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Automated identification of herbarium specimens at different taxonomic levels
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Introduction

In general, Deep Learning classification has focused mostly on flat classification, i.e., hierarchies and knowledge associated with higher levels are usually not taken into account. However, in the biological domain, the approach traditionally followed by taxonomists is intrinsically hierarchical. Single-access and multiple-access identification keys are an example of such an approach [START_REF] Mata-Montero | Automated Plant Species Identification: Challenges and Opportunities[END_REF]. They are used to identify organisms mostly at the species level but sometimes at the genus and family levels too. To our knowledge, most of the research on image-based automated plant identifications classify plant images into species and do not exploit knowledge about other taxonomic levels.

Very few studies also have attempted to use herbarium images for plant identification. With new deep learning methods, large datasets of herbarium images such as those published by iDigBio1 [START_REF] Matsunaga | A computational-and storage-cloud for integration of biodiversity collections[END_REF] [START_REF] Page | Digitization of biodiversity collections reveals biggest data on biodiversity[END_REF], which comprises millions of images of thousands of species from around the globe, become very useful. These datasets are suitable for deep learning approaches and include as metadata all levels of the associated taxonomy. In [START_REF] Carranza-Rojas | Going deeper in the automated identification of herbarium specimens[END_REF] a GoogleNet model with modifications is used to classify species from the Mediterranean region and Costa Rica. It shows promising results in terms of accuracy when training and testing with herbarium sheet images, as well as when doing transfer learning from the Mediterranean region to Costa Rica. However, classifications are conducted only at the species level and do not use additional knowledge related to other taxonomic levels.

Herbaria normally hold many samples that have not been identified at the species level [START_REF] Bebber | Herbaria are a major frontier for species discovery[END_REF] but they make an effort to at least have them identified at the genus or family level. It is therefore important to help streamline the identification process with tools that support identifications at multiple levels (probably with different levels of accuracy).

One of the biggest issues in plant identification is the lack of balanced datasets. At the species level, most available datasets are unbalanced due to taxonomically uneven nature of sample collection processes [START_REF] Mata-Montero | Automated Plant Species Identification: Challenges and Opportunities[END_REF]. So, an expected intuition in this domain is to exploit higher levels of the taxonomy in order to have more images of a single class and use that knowledge to help the classification at lower levels of the taxonomy, such as the species at the bottom. In other words, the unbalanced dataset issue could be tackled by using a class hierarchy and doing classifications from top to bottom.

In this work we compare several deep learning architectures to do herbarium specimen identification at not only species level, but also other taxonomic levels such as genus and family. We explore architectures that do several taxonomic level classifications at the same time by sharing parameters, as well as separated flat classifiers, independent from each other.

The rest of this manuscript is organized as follows: Section 9.2 presents relevant related work. Section 9.3 and Section 9.4 cover methodological aspects and exper-iment design, respectively. Section 9.5 describes the results obtained. Section 9.6 presents the conclusions and, finally, Section 9.7 summarizes future work.

Related Work

PlantCLEF is the largest and best known plant identification challenge [START_REF] Joly | LifeCLEF 2016: Multimedia Life Species Identification Challenges[END_REF]. It has helped to create bigger datasets each year as well as allowed participants to gradually improve the techniques (mostly deep learning based models) to achieve better accuracy. So far, PlantCLEF has focused on species level identifications only.

The same situation happens with apps for automated image-based plant identification such as LeafSnap [START_REF] Kumar | Leafsnap: A computer vision system for automatic plant species identification[END_REF] and Pl@ntNet [START_REF] Joly | A look inside the pl@ntnet experience[END_REF]. These apps are also focused on classification only at the species level; however, it would be useful in cases where the accuracy is low, to have predictions at other taxonomic levels such as genus and family.

