014; Ridler et al. 2014; Kumar et al. 2014;
Wanders et al. 2014; Lievens et al. 2015b; Leroux et al. 2016) into LSMs. Others studies have
assimilated coarse scale SSM into a fine land surface models to produce fine model predictions
and consistently improve soil moisture and other land surface variables (Reichle et al. 2001b,
2010; Parada and Liang 2004; Pan et al. 2009a,b; De Lannoy et al. 2010, 2012; De Lannoy and
Reichle 2016; Sahoo et al. 2013; Lievens et al. 2016, 2017). These approaches are based on spatial
error correlations that are modeled within the assimilation system. Moreover, Djamai et al. (2016)
estimated SSM at 1 km resolution during cloudy days by combining DisPATCh data and the

Canadian Land Surface Scheme (CLASS), forced by a 30 km atmospheric re-analysis. However,
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the SSM DisPATCh estimates were not improved by the combination of DisPATCh and CLASS
when compared to in situ measurements of the SMAP Validation Experiments data set in 2012
over Winnipeg in Canada. In a similar context, Dumedah et al. (2015) assimilated DisPATCh data
into the Joint UK Land and Environment Simulator (JULES) to estimate root zone soil moisture
over the Yanco area in Australia. The assimilation of DisPATCh data into the JULES model had
a limited positive impact on the SSM estimation accuracy compared to DisSPATCh and open-loop

JULES simulation.

These results demonstrate that data assimilation remains one of the most promising approaches
to link satellite based SSM with LSMs, while accounting for uncertainties in the observation data
and the simulated output from the model (Calvet et al. 1998; Entekhabi et al. 1994; Jackson et al.
1981; Reichle et al. 2001a; Sabater et al. 2007). However, assimilation strategies still need to be
improved. Two aspects should be addressed when assimilating downscaled SSM data into a LSM:
1) the number of state variables in the LSM should be consistent with the available observations
in order to eliminate equifinality (Beven 1989; Franks et al. 1997), and 2) the accuracy in forcing
data at the application scale. Most of surface models developed since the 80s (Sellers et al. 1986;
Noilhan and Planton 1989) have a large number of variables which cannot be directly measured
at the model application scale (Demaria et al. 2007; Franks et al. 1997). As over-parameterization
is the main limitation for implementation of such complex models in an operational context,
there is a need to develop simplified modeling approaches that are forced by available remote
sensing and meteorological data (Allen et al. 1998). A number of studies have shown the potential
of this approach (Albergel et al. 2008; Ceballos et al. 2005; Pellarin et al. 2006; Wagner et al.
1999) for representing components of the surface water budget. One of the main issues is that

large-scale data sets of meteorological variables are currently unavailable at 1 km (or higher)
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spatial resolution. Nevertheless, a disaggregation/assimilation coupling scheme is potentially
capable of compensating errors in atmospheric (mainly precipitation) forcing data available at a

coarse scale only (Merlin et al. 2006).

Within this context, the objective of this study was to develop a new methodology based on
an assimilation scheme for interpolating DiSPATCh SSM in a sub-optimal manner using global
(meteorological and soil map) datasets. Since DisPATCh is a physically-based method to provide
natively SSM at 1 km resolution using 1 km resolution MODIS data, the native resolution of the
DisPATCh SSM products developed is 1 km resolution. The approach was tested using ground
measurements of soil moisture and precipitation over two semi arid sites: 1) the Yanco area in
the Murrumbidgee river catchment, Australia and 2) the Tensift-Haouz basin located in central

Morocco.

2. Sites description

a. Yanco: Murrumbidgee catchment (Australia)

The Murrumbidgee catchment, located in southeastern of Australia, covers about 82,000 km?
(34°S to 37°S, 143°E to 150°E) and is a part of the Murray Darling basin. The Yanco study site
is a 55 km x 55 km area located in the center of the Murrumbidgee western plains where the
topography is flat, with very few geological outcropping. The soil texture is predominantly sandy
loam. The climate is semi-arid, with an average annual precipitation of about 300 mm while
evaporative demand is about 1,200 mm per year, according to the reference evapotranspiration
(ETO), derived from the Food and Agriculture Organization (FAO) Penman Monteith equation

(Allen et al. 1998). The land use in the west of the site comprises irrigation, while elsewhere land
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use is composed of rain-fed crops and native pasture with scattered trees.

The Yanco region has been intensively monitored for remote sensing studies since 2001 (Smith
et al. 2012). This area has been selected as a core site for the calibration/validation of the SMOS
(Peischl et al. 2012), SMAP (Panciera et al. 2014), and GCOM-W1 (Mladenova et al. 2011) mis-
sions, and has also been the focus of field experiments dedicated to algorithm development studies
for the SMOS and SMAP missions: National Airborne Field Experiment 2006 (NAFE06; Merlin
et al. (2008b)); Australian Airborne Cal/Val Experiments for SMOS (AACES-1, -2; Peischl et al.
(2012)) and Soil Moisture Active Passive Experiments (SMAPex-1, -2, -3; Panciera et al. (2014)).
To assess the ERA-interim precipitation product, OzNet ground based precipitation measurements
using tipping bucket rain gauges were used (Smith et al. 2012). These data are available on the
World Wide Web at http://www.oznet.org.au/. Seven sites presenting the best data quality and
continuity were selected for this study (Yanco 1, 2, 8, 9, 10, 12 and 13). Table 1 displays the site
characteristics, and their locations are shown in Fig. 1. These sites are representative of the 3 main
land uses of the region (Fig. 1): irrigated crops (Yanco 9), rain-fed crops (Yanco 1 and 11; typi-

cally wheat and fallow), and grazing (Yanco 2, 8, 10, 13; typically perennial grass type vegetation).

