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Abstract 

Fatty acid sugar esters represent an important class of non-ionic bio-based 

surfactants. They can be synthesized from vinyl fatty acids and sugars with enzyme as 

a catalyst. Herein, the influence of the solvent, the lipase and the temperature on a 

model reaction between vinyl palmitate and glucose via enzymatic catalysis has been 

investigated and the reaction conditions optimized. Full conversion into 6-O-glucose 

palmitate was reached in 40 hours in acetonitrile starting from a reactant ratio 1:1, at 

only 5 %-wt loading of lipase from Candida antarctica B (CALB) without the presence 

of molecular sieves. 
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1. Introduction  

Fatty acid sugar esters are non-ionic surfactants that can be synthesized from 

inexpensive natural resources. Because of their amphiphilic nature, non-toxicity and 

biodegradability, [1,2] they find a wide range of applications in many fields such as 

food, [3] pharmaceutical, [4] detergents and cosmetics. [5] Depending on the chosen 

carbohydrate and acyl moieties, fatty acid sugar esters have been shown to exhibit 

anti-oxidant, [6] antimicrobial, [7-9] insecticidal, [10] and antitumoral [11] properties. 

They can be obtained by a chemical route using alkaline catalysts, [12] but this strategy 

requires high temperatures and the use of hazardous solvents such as DMF or 

pyridine, which are not compatible with food applications. Besides, as all the 

carbohydrate hydroxyl groups exhibit similar reactivity, it usually results in mixtures of 

esters, without any control of the composition. [13] Enzymes such as lipases, 

proteases and esterases are also able to catalyze fatty acid sugar ester synthesis with 

high selectivity, directly yielding mono-esters without need of additional 

protection/deprotection steps. Among them, lipases are the most used enzymes to 

catalyze fatty acid sugar esters synthesis. These enzymes are active in many organic 

solvents and at lower temperatures. Enzymatic route has therefore been widely studied 

as a milder and greener alternative to synthesize fatty acid sugar esters, but it presents 

some drawbacks such as longer reaction times, lower yields and an important cost, as 

large quantities of lipase are usually required (around 20 wt.%). Another major issue 

is also to find an appropriate solvent that can both solubilize the carbohydrate and the 

fatty acid moieties, without deactivating the lipases. Hydrophobic solvents enhance 

lipases activity, [14] but poorly solubilize carbohydrates. Tertiary alcohols such as tert-

butanol, [15] and 2-methyl-butan-2-ol [16] are generally used as their relative polarity 

enables a good solubility of carbohydrates. Mixtures of two solvents such as tert-
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butanol/pyridine [17] or 2-methyl-butan-2-ol/DMSO [6, 18] have also been tested in 

order to increase the carbohydrate solubility. More recently, ionic liquids [19-22] have 

also been explored. Another challenge is to increase the final conversions into fatty 

acid sugar esters. Esterification leads to the formation of water, which must be 

removed to shift the equilibrium toward fatty acid sugar ester formation, for instance by 

adding molecular sieves to the reaction media. [23-26] Ducret et al. developed a 

process of fatty acid sugar esters synthesis under reduced pressure to remove water. 

[27] Another strategy is to start from fatty acid vinyl esters. In that case, the 

transesterification sub-product is acetaldehyde, which is easily removed, leading to 

fast and high conversions. [18, 22, 28-33] In the present work, 6-O-glucose palmitate 

was synthesized in classical organic solvents from a 1:1 ratio of glucose and vinyl 

palmitate mainly with Lipase B from Candida antarctica (CALB) as the catalyst. Only 5 

%-wt of the supported lipase were used and the influence of the solvent, reaction time 

and presence of molecular sieves investigated. Several commercially available lipases 

were compared and the influence of the reaction temperature was also examined. 

 

2. Materials and methods  

2.1 Materials 

Vinyl palmitate was purchased from TCI Europe and was dried under dynamic vacuum 

overnight prior to use. Anhydrous glucose was purchased from Fluka and lipase B from 

Candida antarctica supported on acrylic beads (activity > 5000 U/g) was purchased 

from Sigma Aldrich. Supported lipases IMMCALB-T2-150 from Candida antarctica B 

(2500 U/g), IMMCALA-T2-150 from Candida antarctica A (3000 U/g), IMMRML-T2-150 

from Rhizomucor miehei (1500 U/g), IMMTLL-T2-150 from Thermomyces lanuginosa 

(10000 U/g), IMMABC-T2-150 from Pseudomonas cepacia (1500 U/g) and IMML51-
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T2-150 from Fusarium solani pisi (5000 U/g) were purchased from Chiral Vision. All 

lipases were used as received. Acetonitrile, THF, DMF, DMSO, and cyclohexane were 

purchased from Fluka, HPLC grade. Dichloromethane, HPLC grade and acetone, 

technical grade, were purchased from Sigma Aldrich. tert-Butanol, extra pure, was 

purchased from Acros Organics. Pyridine and dioxane were purchased from TCI. 