Very few studies have tackled the problem of hierarchical classification. Silla et al. [START_REF] Silla | A survey of hierarchical classification across different application domains[END_REF] present a very comprehensive survey about different techniques used for hierarchical classification. Wu et al. [START_REF] Wu | Learning classifiers using hierarchically structured class taxonomies[END_REF] discuss how there are no even proper standards to evaluate hierarchical classification systems, and use Naive Bayes approach on text data. Both studies are focused on traditional machine learning, not deep learning.

Shahbaba et al. [START_REF] Shahbaba | Improving classification when a class hierarchy is available using a hierarchy-based prior[END_REF] create a new method using a Bayesian form of the softmax function, adding a prior that introduces correlations between the parameters of nearby classes of the hierarchy. This approach was also developed for traditional machine learning and not deep learning. Nevertheless it could be easily adjustable to deep learning. This approach is also useful when there is a prior knowledge of the class hierarchy.

Yan et al. [START_REF] Yan | Hd-cnn: Hierarchical deep convolutional neural network for large scale visual recognition[END_REF] create a new architecture named Hierarchical Deep CNN (HD-CNN), which uses 2 levels of classification. The first level is more general and then the second level is composed by several smaller classifiers per each class. This means that the amount of classifiers grows after the first classification. Furthermore, an error during the first classification will lead to error propagation to the second layer of classifiers.

There have been a lot of studies where the hierarchy is learned via unsupervised learning. In this paper, we focus on an already defined hierarchy which is a plant taxonomy. It is the result of decades if not centuries of work in the field of taxonomy. Based on that result, we don't calculate automatically the class hierarchy.

In particular, to our knowledge, no plant identification system or study has been proposed that actually exploits the class hierarchy using the plant taxonomy. In [START_REF] Carranza-Rojas | Automated herbarium specimen identification using deep learning[END_REF] authors do analyze the accuracy per species but also per genera and families, to see which species are better identified and also to evaluate if the amount of images per species has a direct impact over the accuracy obtained per class. They conclude that species with around 100 images are very well identified with some exceptions. Indeed, a few species are very well identified even with a very small number of images. They also provide accuracy per genus and family.

Methodology

Previous work in [START_REF] Carranza-Rojas | Going deeper in the automated identification of herbarium specimens[END_REF] has tackled the problem of using a big dataset with herbarium images for automatic plant identification. We describe the herbarium dataset taken from this study, and used for this research. We have also added information about genera and families, beyond species, in order to test the hierarchical architectures.

Datasets

Herbarium data used in the experiments comes from the iDigBio portal, which aggregates and gives access to millions of images for research purposes. As illustrated in Figure 9.1, typical herbarium sheets result in a significantly affected visual representation of the plant, with a typical monotonous aspect of brown and dark green content and a modified shape of the leaves, fruits or flowers due to the drying process and aging. Moreover, the sheets are surrounded by handwritten/typewritten labels, bar codes, institutional stamps and reference colour bar patterns for the most recent ones. Additionally, ImageNet weights were used to pre-train the deep learning model. We only used the weights of a pre-trained model on ImageNet, not the dataset itself. Details of the used datasets are presented below:

• Herbaria1K (H1K): this dataset covers 1,191 species, 918 of which are included in the 1,000 species of the PlantCLEF dataset from 2015 [START_REF] Goëau | LifeCLEF Plant Identification Task 2015[END_REF]. Obtained through iDigBio, the dataset contains 202,445 images for training and 51,288 images for testing. All images have been resized to a width of 1,024 pixels and their height proportionally, given the huge resolutions used in herbarium images. This is an unbalanced dataset, as explained in next sections of this manuscript. In terms of genera, it contains a total of 498 genera, and regarding families it has a total of 124 families. • ImageNet is the most widely used dataset by the machine learning research community. It contains 1,000 generalist classes and more than a million images [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. It is the de facto standard for pre-training deep learning models. We use only the weights of a trained model with this dataset for transfer learning proposes. .2 shows how unbalanced the H1K dataset is. According to the work in [START_REF] Carranza-Rojas | Automated herbarium specimen identification using deep learning[END_REF], the H1K dataset allows high identification rates with their deep learning model after 100 images per species. As shown in the figure, around 60% of the species have more than 100 images, and 40% less than that. Some species have lots of images, for example 324 species have more than 300 images, but in contrast, 311 species have less than 11 images in total for both training and testing.

