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Chapter 9
Automated identification of herbarium
specimens at different taxonomic levels

Jose Carranza-Rojas, Alexis Joly, Herve Goeau, Erick Mata-Montero, and Pierre
Bonnet

Abstract The estimated number of flowering plant species on Earth is around
400,000. In order to classify all known species via automated image-based ap-
proaches, current datasets of plant images will have to become considerably larger.
To achieve this, some authors have explored the possibility of using herbarium
sheet images. As the plant datasets grow and start reaching the tens of thousands
of classes, unbalanced datasets become a hard problem. This causes models to be
inaccurate for certain species due to intra- and inter-specific similarities. Addition-
ally, automatic plant identification is intrinsically hierarchical. In order to tackle this
problem of unbalanced datasets, we need ways to classify and calculate the loss of
the model by taking into account the taxonomy, for example, by grouping species at
higher taxon levels. In this research we compare several architectures for automatic
plant identification, taking into account the plant taxonomy to classify not only at
the species level, but also at higher levels, such as genus and family.
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9.1 Introduction

In general, Deep Learning classification has focused mostly on flat classification,
i.e., hierarchies and knowledge associated with higher levels are usually not taken
into account. However, in the biological domain, the approach traditionally followed
by taxonomists is intrinsically hierarchical. Single-access and multiple-access iden-
tification keys are an example of such an approach [3]. They are used to identify
organisms mostly at the species level but sometimes at the genus and family levels
too. To our knowledge, most of the research on image-based automated plant iden-
tifications classify plant images into species and do not exploit knowledge about
other taxonomic levels.

Very few studies also have attempted to use herbarium images for plant identi-
fication. With new deep learning methods, large datasets of herbarium images such
as those published by iDigBio 1 [1] [2], which comprises millions of images of
thousands of species from around the globe, become very useful. These datasets are
suitable for deep learning approaches and include as metadata all levels of the as-
sociated taxonomy. In [4] a GoogleNet model with modifications is used to classify
species from the Mediterranean region and Costa Rica. It shows promising results
in terms of accuracy when training and testing with herbarium sheet images, as well
as when doing transfer learning from the Mediterranean region to Costa Rica. How-
ever, classifications are conducted only at the species level and do not use additional
knowledge related to other taxonomic levels.

Herbaria normally hold many samples that have not been identified at the species
level [5] but they make an effort to at least have them identified at the genus or
family level. It is therefore important to help streamline the identification process
with tools that support identifications at multiple levels (probably with different
levels of accuracy).

One of the biggest issues in plant identification is the lack of balanced datasets.
At the species level, most available datasets are unbalanced due to taxonomically
uneven nature of sample collection processes [3]. So, an expected intuition in this
domain is to exploit higher levels of the taxonomy in order to have more images of
a single class and use that knowledge to help the classification at lower levels of the
taxonomy, such as the species at the bottom. In other words, the unbalanced dataset
issue could be tackled by using a class hierarchy and doing classifications from top
to bottom.

In this work we compare several deep learning architectures to do herbarium
specimen identification at not only species level, but also other taxonomic levels
such as genus and family. We explore architectures that do several taxonomic level
classifications at the same time by sharing parameters, as well as separated flat clas-
sifiers, independent from each other.

The rest of this manuscript is organized as follows: Section 9.2 presents relevant
related work. Section 9.3 and Section 9.4 cover methodological aspects and exper-

1 https://www.idigbio.org/
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iment design, respectively. Section 9.5 describes the results obtained. Section 9.6
presents the conclusions and, finally, Section 9.7 summarizes future work.

9.2 Related Work

PlantCLEF is the largest and best known plant identification challenge [6]. It has
helped to create bigger datasets each year as well as allowed participants to gradu-
ally improve the techniques (mostly deep learning based models) to achieve better
accuracy. So far, PlantCLEF has focused on species level identifications only.

The same situation happens with apps for automated image-based plant identi-
fication such as LeafSnap [7] and Pl@ntNet [8]. These apps are also focused on
classification only at the species level; however, it would be useful in cases where
the accuracy is low, to have predictions at other taxonomic levels such as genus and
family.

Very few studies have tackled the problem of hierarchical classification. Silla et
al. [9] present a very comprehensive survey about different techniques used for hier-
archical classification. Wu et al. [10] discuss how there are no even proper standards
to evaluate hierarchical classification systems, and use Naive Bayes approach on text
data. Both studies are focused on traditional machine learning, not deep learning.