Fig. 1

b. Tensift-Haouz basin (Morocco)

The Tensift-Haouz basin covers about 24,000 km? (30.75°N 32.40°N and 7.05°E to 9.9°W)
around the city of Marrakech, in central Morocco (Fig. 2). The climate is semi-arid, typically
Mediterranean, with an average annual precipitation of about 250 mm (Chehbouni et al. 2008)

concentrated between November and April over the Haouz plain, where the study site is located.
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Evaporative demand is about 1,600 mm per year.

In the Tensift-Haouz basin, the Sidi Rahal monitoring station was installed on a rain-fed wheat
field (Fig. 2) in December 2013, in the framework of the Joint International Laboratory TREMA
(a French acronym for Remote Sensing and Water Resources in the Semi-arid Mediterranean;
http://trema.ucam.ac.ma; Jarlan et al. (2015)). It is equipped with micro-meteorological instru-
ments to estimate latent and sensible heat fluxes at the soil-vegetation-atmosphere interface,
and probes for the measurements of soil water content at different depths. The automatic
meteorological station installed in the vicinity was equipped with sensors for the measurement
of rainfall, global radiation, temperature, relative humidity, and wind speed at a half-hourly time
step. The soil texture is predominantly loams. Information about the monitoring stations is

provided in Table 1 and Fig. 2.

Fig. 2 and Table 1

3. Materials and method

a. Globally available data
1) SMOS SOIL MOISTURE DATA

The SMOS level 3 one day global SSM (MIR_CLF31A\D, version 7.72 in reprocessing mode
REO4) product is used in this study as input to DisPATCh algorithm and assimilation scheme.
These products are presented in NetCDF format on the EASE grid, with a grid spacing of «~25
x 25 km in cylindrical projection. Note that L3 data is a 25 km grid representation of the 40 km

data. Details on the processing algorithms can be found in the Algorithm Theoretical Baseline

10
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Document (Jacquette et al. 2013) and in the Level 3 data product description (Kerr et al. 2014).
For comparison purpose, the assimilation scheme was applied at 1 km resolution using the non-

disaggregated (25 km) SMOS L3 data by oversampling the 25-km product.

2) DISPATCH SOIL MOISTURE DATA

DisPATCh provided 1 km resolution SSM data from 40 km SMOS SSM and 1 km MODIS
LST (Land Surface Temperature), MODIS NDVI (Normalized Difference Vegetation Index) and
GTOPO30 DEM (Digital Elevation Model) data. MODIS-derived soil temperature was used
to estimate Soil Evaporative Efficiency (SEE), which is known to be relatively constant during
the day on clear sky conditions (Merlin et al. 2012). MODIS-derived 1 km resolution SEE was
finally used as a proxy for SSM variability within the low-resolution pixel using a first-order
series expansion around the SMOS observation. The disaggregated SSM products are expressed

3

in m® m~3. The current version of the DisPATCh methodology is fully described in Molero et al.

(2016). Note that only ascending SMOS overpass (6 am) was used in this paper.

The DisPATCh product was derived from the average of an output ensemble for each SMOS
overpass time. This output ensemble was obtained by applying DisPATCh to 1) four SMOS
re-sampling grids by taking advantage of the Level 3 SMOS data oversampling, 2) three MODIS
overpass dates by taking into account the MODIS data collected within plus or minus one day
around the SMOS overpass, and 3) two daily MODIS observations aboard Terra and Aqua.
The number of elements used to compute this average (a maximum of 24 elements per SMOS
overpass) is called the DisPATCh count. Note that the DisPATCh count is often smaller than 24
due to gaps in MODIS data associated with cloud cover and/or limited overlap with the SMOS

swath. The error of the DisPATCh product is taken as the standard deviation from the output

11



204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

ensemble computing. This error accounts for the downscaling and retrieval errors (more details in

Merlin et al. (2012); Malbéteau et al. (2016)).

DisPATCh outputs have been validated mostly in semi-arid conditions where SEE is well con-
strained by the SSM: the Murrumbidgee catchment in Australia (Bandara et al. 2015; Malbéteau
et al. 2016; Molero et al. 2016), the Little Washita watershed in Oklahoma, Walnut Gulch in Ari-
zona over USA (Molero et al. 2016), the Tensift-Haouz basin in central Morocco (Merlin et al.

2015) and the Lleida area in Spain (Escorihuela and Quintana-Segui 2016; Merlin et al. 2013).

3) VEGETATION INDEX

In order to estimate evapotranspiration, the vegetation cover (fv) was derived from the 1 km
resolution MODIS NDVI data. The NDVI dataset was extracted from the version-5 MODIS/
Terra vegetation indices 16-day Level-3 global 1-km grid product (MOD13A?2). Fractional fv was
computed using the linear relationship between NDVI of the fully-covered vegetation and NDVI

of the bare soil proposed by Gutman and Ignatov (1998).

4) METEOROLOGICAL DATASET

The ECMWFs (European Centre for Medium-Range Weather Forecasts) Interim re-analysis
product (ERA-interim; Dee et al. (2011)) was used for meteorological (relative humidity, air
temperature, wind speed, pressure, shortwave and longwave radiations and precipitation) forc-
ing. ERA-Interim is produced at the highest resolution of about 0.125° with a 3-hourly time
step covering the period from January 1979 to present, with product updates at approximately
1 month behind real-time. This study used the ERA-interim datasets provided daily at 0.125°

spatial resolution. Note that the product is generated at a much coarser resolution (a spectral

12
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T255 horizontal resolution, which corresponds to approximately 79 km spacing grid) and then
mapped to 0.125°. The ERA-Interim atmospheric re-analysis is built upon a consistent assimila-
tion of an extensive set of observations distributed worldwide from satellite remote sensing, in situ
measurements, and radio-sounding. ERA-Interim data sets are free of charge and available via:
www.ecmwf.int/en/research/climate-reanalysis/era-interim. The environmental parameters simu-
lated by ERA-Interim have been widely validated by in sifu and remote sensing observations at
different spatio-temporal scales (Balsamo et al. 2015; Bao and Zhang 2013; Boisvert et al. 2015;
Mooney et al. 2011; Su et al. 2013; Szczypta et al. 2011; Wang and Zeng 2012). Several stud-
ies (Belo-Pereira et al. 2011; Pfeifroth et al. 2013; Szczypta et al. 2011; Zhang et al. 2013) have
reported an overestimation of ECMWF precipitation data, but Balsamo et al. (2010) have shown
that the original ERA-Interim products have reasonable skill for land applications at time scales
from daily to annual over the conterminous US. The total annual amount and daily distribution of

ECMWEF precipitation is compared to meteorological stations in this study for the two test sites.