Architectures

The basis architecture used in our study is an extension of the GoogleNet architecture with batch norm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], as used in [START_REF] Carranza-Rojas | Going deeper in the automated identification of herbarium specimens[END_REF] for plant identification on herbarium specimens. The main difference is at the last fully connected layer. Table 9.2 shows the modified GoogleNet network used in this research, taken from [START_REF] Carranza-Rojas | Going deeper in the automated identification of herbarium specimens[END_REF]. The network was implemented in Lasagne [START_REF] Dieleman | Lasagne: First release[END_REF], using Theano [START_REF] Development | Theano: A Python framework for fast computation of mathematical expressions[END_REF]. In order to evaluate the performance of adding hierarchies to the architecture classification, a first base line is set based on a FCM. Since we are classifying not only species but also genera and families, the flat approach requires 3 different instances of the same model, with different number of outputs on the last dense layer and softmax, according to the dataset label size for each taxonomic level. Figure 9.3 shows the 3 main building blocks that will be used on the next sections with information about the models. For species we have a total of 1191 outputs, for genera 498 and for families 124. These output sizes are the same across all architectures.
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Fully Connected Layer With Softmax and batch normalization for faster convergence. A total of 3 different flat models were deployed: one for species, one for genera, and one for families. The 3 models are completely independent and do not share any parameters. They also have their own training and parameter update process.

Multi-Task Classification Model (MCM)

Another approach to calculate accuracy at different taxonomic levels is by using a model where the different classifiers share the same deep network. Multi-Task Classification Model (MCM) implements one classifier per taxonomic level, in this case 3 classifiers, one for species, one for genera and one for families. However, each classifier is connected to the last pooling layer of the GoogleNet model, allowing to do 3 classifications at the same time and sharing the same parameters of the model
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Last Pooling Layer Last Pooling Layer Last Pooling Layer Fig. 9.4 Separated Flat Classification Model (FCM) for species, genera and family instead of having 3 separate models with their own parameters. The intuition behind is that the network will learn features from the 3 taxonomic levels at the same time. Figure 9.5 shows how a single main GoogleNet model is shared between 3 different classifiers, each one assigned to classifying a different taxonomic level. This model is inspired by the work of [START_REF] Goodfellow | Multi-digit number recognition from street view imagery using deep convolutional neural networks[END_REF], where the authors identify multi-digit numbers from houses, using a classifier per digit.

Family Output Genus Output

GoogleNet

Species Output

Last Pooling Layer Fig. 9.5 A Multi-Task Classification Model (MCM) for species, genera and family. Parameters are shared between the 3 taxonomic levels, similar to the work of [START_REF] Goodfellow | Multi-digit number recognition from street view imagery using deep convolutional neural networks[END_REF] for multi-digit identification of house numbers.