Shahbaba et al. [11] create a new method using a Bayesian form of the soft-
max function, adding a prior that introduces correlations between the parameters of
nearby classes of the hierarchy. This approach was also developed for traditional
machine learning and not deep learning. Nevertheless it could be easily adjustable
to deep learning. This approach is also useful when there is a prior knowledge of
the class hierarchy.

Yan et al. [12] create a new architecture named Hierarchical Deep CNN (HD-
CNN), which uses 2 levels of classification. The first level is more general and
then the second level is composed by several smaller classifiers per each class. This
means that the amount of classifiers grows after the first classification. Furthermore,
an error during the first classification will lead to error propagation to the second
layer of classifiers.

There have been a lot of studies where the hierarchy is learned via unsupervised
learning. In this paper, we focus on an already defined hierarchy which is a plant
taxonomy. It is the result of decades if not centuries of work in the field of taxonomy.
Based on that result, we don’t calculate automatically the class hierarchy.

In particular, to our knowledge, no plant identification system or study has been
proposed that actually exploits the class hierarchy using the plant taxonomy. In [13]
authors do analyze the accuracy per species but also per genera and families, to
see which species are better identified and also to evaluate if the amount of images
per species has a direct impact over the accuracy obtained per class. They conclude
that species with around 100 images are very well identified with some exceptions.
Indeed, a few species are very well identified even with a very small number of
images. They also provide accuracy per genus and family.
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9.3 Methodology

Previous work in [4] has tackled the problem of using a big dataset with herbarium
images for automatic plant identification. We describe the herbarium dataset taken
from this study, and used for this research. We have also added information about
genera and families, beyond species, in order to test the hierarchical architectures.

9.3.1 Datasets

Herbarium data used in the experiments comes from the iDigBio portal, which ag-
gregates and gives access to millions of images for research purposes. As illustrated
in Figure 9.1, typical herbarium sheets result in a significantly affected visual rep-
resentation of the plant, with a typical monotonous aspect of brown and dark green
content and a modified shape of the leaves, fruits or flowers due to the drying process
and aging. Moreover, the sheets are surrounded by handwritten/typewritten labels,
bar codes, institutional stamps and reference colour bar patterns for the most recent
ones.

Fig. 9.1 Arctium minus (hill) bernh. herbarium sheet sample taken from the Herbarium of Paris.
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Additionally, ImageNet weights were used to pre-train the deep learning model.
We only used the weights of a pre-trained model on ImageNet, not the dataset itself.
Details of the used datasets are presented below:

• Herbaria1K (H1K): this dataset covers 1,191 species, 918 of which are included
in the 1,000 species of the PlantCLEF dataset from 2015 [14]. Obtained through
iDigBio, the dataset contains 202,445 images for training and 51,288 images for
testing. All images have been resized to a width of 1,024 pixels and their height
proportionally, given the huge resolutions used in herbarium images. This is an
unbalanced dataset, as explained in next sections of this manuscript. In terms of
genera, it contains a total of 498 genera, and regarding families it has a total of
124 families.

• ImageNet is the most widely used dataset by the machine learning research com-
munity. It contains 1,000 generalist classes and more than a million images [15].
It is the de facto standard for pre-training deep learning models. We use only the
weights of a trained model with this dataset for transfer learning proposes.

Table 9.1 Datasets used in this research
Name Acronym Source Type # of Images # of Species/Classes
Herbarium1K H1K iDigBio Herbarium Sheets 253,733 1,191
ImageNet ImageNet (I) ImageNet Challenge Generic Images 1M 1000

9.3.2 Unbalanced dataset

Figure 9.2 shows how unbalanced the H1K dataset is. According to the work in [13],
the H1K dataset allows high identification rates with their deep learning model after
100 images per species. As shown in the figure, around 60% of the species have
more than 100 images, and 40% less than that. Some species have lots of images,
for example 324 species have more than 300 images, but in contrast, 311 species
have less than 11 images in total for both training and testing.