5) GLOBAL SOIL TEXTURE

The relative amounts of bound and free water are influenced by the soil texture (sand, clay and
silt fractions) and bulk density. The map used for this study was a 0.01° resolution combination of
the soil maps (Kim 2013) from 1) FAO (Food and Agriculture Organization) and 2) HWSD (Har-
monized World Soil Database), and the regional datasets 1) STATSGO (State Soil GeographicUS),
2) NSDC (National Soil Database Canada), and 3) ASRIS (Australian Soil Resources Information
System). Note that this soil texture map is used by both SMOS (Kerr et al. 2012) and SMAP

(Entekhabi et al. 2010b) level 2 SSM retrieval algorithms.

13
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b. Land surface model (LSM)

In an effort to reduce as much as possible the number of model parameters, while attempting
to preserve the representation of the physics which controls the SSM dynamics, the LSM used in
this study was based on the force-restore method developed by Deardorff (1977). This scheme is
used in many LSMs including ISBA (Interactions between Soil Biosphere Atmosphere; Noilhan
and Planton (1989)). The force-restore method appears to be a good tradeoff between realism
(physics) and complexity (number of parameters) for calibration over large areas. In this semi-
physical model, the dynamics of soil moisture is described within two layers: the SSM (noted ®1)
and the root zone soil moisture (noted ;). In this study, only the SSM dynamics were simulated
with the root-zone soil moisture taken as a buffer variable to minimize possible biases between
DisPATCh SSM and the force restore prediction for compensating errors in meteorological (mainly

precipitation and irrigation) forcing data. The equation for SSM is:

2, _ ¢
ot B pwdl

T

(P_Eg) (®1 _G)eq)a (1)

with @, the equilibrium soil moisture, P the ERA-interim precipitation reaching the soil surface,
E, the evaporation at the soil surface, p,, the density of liquid water, T the time constant taken as
one day and d; an arbitrary normalization depth of 10 cm. C; and C, are empirical parameters
named force and restore coefficients, respectively representing the process of mass exchange be-
tween the soil and the atmosphere, and the surface and the root-zone layer, respectively. The force
and restore coefficients C| and C, are dimensionless and highly dependent upon both the soil mois-
ture content and the soil texture. Note that coefficients C; and C, are spatially distributed based on
Noilhan and Mahfouf (1996) and vary over time. They were calibrated against a multi-layer soil

moisture model (Noilhan and Mahfouf 1996) such that
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® (z+1)
Cl — Clsat ( @ST> ’ (2)
S}
C=Crpr| —m= 3
2 2ref <®sat_®2+®l), (3)

with @y, being the saturated soil moisture for a given texture, 3 the slope of the retention curve,
Cisar and Cyy.r hydraulic parameters and ®; a small numerical value equal to 0.001. Each pa-
rameter was estimated from clay/sand fractions and default empirical parameters (equations are
detailed in Noilhan and Mahfouf (1996)). E, in equation 1 is expressed as in Allen (2000) and

Allen et al. (2005) by

E,=ETyx K., “4)

with ETj being the reference evapotranspiration estimated according to the FAO Penman-Monteith
equation (Allen et al. 1998) and the ERA-interim meteorological forcing data (relative humidity,
air temperature, wind speed, pressure, shortwave and longwave radiations). K, the soil evaporation

coefficient computed from

Ke:(l_fv)Kh (5)

with K, the soil evaporation reduction coefficient derived from the SSM. Soil evaporation from
the exposed soil was assumed to take place in two stages: an energy limiting stage and a falling
rate stage. After rain, evaporation was only determined by the energy available for evaporation,
thus K, was set to 1; then when the soil surface dried out, K, decreased linearly and evaporation

was reduced. K, was equal to zero when no significant water was left for evaporation, being when

15
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SSM was smaller than %@Wp (where ©,,, was the soil moisture at wilting point) as reported by

Allen et al. (1998).

c. Assimilation scheme: A combined 2D variational and sequential approach

The purpose of assimilating DisPATCh data into a LSM was to combine the downscaled snap-
shots of DisPATCh SSM with the continuous LSM predictions, in order to obtain the best estimate
of the SSM at 1 km every day. The simplified two-dimensional variational (2D VAR) method de-
veloped by Balsamo et al. (2004) to analyze the root-zone soil moisture (as a buffer variable) was
combined to a simplified Kalman filter approach to update the SSM state. The relation between
surface and root-zone soil moisture is not physically based with the force-restore scheme. For that
reason a linear variational algorithm may not be well suited for updating surface soil moisture by
contrast with the root-zone. Moreover, the sequential approach is able to update the potentially
rapid changes related to irrigation that are not represented by the LSM but are observed in Dis-
PATCh data. Thus, the two-scheme procedure has the advantage to consider the two temporal
dynamics, being (rapid) surface and (slow) root-zone soil moisture.