Solvent drying procedures are described in Supporting Information. Molecular sieves, 

3Å, were purchased from Acros Organics and activated by heating at 400°C in a muffle 

furnace for 6 hours then flamed several times under dynamic vacuum. Once activated, 

the latter were stored in a glovebox. Deuterated DMSO was purchased from Euriso-

top. 

2.2 General synthesis of 6-O-glucose palmitate catalyzed by CALB 

In a typical synthesis of 6-O-glucose palmitate, 0.9 mmol (249 mg) of vinyl palmitate 

and 0.9 mmol (162 mg) of glucose were poured into an oven-dried Schlenk with 10 mL 

of solvent under an argon flux. 20 mg of supported CALB were then added. When 

needed, 100 mg of activated 3Å molecular sieves beads were added. The reaction 

was carried out during 72h, under magnetic stirring at 250 rpm and heated at 45°C by 

means of a thermoset oil bath. For kinetic studies, 0.2 mL samples were sampled out 

and analyzed by 1H NMR spectroscopy. Four different compounds were identified: 

glucose, vinyl palmitate, 6-O glucose palmitate and palmitic acid. In each case, the 

primary alcohol of glucose was only esterified; all the secondary alcohols remaining 

untouched. At the end of the reaction, the solvent was evaporated. THF was poured in 

the crude mixture and the obtained mixture was filtered under vacuum in order to 

remove the lipase and most of the glucose. The soluble part was evaporated. The 

obtained solid was dispersed into water then filtrated on a Büchner in order to remove 

traces of glucose. 5-10 mL of acetone was then added to dissolve the unreacted fatty 
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chains and the suspension was filtrated again. The remaining insoluble white powder 

was characterized by 1H NMR spectroscopy and was found to be pure 6-O-glucose 

palmitate. No significant loss was observed during the purification and 6-O-glucose 

palmitate was obtained with a yield of 90%. 1H NMR (d6-DMSO, 400 MHz,  (ppm)): 

0.8 (3H, t, CH3), 1.1-1.2 (H, m, alkyl chain CH2), 1.4 (2H, q, CH2CH2CO), 2.3 (2H, t, 

CH2CO), 3.1 (1H, m, H4), 3.2 (1H, m, H2), 3.4 (1H, m, H3), 3.7 (1H, m, H5), 4.0 (1H, 

m, H6a), 4.25 (1H, m, H6b), 4.6 (1H, d, OH3), 4.7 (1H, d, OH2), 4.9 (1H, t, H1), 5.0 (d, 

OH4), 5.1 (d, OH4), 6.2 (d, OH1), 6.55 (d, OH1)  

2.3 Analysis 

2.3.1 NMR spectroscopy 

NMR experiments were performed at 298K on a Bruker Avance 400 spectrometer 

operating at 400MHz. Deuterated DMSO was used as solvent. 

2.3.2 HPLC  

HPLC analysis were performed on a HPLC apparatus with an evaporating light 

scattering detector (ELSD, Varian 380-LC) and a Prevail carbohydrate ES 5μ column. 

The evaporator and nebulizer temperatures were set at 90°C and 40°C, respectively. 

50 μL of the samples were injected. The eluent was a solution of 75/25/5 v/v/v 

methanol/acetonitrile/water with a flow rate of 0.5 mL.min-1. 

 

3. Results and discussion  

Enzymatic fatty acid sugar ester synthesis is a complex process where several 

reactions can take place. CALB can catalyze vinyl palmitate transesterification into 6-

O-glucose palmitate (reaction 1, Figure 1). Nevertheless, because of the presence of 

residual water in the reaction medium, the enzyme is also able to catalyze vinyl 

palmitate hydrolysis (reaction 2, Figure 1). Those two reactions are irreversible. 
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Besides, an equilibrium takes place between the so-formed palmitic acid and 6-O-

glucose palmitate (reaction 3, Figure 1). 