9.3.3 Architectures

The basis architecture used in our study is an extension of the GoogleNet archi-
tecture with batch norm [16], as used in [4] for plant identification on herbarium
specimens. The main difference is at the last fully connected layer. Table 9.2 shows
the modified GoogleNet network used in this research, taken from [4]. The network
was implemented in Lasagne [17], using Theano [18].
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Fig. 9.2 Image per class distribution showing the unbalanced H1K dataset

Table 9.2 GoogleNet architecture modified with Batch Normalization, taken from [4]
Type Patch size / Stride Output Size Depth Params Ops

convolution 7x7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0

batch norm 56x56x64 0
LRN 56x56x64 0

convolution 3x3/1 56x56x192 2 112K 360M
max pool 3x3/2 28x28x192 0

batch norm 28x28x192 0
LRN 28x28x192 0

inception (3a) 28x28x256 2 159K 128M
inception (3b) 28x28x480 2 380K 304M

max pool 3x3/2 14x14x480 0
batch norm 14x14x480 0

inception (4a) 14x14x512 2 364K 73M
inception (4b) 14x14x512 2 437K 88M
inception (4c) 14x14x512 2 463K 100M
inception (4d) 14x14x528 2 580K 119M
inception (4e) 14x14x832 2 840K 170M

max pool 3x3/2 7x7x832 0
batch norm 7x7x832 0

inception (5a) 7x7x832 2 1072K 54M
inception (5b) 7x7x1024 2 1388K 71M

avg pool 7x7/1 1x1x1024 0
batch norm 1x1x1024 0

linear 1x1x10000 1 1000K 1M
softmax 1x1x10000 0
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9.3.3.1 Baseline: Flat Classification Model (FCM)

In order to evaluate the performance of adding hierarchies to the architecture clas-
sification, a first base line is set based on a FCM. Since we are classifying not only
species but also genera and families, the flat approach requires 3 different instances
of the same model, with different number of outputs on the last dense layer and soft-
max, according to the dataset label size for each taxonomic level. Figure 9.3 shows
the 3 main building blocks that will be used on the next sections with information
about the models. For species we have a total of 1191 outputs, for genera 498 and
for families 124. These output sizes are the same across all architectures.

Feature	Selector	
Dense	Layer

Concatenation	
Layer

Fully	Connected	
Layer

With	Softmax

Fig. 9.3 Representation of some building blocks of the different architectures.

Figure 9.4 shows how the flat model looks like. The model is basically a
GoogleNet [19] model, modified with Parametric REctified Linear Unit (PRELU)
and batch normalization for faster convergence. A total of 3 different flat models
were deployed: one for species, one for genera, and one for families. The 3 models
are completely independent and do not share any parameters. They also have their
own training and parameter update process.

9.3.3.2 Multi-Task Classification Model (MCM)

Another approach to calculate accuracy at different taxonomic levels is by using
a model where the different classifiers share the same deep network. Multi-Task
Classification Model (MCM) implements one classifier per taxonomic level, in this
case 3 classifiers, one for species, one for genera and one for families. However, each
classifier is connected to the last pooling layer of the GoogleNet model, allowing to
do 3 classifications at the same time and sharing the same parameters of the model
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Family
OutputGoogleNet

Genus
OutputGoogleNet

Species 
OutputGoogleNet

Last Pooling Layer

Last Pooling Layer

Last Pooling Layer

Fig. 9.4 Separated Flat Classification Model (FCM) for species, genera and family

instead of having 3 separate models with their own parameters. The intuition behind
is that the network will learn features from the 3 taxonomic levels at the same time.
Figure 9.5 shows how a single main GoogleNet model is shared between 3 different
classifiers, each one assigned to classifying a different taxonomic level. This model
is inspired by the work of [20], where the authors identify multi-digit numbers from
houses, using a classifier per digit.

Family
Output

Genus
OutputGoogleNet

Species 
Output

Last Pooling Layer

Fig. 9.5 A Multi-Task Classification Model (MCM) for species, genera and family. Parameters are
shared between the 3 taxonomic levels, similar to the work of [20] for multi-digit identification of
house numbers.
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9.3.3.3 TaxonNet: Hierarchical Classification

We present the following architecture that attempts to capture features at several
levels of the plant taxonomy. We call this architecture TaxonNet, as it takes into
account several levels of the plant taxonomy as the hierarchy, and uses knowledge
of the previous taxonomic level classification for the next one, as shown in Figure
9.6.