TaxonNet: Hierarchical Classification

We present the following architecture that attempts to capture features at several levels of the plant taxonomy. We call this architecture TaxonNet, as it takes into account several levels of the plant taxonomy as the hierarchy, and uses knowledge of the previous taxonomic level classification for the next one, as shown in Figure 9.6. We modified the GoogleNet model in the following fashion: the last fully connected layer which was used normally for a flat species classification is now used for the higher taxonomic level, in this case the Family. The loss of this fully connected layer will be calculated based on family labels of each image. Just before the softmax, the feature vector of the family fully connected layer output is concatenated with the last pooling layer feature vector. The idea behind this, is to add a new fully connected layer for the genus, which will base its computations on both the family fully connected feature vector, and the raw feature vector coming from the Convolutional Neural Network (CNN). In other words, the features learned to recognize the family will be used as a context to learn new complementary features at the genus level. Finally, we apply the same concept with the species: we add a new fully connected layer for species, which takes as input the concatenation of the genus fully connected layer output plus the last pooling layer feature vector from the CNN. In all cases, there is a middle feature selector layer in red, as shown in Figure 9.3, which allows the model to learn which features to take into account either from the original GoogleNet or from the previous taxonomic classification.
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It is important to notice that the design allows the model to make mistakes at higher levels of the taxonomy, such as family or genus, but it can have good accuracy at the species level since it handles the raw feature vectors coming from the CNN. In other words, an error at higher levels of the taxonomy won't necessarily cause an error propagation to lower levels. It also allows to do classification at all taxonomic levels, thus, each one has its own loss which is back-propagated to the whole network. Our intuition is that the whole network learns features at all taxonomic levels, instead of having several complete CNN for each level. This allows to share parameters between levels, for a smaller network.

Experiments

By using the previous explained models we ran several experiments to measure the effect of taking into account different taxonomic levels for the classification.

In all cases the used learning rate was 0.0075 and weight decay of 0.0002. The total number of training iterations was 6300 with a mini-batch size of 32 images, with 5 epochs. The number of validation iterations was 1500, the same as for testing iterations.

Baseline Experiments: Flat Classification Model (FCM)

The first experiments are based on running the separated models for species, genus and family without sharing any type of parameters. This is considered as the baseline, as there are no hierarchical characteristics at all, but just 3 models completely independent from each other.

Architecture Comparison Experiment

This experiment consists on a comparison of the different architectures at the different taxonomic levels. The experiment compares the MCM approach, where parameters are shared between the different classifiers, with the intention to see how the accuracy and loss behaves as the model is trained, compared to separated model per taxonomic level. The TaxonNet architecture is also compared with the separated models and the MCM aproach.

Results

FCM Baseline Results

First experiments consisted on running 3 separated FCM models to explore the loss and accuracy behavior at each taxonomic level. We consider this as the baseline results, as they are flat classifiers that do not share any hierarchical characteristics in terms of classification.

The results for all the FCM are shown in Figures 9.7, 9.8 and 9.9. In particular, FCM for species gets Top-1 63.02% and Top-5 is about 82.93% as shown in Figure 9.7. In case of the FCM for genus the accuracy goes up to Top-1 of 70.51% and Top-5 of 87.85%, as shown by Figure 9.8. For the family, Figure 9.9 shows the best results for both Top-1 and Top-5, with 75.55% and 93.43% respectively.

It is important to notice that both genus and family show an improvement compared to the species. This makes sense as genus and family have more images per class and also both models have less classes, 498 for genus and 124 for families. This compensates the difficulty of having a higher intra-class variability at that levels.

Architecture Comparison Results

MCM Top-1 and Top-5 behavior

In case of the MCM architecture, for Top-1 accuracy the results show 64.32% for species, 75.95% for genus, and for family 88.17%, as shown by Figure 9.10. The parameter sharing allows the model to predict the family with a very high accuracy. In case of Top-5 accuracy, MCM results in 71.66% for species, 83.23% for genus, and 92.99% for family. Family classification is again the best among the 3, as shown by Figure 9.11.

TaxonNet Top-1 and Top-5 behavior

In Figure 9.12, TaxonNet architecture shows for Top-1 accuracy 62.39%, 76.23%, 86.92% for species, genus and family, respectively. Again, similarly to MCM, the parameter sharing allows the model to predict the genus and family with a very high accuracy. For Top-5 accuracy, as shown by Figure 9.13, TaxonNet results in 70.20%, 82.36% and 92.80% for species, genus and family, respectively, again being the family classification the best among the 3. 

Architecture Comparisons

Our results demonstrate that for species, Top-1 accuracy is 63.02%, 64.32%, 62.39% for FCM, MCM and TaxonNet, respectively, showing the best results on the MCM architecture by a margin of 1% approximately.