The 2D VAR method was initially designed to analyze the root zone soil moisture using 2 m
air temperature and humidity observations (Balsamo et al. 2004). It has been adapted by Sabater
et al. (2007) to analyze the root zone soil moisture from SSM observations, and to the analysis of
both above ground biomass and root zone soil moisture by Sabater et al. (2008). The simplified
2D VAR has also been applied to the analysis of above-ground biomass from satellite-derived leaf
area index products over West Africa (Jarlan et al. 2008). In the present study, ®, was taken as
a buffer variable without any dynamic equation. Stated differently, this variable was left free to

adjust the model prediction to DisPATCh SSM through the simplified 2DVAR approach. This first
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step of the assimilation algorithm was necessary to represent SSM dynamics with consistency to

the restore parameter. The analyzed state is given by:

0 =0"+K(y—H®"), (6)

where the superscripts a and b indicate the analysis and background, respectively; y is the Dis-
PATCh SSM and H is the observation operator that allows the projection of the state vector in
the observation space. In the 2D VAR approach, H is computed from a one side finite difference,
while H is equal to 1 in the sequential approach. The SSM update step is close to that of the
Kalman filter, but the propagation of the background error matrix was avoided here for simplicity

purpose. K is called the gain and is calculated as:

K =BH'(HBH” +R) !, (7)

where B and R are the covariance matrices of the background and SSM observations errors, re-

spectively. R is scalar values equal to 6,,; (DiSPATCh error). B is calculated as

B= ®)

with 6@, is ©1 background error and og, is ®; background error.

Considering a 1-day assimilation window, H equals to :

A01(t)
H— A®,(r—1) 9)
0 1

1) IMPLEMENTING AND EVALUATING THE DATA ASSIMILATION ALGORITHM

(i) Background error covariance matrix

The parameters B, P and R determine the relative weight given to the background, forecast

17
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and to the observations covariance, respectively, while o,,s corresponds to the observation
(DisPATCh) error (see section DisPATCh soil moisture data). Observation errors are correlated
in space. An accurate estimation of the background error is likely to be the most difficult task
in the error prescription (Bouttier 1994; Reichle et al. 2002). Thus, a sensitivity analysis to
background error on SSM and root zone soil moisture was carried out; a set of 0g, and 0g, were
compared in order to estimate both background errors since there is no propagation equation of
the background error covariance matrix using variational assimilation. In practice, an ensemble of

10 perturbations from 0.02 to 0.1 m* m—3

was built for both the background error terms and the
global statistics (correlation coefficient r, Root Mean Square Error RMSE, and mean bias) were
computed based on the analyzed and in situ SSM comparison. Results of the sensitivity study are
displayed in Fig. 3. The optimal choices obtained from this sensitivity study were about 0.04
m> m—> and 0.09 m* m~3 for 0@, and Op,, respectively. Note that the same sensitivity study
has been performed at 25 km, and the optimal choices obtained are 0.05 m*> m—> and 0.06 m?
m—3 for 0p, and 0p,, respectively. Nevertheless, the range of bias and RMSE were low (about
0.009 m* m~3) for the whole range of potential values. This means that the sensitivity analysis
for both background errors presented limited choices. Interestingly, a ®; background error lower
than that of ®, seems also consistent with the objective of the study, since ®, was considered as a
buffer variable to minimize biases on ®;. Finally, this quite low value of background error on ®;
was also certainly to be attributed to the good quality of ERA-interim data, which were the main

forcing of the ®; dynamics. Based on this analysis, the sub-optimal values of background error

were chosen for the implementation of the data assimilation algorithm.

Fig. 3
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(ii) Statistical metrics

It was important to assess the performance of the method, not only in terms of linear dependency
and error, but also in terms of relative variability of the original and updated dataset. Therefore, r,
RMSE, ubRMSE (unbiased-RMSE) and the mean bias were used to fully assess the accuracy
of SSM (Entekhabi et al. 2010a). Moreover, a new metric called the Gain of DOWNscaling
(GDOWN), introduced by Merlin et al. (2015), was also used. The gain is a measure of the
statistical improvement dedicated to disaggregated SM products. The gain can range from -1 to
1, where positive values indicate better correspondence with in situ than low resolution products
such as SMOS data. One key advantage of GDOWN, with regards to other performance metrics,

is to provide an estimate of the overall improvement in soil moisture data with a single value.

4. Results and discussion

The DisPATCh/assimilation approach has been run over the entire year 2014 for both areas
(Yanco in Australia and Tensift-Haouz in Morocco). First, ERA-interim precipitation products
were assessed and validated using ground measurements. After, the analyzed SSM was evaluated
at the time of DisPATCh availability. Finally, the analyzed SSM was assessed for the entire year

datasets.

a. ERA-interim precipitation assessment

Although the assimilation scheme can compensate error on precipitation input data, a good
agreement of ERA-Interim with ground rainfall in term of frequency (instead of quantity)
is preferable to update the SSM state on a daily basis. A preliminary comparison between
ERA-interim precipitation and the station data showed that ERA-interim presented too frequent