Family
Output

Genus
Output

Species
Output

GoogleNet

Last Pooling Layer

Fig. 9.6 TaxonNet used to identify species, genera and family. The architecture allows to take into
account previous classification of another taxonomic level for the next one

We modified the GoogleNet model in the following fashion: the last fully con-
nected layer which was used normally for a flat species classification is now used
for the higher taxonomic level, in this case the Family. The loss of this fully con-
nected layer will be calculated based on family labels of each image. Just before
the softmax, the feature vector of the family fully connected layer output is con-
catenated with the last pooling layer feature vector. The idea behind this, is to add
a new fully connected layer for the genus, which will base its computations on both
the family fully connected feature vector, and the raw feature vector coming from
the Convolutional Neural Network (CNN). In other words, the features learned to
recognize the family will be used as a context to learn new complementary features
at the genus level. Finally, we apply the same concept with the species: we add a
new fully connected layer for species, which takes as input the concatenation of the
genus fully connected layer output plus the last pooling layer feature vector from the
CNN. In all cases, there is a middle feature selector layer in red, as shown in Figure
9.3, which allows the model to learn which features to take into account either from
the original GoogleNet or from the previous taxonomic classification.
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It is important to notice that the design allows the model to make mistakes at
higher levels of the taxonomy, such as family or genus, but it can have good accu-
racy at the species level since it handles the raw feature vectors coming from the
CNN. In other words, an error at higher levels of the taxonomy won’t necessarily
cause an error propagation to lower levels. It also allows to do classification at all
taxonomic levels, thus, each one has its own loss which is back-propagated to the
whole network. Our intuition is that the whole network learns features at all taxo-
nomic levels, instead of having several complete CNN for each level. This allows to
share parameters between levels, for a smaller network.

9.4 Experiments

By using the previous explained models we ran several experiments to measure the
effect of taking into account different taxonomic levels for the classification.

In all cases the used learning rate was 0.0075 and weight decay of 0.0002. The
total number of training iterations was 6300 with a mini-batch size of 32 images,
with 5 epochs. The number of validation iterations was 1500, the same as for testing
iterations.

9.4.1 Baseline Experiments: Flat Classification Model (FCM)

The first experiments are based on running the separated models for species, genus
and family without sharing any type of parameters. This is considered as the base-
line, as there are no hierarchical characteristics at all, but just 3 models completely
independent from each other.

9.4.2 Architecture Comparison Experiment

This experiment consists on a comparison of the different architectures at the dif-
ferent taxonomic levels. The experiment compares the MCM approach, where pa-
rameters are shared between the different classifiers, with the intention to see how
the accuracy and loss behaves as the model is trained, compared to separated model
per taxonomic level. The TaxonNet architecture is also compared with the separated
models and the MCM aproach.
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9.5 Results

9.5.1 FCM Baseline Results

First experiments consisted on running 3 separated FCM models to explore the loss
and accuracy behavior at each taxonomic level. We consider this as the baseline
results, as they are flat classifiers that do not share any hierarchical characteristics
in terms of classification.

The results for all the FCM are shown in Figures 9.7, 9.8 and 9.9. In particular,
FCM for species gets Top-1 63.02% and Top-5 is about 82.93% as shown in Figure
9.7. In case of the FCM for genus the accuracy goes up to Top-1 of 70.51% and
Top-5 of 87.85%, as shown by Figure 9.8. For the family, Figure 9.9 shows the best
results for both Top-1 and Top-5, with 75.55% and 93.43% respectively.

It is important to notice that both genus and family show an improvement com-
pared to the species. This makes sense as genus and family have more images per
class and also both models have less classes, 498 for genus and 124 for families.
This compensates the difficulty of having a higher intra-class variability at that lev-
els.

9.5.2 Architecture Comparison Results

9.5.2.1 MCM Top-1 and Top-5 behavior

In case of the MCM architecture, for Top-1 accuracy the results show 64.32% for
species, 75.95% for genus, and for family 88.17%, as shown by Figure 9.10. The
parameter sharing allows the model to predict the family with a very high accuracy.
In case of Top-5 accuracy, MCM results in 71.66% for species, 83.23% for genus,
and 92.99% for family. Family classification is again the best among the 3, as shown
by Figure 9.11.