Regarding genus, our result shows a Top-1 accuracy is 70.51%, 75.95%, 76.23% for FCM, MCM and TaxonNet, respectively. In this case, the degradation of the flat classifier for the genus is improved significantly by both hierarchical architectures, with the TaxonNet being the best one.

Finally, for family, our result shows a Top-1 accuracy is 75.55%, 88.17%, and 86.92% for FCM, MCM and TaxonNet. Here the improvement by both hierarchical architectures is very important compared to the flat classifier on Top-1. 

Conclusions

The best accuracy results for species and genus are provided by the independent Flat Classification Model (FCM), but at the cost of 3 times more GPU consumption as well as 3 times more parameters. In case of the family, both the Multi-Task Classification Model (MCM) and TaxonNet architectures provide similar results to the flat model.

In general, whatever architecture is used, the classification accuracy increases significantly with the taxonomic level and reaches high classification accuracy at the family level whereas such groups are very heterogeneous visually as they include a lot of species.

The goal of this research was to study several architectures for automatic plant identification, taking into account the plant taxonomy to classify not only at the species level, but also at higher levels, in particular genus and family. In this regard, we introduced two architectures on top of the GoogleNet basis convolutional neural network: one multi-task classifier dedicated to do 3 classifications at the same time, and one hierarchical architecture (called TaxonNet) aimed at capturing features at several levels of the plant taxonomy. Our experiments did show that the multi-task network as well as the hierarchical one allow considerable improvements compared to having separate flat classifiers, in particular for predicting the genus and the family.

Future Work

This work uses knowledge of higher levels of taxonomy for species classification, and allows to classify at higher levels of the taxonomy such as genus and family. However, it uses traditional fully connected layers with traditional cross entropy loss and softmax calculations. Next steps include exploiting the class hierarchy to calculate a different loss functions using Bayesian approaches of hierarchical softmax functions. Furthermore, hierarchical regularization terms could be defined to regularize the loss calculation using the class hierarchy. Interesting future experiments include understanding how using the taxonomy impacts the classification of new, unseen classes, at higher taxon levels. For instance, a species may not have been included during training but the genus related to that species may be, thus, allowing the system to provide an identification at that level could be of a strong interest. Additional architectures are also needed to be explored such as Long Short-Term Memory (LSTM) based architectures for the taxonomy.
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 91 Fig. 9.1 Arctium minus (hill) bernh. herbarium sheet sample taken from the Herbarium of Paris.
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 93 Fig. 9.3 Representation of some building blocks of the different architectures.
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 9 Figure 9.4 shows how the flat model looks like. The model is basically a GoogleNet[START_REF] Szegedy | Going deeper with convolutions[END_REF] model, modified with Parametric REctified Linear Unit (PRELU) and batch normalization for faster convergence. A total of 3 different flat models were deployed: one for species, one for genera, and one for families. The 3 models are completely independent and do not share any parameters. They also have their own training and parameter update process.
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 96 Fig. 9.6 TaxonNet used to identify species, genera and family. The architecture allows to take into account previous classification of another taxonomic level for the next one
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 98 Fig. 9.8 FCM for genera showing Top-1 and Top-5 accuracy and losses.
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 99 Fig. 9.9 FCM for family showing Top-1 and Top-5 accuracy and losses.
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 9 Fig. 9.10 MCM results for species, genus and family on Top-1 accuracy
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 9 Fig. 9.11 MCM results for species, genus and family on Top-5 accuracy
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 9 Fig. 9.13 TaxonNet results for species, genus and family on Top-5 accuracy
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 91 Datasets used in this research

	Name	Acronym	Source	Type	# of Images # of Species/Classes
	Herbarium1K H1K	iDigBio	Herbarium Sheets 253,733	1,191
	ImageNet	ImageNet (I) ImageNet Challenge Generic Images 1M	1000
	9.3.2 Unbalanced dataset		
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