 

Figure 1 – Reaction scheme between vinyl palmitate (VP) or palmitic acid (PA) with 

glucose to produce 6-O-glucose palmitate (GP) in the presence of CALB 

 

3.1 Effect of the solvent 

Reaction between vinyl palmitate and glucose was carried out in ten organic solvents 

in the presence of CALB. Each solvent was tested as received (Conditions A) and also 

after drying (Conditions B). In the cases of acetone, acetonitrile, THF, tert-butanol and 

dioxane, the influence of the presence of 3Å molecular sieves beads in the reaction 

medium was investigated and kinetic studies of the corresponding reactions were 

performed (Conditions C). Conversions into 6-O-glucose palmitate after 72 hours of 

reaction are given in Table 1. In Figure 2, simultaneous variations of vinyl palmitate, 

palmitic acid and 6-O-glucose palmitate contents with time are shown for each solvent, 

without and in the presence of molecular sieves. From those plots, the initial reaction 

rates could be calculated and are given in Table 2. Among all the tested solvents, only 

five allowed glucose acylation: acetone, tert-butanol, tetrahydrofuran, dioxane, and 

acetonitrile. Cyclohexane gave no conversion into 6-O-glucose palmitate. This could 
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be explained by a too poor glucose solubility in this solvent (see Table 3) but no 

hydrolysis was observed either, evocating the absence of activity of CALB. Yet CALB 

was reported to exhibit higher activity in apolar solvents, [34] and examples of 

transesterifications in hexane in the presence of CALB have been reported in literature. 

[34, 35] Same results were obtained in dichloromethane, DMF, DMSO and pyridine. 

CALB has been reported to be inactive in these solvents. [36] This was confirmed in 

our experiments as vinyl palmitate remained intact. If CALB was active, hydrolysis 

would have been observed. 

 

Solvent Conditions A Conditions B Conditions C 

Acetone 12% (a) 93% (a) 100% 

tert-Butanol 32% (a) 88% (a) 94% (a) 

THF 52% (a) 88% (a) 100% 

Dioxane 49% (a) 80%(a) 90%(a) 

Acetonitrile 52% (a) 100% 100% 

DCM 0% (b) 0% (b) - 

DMSO 0% (b) 0% (b) - 

DMF 0% (b) - - 

Cyclohexane 0% (b) 0% (b) - 

Pyridine 0% (b) - - 

Table 1 – Conversion of vinyl palmitate into 6-O-glucose palmitate in various organic 

solvents, after 72h at 45°C, determined by 1H NMR spectroscopy. MS = 3Å molecular 

sieves beads. (a) Vinyl palmitate was entirely converted into a mixture of 6-O-glucose 

palmitate and palmitic acid. (b) Vinyl palmitate remained intact: neither trans-

esterification nor hydrolysis was observed 

 

As indicated in Table 1, the esterification reactions in solvents as received led to 6-O-

glucose palmitate with 12% yield in acetone, 32% in tert-butanol, 49% in dioxane and 



9 
 

52% in acetonitrile and THF. As a general trend, drying the solvents enables to 

increase the conversions: 80% in dioxane, 88% in tert-butanol and THF, 93% in 

acetone and full conversion in acetonitrile. The addition of 3Å molecular sieves beads 

in the reaction media enabled the conversions in acetone and THF to reach 100%. 

These results highlight the influence of residual water content in the reaction medium 

on the conversions into glycolipids: the use of anhydrous solvents is thus necessary to 

obtain high conversions. 

 

Solvent 
Conditions B Conditions C 

kVP kPA kGL kGL/kPA kVP kPA kGL kGL/kPA 

Acetone -91 17 74 4.3 -103 10 93 9.3 

Acetonitrile -69 32 56 1.7 -69 22 57 2.6 

tert-butanol -75 42 35 0.8 -53 20 31 1.5 

Dioxane -78 22 55 2.5 -92 33 59 1.8 

tetrahydrofuran -81 42 40 0.9 -63 15 54 3.5 

Table 2 – Estimation of initial rates (mol.min-1.g-1 of lipase) of vinyl palmitate (VP) 

consumption, palmitic acid (PA) and 6-O-glucose palmitate (GL) formation with a 10 % 

error. B = without molecular sieves; C = in the presence of 3Å activated molecular 

sieves beads (10mg per mL of solvent).  