low rainfall events (between 0.1 and 3 mm/day). This has already been observed by Ibrahim et al.
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(2012) and Diaconescu et al. (2015) over another semi-arid region in the West African Sahel. The
general overestimation of wet days is due to the fact that precipitation in reanalyses is mainly
model generated, and therefore highly related to forecast-model physical parameterizations
(surface pressure, temperature and wind). In this study, the precipitation values during low rainfall
events (< 3 mm/day) were set to zero (Ibrahim et al. 2012; Diaconescu et al. 2015). After this
pre-procesing, ERA-interim precipitation were in better agreement with local station data (not
shown). The daily ERA-interim precipitations were compared to the in situ data using 24-h
accumulation from the raw 30 minutes observations. Fig. 4 and Table 2 reported the annual
amounts and differences between the two precipitation data sets for each site. With an average
bias of 27 mm/year and a r of 0.48, ERA-interim annual amounts matched quite well the in situ
observations considering the large resolution of ERA-interim data and the high spatial variability
of precipitation in semi-arid regions. Apart from sites Yanco 10 and Sidi Rahal, biases remained
below 40 mm/year. Fig. 4 and Table 2 showed also that timing was well reproduced at £ 1 day,
based on the correlation coefficient value when using a 3-days accumulated precipitation. For
instance, daily ERA-interim precipitations at the Sidi Rahal site were really well correlated (r of
0.93) with the ground measurements. Regarding Yanco 10 site, the daily r was low; however it
increased greatly using the 3-days accumulated precipitation (from 0.18 to 0.51). These results
were similar to results found in Balsamo et al. (2010). In particular, none of the big storms events
recorded by the local stations were missed by ERA-interim. Both timing and event amount were
particularly well reproduced on Yanco 1 and 2. Two anomalies were noted at the Sidi Rahal site:
the ERA-interim precipitation was underestimated compared with in situ observations, whereas
the ERA-interim precipitation was overestimated at Yanco 10 station. For both sites, all events
were well detected but the amounts of water were under and overestimated for Sidi Rahal and

Yanco 10 sites, respectively. On average, ERA-interim precipitation data compared quite well
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with in situ stations apart from moderated biases. The ERA-interim data set was thus used
in the data assimilation algorithm in order to evaluate the performance of the approach when
precipitation data are inaccurate, which is a very likely situation when no meteorological station

is available.

Fig. 4 and Table 2

b. Assimilation results

Herein, the performance of the approach was assessed by comparing SMOS, DisPATCh, open
loop and analyzed SSM with in situ measurements at the time of DisPATCh availability, in
order to check if the analyzed SSM shows an improvement with regards to disaggregated SSM.
All statistics were estimated on a yearly basis to evaluate the capability of a dynamical model
to interpolate and, potentially, to improve DisPATCh SSM data. Table 3 showed the yearly
statistics for each monitoring station and the number of comparison days. In this section, the
number of days used was strongly dependent on the number of SMOS overpasses and cloud
coverage. When comparing the statistics obtained over both areas, it was observed that the
disaggregation and the assimilation scheme reduced bias by approximately 0.02 m®> m—3, while
r was systematically higher after data assimilation. The disaggregation at 1 km (DisPATCh)
has the advantage to produce SSM at a spatial resolution closer to the representativeness scale
of ground measurements; it has been shown that this reduces the bias (Malbéteau et al. 2016).
The mean r over the Yanco area rose from 0.62 to 0.77 after disaggregation and up to 0.80 after
application of the assimilation scheme. Regarding Yanco 2, r improved from 0.69 to 0.79; bias
reduced from 0.03 to 0.01 m®> m—3 and ubRMSE decreased from 0.07 to 0.05 m® m—3. Similar

results were observed for Sidi Rahal as r increased from 0.82 to 0.87 after assimilation while
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bias was closer to 0, and ubRMSE decreased slightly from 0.05 to 0.04 m®> m~—3. Across all
sites, the assimilation scheme does not improve significantly SSM in terms of statistics when
using a limited (DiPATCh) time series for validation. Differences can be appreciated more easily
through qualitative inspection of scatter plots. Sidi Rahal (Fig. 5b), Yanco 9 (Fig. 6b) and
Yanco 10 (Fig. 7b) illustrate the Table 3 results. In these three plots, the analyzed distribu-

tion appears closer and more symmetric around the 1:1 line than for both DisPATCh and open loop.

As illustrated in Table 4, GDOWN was approximately equal for both the disaggregated and the
analyzed data. Moreover the only site with negative values (meaning that SMOS shows better
results) was Yanco 12, because DisPATCh and the analyzed SSM had a larger mean bias than
SMOS (Table 3). However, r was slightly improved after assimilation, which means that the SSM
dynamics were better represented. Yanco 2 was the site with the best enhanced GDOWN, with
values going from 0.35 to 0.53 before and after assimilation, respectively. This was mainly due
to a large improvement of r (from 0.47 to 0.79) and of the bias (from -0.03 m> m—3 to -0.01 m?
m~3). The assimilation scheme was also compared to the open loop estimates using the same
statistics (Table 3). The assimilation clearly outperformed the open-loop prediction at the time of

DisPATCh availability.
As a summary, this new approach improved the r values and also reduced the ubRMSE with
regards to either the satellite observations or the model open loop, indicating that the assimilation

has the capability to improve the SSM estimates over the model results or DisPATCh alone.

Table 3, Table 4, Fig. 5, Fig. 6 and Fig. 7
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c. Soil moisture analysis

In order to assess the potential of using the force-restore model and the assimilation scheme for
infilling disaggregated SSM, a conventional validation strategy was adopted, by comparing the
analyzed and in situ SSM datasets for the full time series. This strategy was useful to characterize
the overall quality of the analyzed SSM over both areas. The open loop estimate of SSM
estimates determined from the force restore-model forced by ERA-interim were also computed
for comparison purposes, along with the assimilation scheme applied to the original SMOS L3
product. This comparison evaluated the contribution of fine (instead of coarse) resolution soil
moisture data. Table 5 displays temporal statistics for open loop, analyzed 25 km and analyzed
1 km SSM estimates for all in situ stations. Overall results showed that r was about 0.7, while
mean bias was equal to 0.03 m®> m~3 and ubRMSE was 0.06 m® m—> for the analyzed SSM
estimates. The r values were found to be systematically higher after assimilation, whereas bias,
RMSE and ubRMSE were equivalent for both data sets. Regarding Sidi Rahal station (Fig. 5