9.5.2.2 TaxonNet Top-1 and Top-5 behavior

In Figure 9.12, TaxonNet architecture shows for Top-1 accuracy 62.39%, 76.23%,
86.92% for species, genus and family, respectively. Again, similarly to MCM, the
parameter sharing allows the model to predict the genus and family with a very high
accuracy. For Top-5 accuracy, as shown by Figure 9.13, TaxonNet results in 70.20%,
82.36% and 92.80% for species, genus and family, respectively, again being the
family classification the best among the 3.
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Fig. 9.7 FCM for species showing Top-1 and Top-5 accuracy and losses.
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Fig. 9.8 FCM for genera showing Top-1 and Top-5 accuracy and losses.
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Fig. 9.9 FCM for family showing Top-1 and Top-5 accuracy and losses.
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Fig. 9.10 MCM results for species, genus and family on Top-1 accuracy

[b]0.5

0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

10
0

70
0

13
00

19
00

25
00

31
00

37
00

43
00

49
00

55
00

61
00

66
00

72
00

78
00

84
00

90
00

96
00

10
20
0

10
80
0

11
40
0

12
00
0

12
60
0

13
10
0

13
70
0

14
30
0

14
90
0

15
50
0

16
10
0

16
70
0

17
30
0

17
90
0

18
50
0

19
00
0

19
60
0

20
20
0

20
80
0

21
40
0

22
00
0

22
60
0

23
20
0

23
80
0

Ac
cu
ra
cy

Lo
ss

Iterations

Training	Loss Validation	Loss
MCM	Species	Top-5 MCM	Genus	Top-5
MCM	Family	Top-5

Fig. 9.11 MCM results for species, genus and family on Top-5 accuracy

9.5.2.3 Architecture Comparisons

Our results demonstrate that for species, Top-1 accuracy is 63.02%, 64.32%, 62.39%
for FCM, MCM and TaxonNet, respectively, showing the best results on the MCM
architecture by a margin of 1% approximately.

Regarding genus, our result shows a Top-1 accuracy is 70.51%, 75.95%, 76.23%
for FCM, MCM and TaxonNet, respectively. In this case, the degradation of the flat
classifier for the genus is improved significantly by both hierarchical architectures,
with the TaxonNet being the best one.

Finally, for family, our result shows a Top-1 accuracy is 75.55%, 88.17%, and
86.92% for FCM, MCM and TaxonNet. Here the improvement by both hierarchical
architectures is very important compared to the flat classifier on Top-1.
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Fig. 9.12 TaxonNet results for species, genus and family on Top-1 accuracy
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Fig. 9.13 TaxonNet results for species, genus and family on Top-5 accuracy

9.6 Conclusions

The best accuracy results for species and genus are provided by the independent Flat
Classification Model (FCM), but at the cost of 3 times more GPU consumption as
well as 3 times more parameters. In case of the family, both the Multi-Task Classifi-
cation Model (MCM) and TaxonNet architectures provide similar results to the flat
model.

In general, whatever architecture is used, the classification accuracy increases
significantly with the taxonomic level and reaches high classification accuracy at the
family level whereas such groups are very heterogeneous visually as they include a
lot of species.

The goal of this research was to study several architectures for automatic plant
identification, taking into account the plant taxonomy to classify not only at the
species level, but also at higher levels, in particular genus and family. In this regard,
we introduced two architectures on top of the GoogleNet basis convolutional neural



9 Automated identification of herbarium specimens at different taxonomic levels 159

network: one multi-task classifier dedicated to do 3 classifications at the same time,
and one hierarchical architecture (called TaxonNet) aimed at capturing features at
several levels of the plant taxonomy. Our experiments did show that the multi-task
network as well as the hierarchical one allow considerable improvements compared
to having separate flat classifiers, in particular for predicting the genus and the fam-
ily.

9.7 Future Work

This work uses knowledge of higher levels of taxonomy for species classification,
and allows to classify at higher levels of the taxonomy such as genus and family.
However, it uses traditional fully connected layers with traditional cross entropy loss
and softmax calculations. Next steps include exploiting the class hierarchy to cal-
culate a different loss functions using Bayesian approaches of hierarchical softmax
functions. Furthermore, hierarchical regularization terms could be defined to regu-
larize the loss calculation using the class hierarchy. Interesting future experiments
include understanding how using the taxonomy impacts the classification of new,
unseen classes, at higher taxon levels. For instance, a species may not have been
included during training but the genus related to that species may be, thus, allowing
the system to provide an identification at that level could be of a strong interest.
Additional architectures are also needed to be explored such as Long Short-Term
Memory (LSTM) based architectures for the taxonomy.
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