 

The reaction process can be monitored by 1H NMR analysis by sampling out aliquots 

along with the reaction in order to follow conversions with time of vinyl palmitate, 

palmitic acid and 6-O-glucose palmitate, respectively. Glycolipid formation was shown 

to be the fastest in acetone, reaching the rate of 74 mol.min-1/g of lipase. When adding 

molecular sieves to the reaction medium, the reaction rate increases to 93 mol.min-

1.g-1 while it does not exceed 60 mol.min-1.g-1 in all other tested solvents. Moreover, 
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percentage of palmitic acid in the reaction medium is significantly lower in acetone than 

in the other solvents; it does not exceed 20% while it reaches 53% in tert-butanol (see 

Figure 2). In acetone, glycolipid formation seems to be more favorable than hydrolysis 

as indicated by higher kGL/kPA in this solvent. Nevertheless, the reaction reaches an 

equilibrium in only 24 hours and requires the addition of molecular sieves to reach a 

full conversion into 6-O-glucose palmitate, whereas in acetonitrile, there is no need to 

add molecular sieves to reach full conversion as the formed palmitic acid was 

consumed and no equilibrium was observed.  

Kinetic data (Figure 2) show that in all solvents excepted in dioxane, glucose acylation 

was still going on after vinyl palmitate disappearance as an esterification reaction takes 

place between the so-formed palmitic acid and the remaining glucose. In dioxane, this 

reaction does not occur and an equilibrium is achieved as soon as the vinyl palmitate 

vanishes. However, in the presence of molecular sieves, the removal of water enables 

the partial esterification of palmitic acid, finally increasing the conversion to 90%. 
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Figure 2 – Composition in vinyl palmitate (blue), palmitic acid (red) and 6-O-glucose 

palmitate (green) as a function of time during the glycosylation of vinyl palmitate in 

acetonitrile, tert-butanol, THF, acetone and dioxane. B: without molecular sieves. C: in 

the presence of 3Å activated molecular sieves beads (10 mg/mL of solvent). 
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Solvent Glucose solubility 

(mg/mL) 

6-O-Glucose palmitate 

solubility (mg/mL) 

Acetone 0.27 1.21 

Acetonitrile 0.09 0.17 

tert-Butanol 0.95 3.93 

Cyclohexane NDa - 

Dichloromethane NDa - 

Dimethylformamide NDb - 

Dimethylsulfoxide NDb - 

Dioxane 0.70 2.45 

Pyridine NDb - 

Tetrahydrofuran 0.43 3.35 

Table 3 – Glucose and 6-O-glucose palmitate solubilities in the tested solvents. ND = 

not detected. a too low values to be measured; b glucose was fully soluble in the 

reaction medium 

 

These kinetic results can be explained by the solubility of the precursors and products. 

Because of its relatively high glucose solubility (0.95 mg/mL) in comparison to other 

organic solvents, tert-butanol is a good solvent candidate for glycolipid synthesis. [15] 

However, because of an important quantity of residual water even after 3 successive 

drying procedures (See supporting information), vinyl palmitate hydrolysis was by far 

the most important in tert-butanol: 53% of palmitic acid was reached, with an initial 

hydrolysis rate of 42 mol.min-1.g-1 of lipase (Table 2). Palmitic acid can acylate 

glucose in tert-butanol, but much slower than vinyl palmitate, thus reaction kinetics 

were slow in tert-butanol. Similar hydrolysis rates are observed in THF, leading to lower 

palmitic acid amounts (42%) but both solvents lead to final conversions of 88%. The 

gap widened in presence of molecular sieves: 38% of palmitic acid is formed in tert-
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butanol at a rate of 20 mol.min-1.g-1 of lipase, while only 17% are reached in THF at 

a rate of 15 mol.min-1.g-1. This is probably why full conversion can be reached in 72h 

in THF in the presence of molecular sieves. Acetonitrile shows extremely low 6-O-

glucose palmitate solubility, nearly 20 times lower than THF. As soon as 6-O-glucose 

palmitate is formed, it instantaneously precipitates out of the reaction medium to form 

a white solid crust at the surface. The equilibrium is therefore shifted into its formation. 

This probably explains why it is the only solvent allowing a full glucose acylation without 

molecular sieves. It is therefore the most suitable solvent of 6-O-glucose palmitate 

enzymatic synthesis. 