3 and

and Table 5), r after data assimilation was about 0.83, while bias was close to 0.01 m3 m™
the ubRMSE was around 0.06 m® m—3. The time series exhibited the dominant seasonal cycle
very well and showed a similar dynamical response to precipitation events. Comparison between
analyzed 25 km and 1 km statistics showed that DisPATCh SSM improved results for all sites,
even though the original SMOS L3 data had a larger temporal repetition. In others words, the
spatial information provided by DisPATCh provide superior assimilation results despite the data
gaps associated with cloud coverage over the study sites. Figs. 6 and 7 illustrate time series for
two sites in the Yanco area. Regarding Yanco 10 (Fig. 7a), data assimilation enhanced r from

0.47 to 0.70, whereas the bias was larger by approximately 0.01 m*> m—3. The open loop SSM

estimates showed a threshold for dry conditions at around 0.1 m®> m—3 due to ®, being forced
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to 0.1 m® m~3 by lack of information. The analyzed SSM was not constrained any more by this
artificial threshold. This demonstrated the importance of the analysis of ®; for a correct estimate
of ®;. Interestingly, the best improvement was observed for the irrigated site Yanco 9 (Fig. 6a)
where precipitation was supplemented by irrigation inputs that were not taken into account in the
model run. Consequently, the assimilation of DisPATCh data improved r (from 0.42 to 0.74),
while bias, RMSE and ubRMSE were similarly compared to open loop results. The time series
in Fig. 6a showed water input events at day 140 and day 325 (for example) that were certainly
due to irrigation. Thus this approach could be used to detect and retrieve irrigation information
that is very difficult to obtain over large areas on a daily basis. This information is requested
by managers to monitor and control irrigation, especially for the monitoring of groundwater (Le

Page et al. 2012).

The coupled scheme has the advantage of combining the spatial (but static) information
provided by DisPATCh data with the temporal (but mono-dimensional) information provided by
the force-restore scheme, in order to get SSM estimates every day at 1 km (Merlin et al. 2006).
Fig. 8 and Fig. 9 showed the temporal average of SSM during one year over the Yanco area and
the Tensift-Haouz basin, respectively. The irrigated areas are indicated for comparison purposes.
Regarding the Australian case study, the Murrumbidgee river banks and irrigated areas appeared
wetter than the dry grassland. The wet area located in the south of the study area is the floodplain
of the Yanco Creek System, which is a tributary of the Murrumbidgee River downstream of
Narrandera, flowing south-west. Over the Tensift-Haouz basin, the wetter pixels were mainly
located in the irrigated areas. Nevertheless, it is important to keep in mind that the irrigated areas
indicated may be inaccurate since many boreholes have been dug since the beginning of the

2000s, and they are neither registered nor monitored. A wet zone was also shown in the south
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east of the study area. This region corresponds to the Atlas Mountain and its piedmont. A large
amount of water in the piedmont is provided by the water from Atlas snowmelt (Boudhar et al.
2009). However, it is necessary to note that DisPATCh data may be unreliable in mountainous
areas as the illumination effect on LST can be significant in steep-sided valleys (Malbéteau et al.
2017), and no correction for such effects has been included in DisPATCh yet (Molero et al.
2016). Note that the disaggregation images (fig. 8 and 9) present a slight boxy artifact at low
(SMOS) resolution. Such an artifact is typical of downscaling methods like DisPATCh that apply
a conservation law at low resolution (meaning that the average of disaggregated SM at SMOS

resolution is set to SMOS observation).

Table 5, Fig. 8 and Fig. 9

As a summary, the proposed downscaling/assimilation scheme showed systematically higher
r values with regards to the open loop and with regards to DisPATCh alone, indicating that the
dynamic of the SSM at a daily time scale has been improved. The maps of yearly average SSM
were consistent with the main hydrological characteristics of both catchment (rivers, wetlands and

irrigated areas). This opens perspectives for the retrieval of irrigation water inputs.

5. Conclusion

The DisPATCh algorithm has been developed to improve the spatial resolution of readily
available passive microwave-derived SSM data that is too coarse for many hydrological and
agricultural applications. However, the temporal resolution of DisPATCh data based on SMOS
and MODIS data is limited by the data gaps in MODIS images due to cloud cover, and by the

temporal resolution of SMOS. This paper evaluated the potential of assimilating DisPATCh data
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into the force-restore soil moisture model, forced by the ERA-interim precipitation data in order
to obtain daily SSM at 1 km resolution. A variational scheme was used for root-zone soil moisture
analysis taken as a buffer variable, together with a sequential approach for the update of SSM.
The approach was tested during a one year period (2014) over two semi arid regions: 1) the Yanco

zone in Australia and 2) the Tensift-Haouz basin in Morocco.

The performance of the data assimilation was first evaluated at the time of DisPATCh availabil-
ity in order to check if the analyzed SSM showed an improvement with regards to the original
products. Results showed that the analyzed SSM series were closer to the in sifu measurement
than DisPATCh (1 km resolution), model open loop (12.5 km resolution) and L3 SMOS SSM
estimates (25 km resolution). The temporal statistics, when DisPATCh data were available,
indicate an increase of r from 0.61 to 0.77 for downscaled data and up to 0.81 after assimilation.
The bias was also reduced from 0.04 to 0.02 m3 m—3 after downscaling, and ubRMSE decreased
from 0.07 to 0.06 m> m~3 after assimilation of DisPATCh. The second step consisted in evaluating
the analyzed SSM for the full time-series in order to assess the potential of interpolating SSM
when the DisPATCh data was not available. The assimilation of DisPATCh data into the simple
LSM improved quasi systematically the dynamic of the SSM with respect to the open-loop,
as evidenced by enhanced r (from 0.53 to 0.70) and ubRMSE (from 0.07 to 0.06 m? m3).
These results showed that the disaggregated SSM was able to improve the representation of the
surface processes occurring at both fine and coarse scales, even when coarse scale and inaccurate
meteorological data including rainfall were used. These results corroborate the study of Merlin
et al. (2006), based on synthetic data showing that assimilation of a SSM downscaled product
can compensate error on precipitation input data for the monitoring of SSM. Another interesting

result was that the maps of yearly average SSM were consistent with the main hydrological char-
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acteristics of both catchment (rivers, wetlands and irrigated areas). As future work, this approach
will be applied and evaluated using the entire time series of SMOS/DisPATCh (6 years) to capture

the inter-annual variability, and on other validation sites covering different eco-climatic conditions.

This study opens perspectives for developing new remote sensing-based methods in order to
retrieve irrigation water inputs at 1 km resolution, and/or to improve precipitation estimates. In
particular, several studies have been undertaken to estimate and/or improve precipitation estimates
based on remotely sensed coarse-scale SSM (Brocca et al. 2013, 2014; Pellarin et al. 2008, 2013).
A continuous SSM data in space and time could allow the disaggregation of coarse-scale pre-
cipitation data from re-analysis data sets at 1 km resolution for hydrological and agronomical
applications. Likewise, 1 km daily irrigation input data set could help improve knowledge on how

water is used for irrigation purposes.
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TABLE 1. Main characteristics of validation sites.

Country ‘ Station ‘ Longitude WGS84 (°) ‘ Latitude WGS84 (°) ‘ Elevation (m) ‘ Land use ‘ SM 0-5 cm (% of obs) ‘ Precipitation (mm) ‘ Irrigation

Morocco | Sidi Rahal ‘ -7.3535 ‘ 31.7035 ‘ 767 ‘ Dryland crop/grazing ‘ 91.5 ‘ 398 ‘
Yanco 1 145.8490 -34.6288 120 Dryland crop/grazing 67.7 294
Yanco 2 146.1103 -34.6547 130 Grazing 100.0 323
Yanco 8 146.4140 -34.8470 149 Grazing 98.6 374
Australia Yanco 9 146.0163 -34.9678 122 Crop 100.0 329 X
Yanco 10 146.3099 -35.0054 119 Grazing 95.3 368
Yanco 12 146.1689 -35.0696 120 Crop/grazing 79.2 345
Yanco 13 146.3065 -35.0903 121 Gazing 66.0 368
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013 TABLE 2. Comparison between in situ and ERA-interim precipitation: annual bias and correlation coefficient

o1a 1 for accumulating precipitation of 1, 3, 5 and 10 days; n is the number of comparison days.

Country Station n Precipitation in situ  Precipitation ECMWF | bias (mm) r r3days rSdays r10days

Morocco | Sidi Rahal 334 393 265.3 127.7 0.93 0.94 0.95 0.96
Yanco 1 245 294.6 258.7 35.9 0.44 0.6 0.62 0.63
Yanco 2 365 358.6 323.3 353 0.48 0.59 0.6 0.59
Yanco 8 No data No data 350.8 No data Nodata Nodata Nodata Nodata

Australia | yanco 9 365 299.2 329.2 -30 0.5 0.64 0.67 0.66
Yanco 10 342 187.6 327.3 -139.7 0.18 0.51 0.62 0.69
Yanco 12 256 260.2 242.9 17.3 0.66 0.76 0.79 0.8
Yanco 13 249 249.4 282.9 -33.5 0.59 0.69 0.72 0.74
Average 274.9 302.2 -27.2 0.48 0.63 0.67 0.69
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015 TABLE 3. Temporal statistics and their 95% confidence intervals are provided of all stations between SMOS

916 L3, Dis

TCh, open loop and analyzed SSM with respect to in situ measurement; r is the correlation coefficient,
oi7 RMSE is the root mean square error, ubRMSE is the unbiased-RMSE and n is the number of comparison days.

ots  With a p-value <0.01 for all sites, statistics are significant.

bias (m* m"3) RMSE (m* m %) ubRMSE (m* m %)

Stations. ‘

Country ‘ SMOS DisPATCh OL Analysed ‘ SMOS DisPATCh OL Analysed ‘ SMOS DisPATCh oL Analysed ‘ SMOS DisPATCh oL Analysed

Morocco | Sidi Rahal | 104 ‘ 0.64(+0.12)  0.82(:0.06)  0.74(+0.06) ~ 0.87(:0.05) ‘ -0.01(£0.01)  -0.01(0.01)  0.01(0.01)  -0.01(:0.01) ‘ 0.06(0.01)  0.05(:0.01)  0.06(0.01)  0.04(+0.01) ‘ 0.06(:0.01)  0.05(:0.01)  0.06(+0.01)  0.04(:0.01)
Yanco 1 | 104 | 0.69(:0.10)  0.76(+0.08) 0.63(£0.12)  0.80(£0.07) | 0.06(x0.01) ~ 0.02(0.01)  0.08(£0.01)  0.04(x0.01) | 0.08(+0.01) 0.06(0.01) 0.09(:0.01) 0.06(+0.01) | 0.06(x0.01) 0.06(:0.01) 0.05(+0.01) 0.05(:0.01)
Yanco2 | 111 | 047(£0.14)  0.69(+0.09) 0.65(£0.11)  0.79(:0.07) | -0.03(£0.01) -0.03(+0.01)  0.03(£0.01) -0.01(:0.01) | 0.08(+0.01) 0.08(0.01) 0.07(:001) 0.06(+0.01) | 0.07(x0.01) 0.07(:0.01) 0.06(+0.01) 0.05(:0.01)
Yanco8 | 100 | 0.62(£0.12)  0.84(+0.06) 046(£0.16) 0.85(£0.05) | 0.06(0.01)  0.02(=0.01)  0.04(£0.01)  0.02(x001) | 0.08(:0.01) 0.04(=001) 0.07(£0.01) 0.04(=0.00) | 0.06(0.01) 0.04(=£0.01)  0.06(=0.01)  0.03(:0.00)

Australia | Yanco9 | 122 | 0.66+0.10)  0.82+0.06)  0.50+£0.12)  0.84+0.05) | -0.02(+0.01)  0.01(£001)  -0.01(x0.01)  0.01(0.01) | 0.07(0.01) 0.06(0.01) 0.06(0.01) ~ 0.05(::0.01) | 0.06(+0.01) 0.06(+0.01) ~ 0.05(0.01) ~ 0.05(0.01)
Yanco 10 | 114 | 0.68(£0.10)  0.84(£0.05)  0.69(+0.10) 0.88(:0.04) | 0.04(:0.01)  0.02(£0.01)  0.04(:001)  0.03(+0.01) | 0.08(£0.01) 0.05(20.01) 0.06(:0.01) 0.04(£0.00) | 0.07(+0.01) 0.04(:0.01)  0.04(20.01)  0.03(-0.00)
Yanco 12 79 65(+£0.13)  0.66(+0.13)  0.62(+0.14)  0.70(£0.12) | -0.04(+£0.01)  -0.08(£0.01) -0.04(+0.01) -0.06(£0.01) | 0.07(£0.01)  0.10(=0.01) ~ 0.07(£0.01)  0.08(£0.01) | 0.06(£0.01) ~ 0.06(+0.01) ~ 0.06(+0.01)  0.05(+0.01)
Yanco 13 69 | 052(+£0.17)  0.74(4£0.11)  0.52(£0.17)  0.78(+£0.09) | 0.04(£0.02)  0.01(+0.01)  0.02(£0.01) 0.0(£0.01) 0.09(+£0.02)  0.05(:0.01)  0.06(£0.01)  0.04(£0.01) | 0.08(£0.02)  0.04(£0.01) ~ 0.05(£0.01) ~ 0.04(:0.01)

average 0.62 0.77 0.60 0.81 0.04 0.02 0.04 0.02 0.08 0.06 0.07 0.05 0.07 0.05 0.05 0.04
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TABLE 4. GDOWN results.

Country Site DisPATCh  Analyzed
Morocco | Sidi Rahal 0.232 0.330
Yanco 1 0.119 0.112
Yanco 2 0.352 0.530
Yanco 8 0.571 0.314
Australia Yanco 9 0.014 0.067
Yanco 10 0.108 0.235
Yanco 12 -0.111 -0.066
Yanco 13 0.282 0.220
average 0.196 0.218
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919

920

921

922

TABLE 5. Temporal statistics and their 95% confidence intervals of open loop and analyzed SSM at all
stations with respect to in sifu measurement; r is the correlation coefficient, RMSE is the root mean square error,
ubRMSE is the unbiased-RMSE and n is the number of comparison days. With a p-value <0.01 for all sites,

statistics are significant.

‘ r ‘ bias (m® m~3) ‘ RMSE (m* m~3) ‘ ubRMSE (m* m~3)
Country ‘ Station ‘ n ‘ oL Analysed 25 km Analysed 1 km ‘ oL Analysed 25 km Analysed 1 km ‘ oL Analysed 25 km Analysed 1 km ‘ oL Analysed 25 km Analysed 1 km
Morocco | Sidi Rahal | 334 ‘ 0.73(:0.05)  0.66(:0.08) 0.83 (+:0.03) ‘ 0.00(£0.01)  0.01(0.01) 0.01(::0.01) ‘ 0.07(:0.00)  0.06(+0.00) 0.06(:£0.00) ‘ 0.07(::0.00)  0.06(+0.00) 0.06(-:0.00)
Yancol | 247 | 0.60(0.08)  0.49(::0.10) 0.64(0.07) | 0.08(0.01)  0.06(0.01) 0.05(:001) | 0.10(£0.01)  0.08(:0.01) 0.08(:0.01) | 0.06(:0.01)  0.05(+0.01) 0.06(::0.01)
Yanco2 | 365 | 0.66(£0.05)  0.30(0.12) 0.71(£0.05) | 0.03(x0.01)  0.01(=0.01) 0.03(£0.01) | 0.07(0.01)  0.07(£0.01) 0.08(£0.01) | 0.06(0.01)  0.07(£0.01) 0.08(:0.01)
Yanco8 | 360 | 0.40(+0.08)  0.56(::0.09) 0.66(:0.06) | 0.03(0.01)  0.04(:0.01) 0.04(::001) | 0.08(£0.00)  0.07(+:0.01) 0.07(::0.00) | 0.07(+0.00)  0.05(:0.00) 0.06(-:0.00)
Australia | Yanco9 | 365 | 0.42(20.08)  0.52(£0.09) 0.74(0.05) | 0.02(0.01)  0.03(=0.01) 0.02(0.01) | 0.07(0.00)  0.06(0.00) 0.07(0.00) | 0.07(0.00)  0.06(=0.00) 0.06(:0.00)
Yanco 10 | 348 | 0.47(£0.07)  0.63(0.08) 0.70(:0.04) | 0.03(0.01)  0.04(0.01) 0.04(::001) | 0.08(£0.00)  0.06(:0.00) 0.07(:0.00) | 0.07(£0.00)  0.05(:0.00) 0.06(::0.00)
Yanco 12 | 289 | 0.56(£0.07)  0.37(+0.13) 0.70(:0.06) | 0.05(x0.01)  0.04(0.01) 0.05(:001) | 0.10(£0.01)  0.08(:0.01) 0.09(:0.01) | 0.07(0.01)  0.07(+0.01) 0.07(:0.01)
Yanco 13 | 241 | 0.35(0.10)  0.41(£0.14) 0.61(20.07) | 0.02(0.01)  0.02(=0.01) 0.04(0.01) | 0.08(0.01)  0.07(+0.01) 0.07(0.01) | 0.08(0.01)  0.06(0.01) 0.07(:0.01)
average 0.53 0.49 0.70 0.03 0.03 0.03 0.08 0.08 0.07 0.07 0.06 0.06
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