 

3.2 Enzymes  

In addition to the type of solvent, another important parameter is the catalyst used. 

Supported lipase from Candida antarctica (CALA and CALB), Rhizomucor miehei 

(RML), Thermomyces lanuginosa (TLL), Pseudomonas cepacia (ABC) and Fusarium 

solani pisi (L51) were used as catalysts for 6-O-glucose palmitate synthesis and the 

obtained conversions were compared. For these experiments, the amount of lipase to 

be used was calculated to correspond to 80 U. In the case of the lipase B from Candida 

antarctica, the influence of the linkage to the acrylic beads (adsorption or covalent 

linkage) was also investigated. All lipases were tested in 5 solvents: acetonitrile, 

acetone, tert-butanol, dioxane and THF. The esterification reactions were carried at 

45°C under argon for 72 hours. The obtained conversions in 6-O-glucose palmitate are 

shown in Table 4. Whatever the solvent used, the best conversions were reached 

using supported CALB as a catalyst (either covalently-linked or absorbed on the 

support). Covalently-linked CALB led to lower conversions than adsorbed CALB, from 

57% in tert-butanol to 85% in dioxane. It can be assumed that depending on which part 
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of the enzyme is linked to the support, the active site can be more or less accessible 

by the substrates. The linkage could also partially distort the active site and therefore 

hinder the substrate complexation. Some glucose monoester was formed using the 

enzymes RML and TLL. Conversions up to 30% were observed in acetonitrile, acetone 

and tert-butanol with TLL. RML was less efficient: conversions of 18% in acetonitrile, 

11% in dioxane and 8% in THF were respectively obtained, but this enzyme was not 

able to catalyze the esterification reaction in acetone and tert-butanol. CALA, ABC and 

L51 were found to be not efficient for the formation of glycolipid as only partial 

hydrolysis of vinyl palmitate was observed, except in acetone and in the presence of 

CALA, where no hydrolysis occurred either. The absence of glycolipid formation was 

thus not due to a deactivation of the enzyme but such lipases were not able to catalyze 

this esterification reaction. Glucose could be a bad substrate for these enzymes, 

maybe because of the geometry of their active site. TLL and RML exhibit crevice-like 

active sites, more accessible for the substrates. It is likely why they were able to 

catalyze the formation of glycolipid. 

 
Acetonitrile Acetone tert-Butanol Dioxane THF 

no enzyme 0a 0a 0a 0a 0a 

CALB adsorbed 100 93 88 80 88 

CALB covalent 74 60 57 85 69 

CALA 0b 0a 0b 0b 0b 

RML 18 2 3 11 8 

TLL 36 28 32 6 9 

ABC 1 0b 3 9 4 

L51 0b 0b 0b 4 0b 

Table 4 – Conversions of vinyl palmitate (VP) into 6-O-glucose palmitate in several 

solvents in the presence of various lipases. a only VP was observed: neither 

transesterification nor hydrolysis occurred; b hydrolysis into palmitic acid was 

observed. 
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3.3 Temperature effect 

The influence of temperature on the final conversion into 6-O-glucose palmitate and 

initial conversion rate was investigated for CALB catalysis in acetonitrile. Reactions 

were performed for 40 hours under argon at 20°C, 30°C, 45°C, 60°C and 70°C. All 

experiments were monitored by 1H NMR spectroscopy. Conversions versus time are 

plotted in Figure 3. Initial conversion rates were calculated based on conversions 

obtained from 0 to 8 hours for reactions at 60°C and 70°C and from 0 to 22 hours for 

lower temperatures. Data are collected in Table 5. 

 

Figure 3 - Conversion into 6-O-glucose palmitate vs time in acetonitrile at different 

temperatures 
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Table 5 – Influence of the temperature on the conversions into 6-O-glucose palmitate 

after 40h and 67h of reaction and the initial conversion rates 

From 20°C to 60°C, higher temperatures lead to faster conversions into 6-O-glucose 

palmitate. Heating at 60°C significantly reduces the reaction time: 94% of conversion 

were reached in only 20 hours, while it takes 40 hours to reach a full conversion at 

45°C. Heating at 70°C did not increase reaction rates, but conversion reached a 

plateau at 86%, probably because of lipase deactivation.  

 

4. Conclusion 

The influence of the types of solvent and lipase as well as the reaction temperature on 

6-O-glucose palmitate formation was investigated. Acetonitrile was shown to be the 

most suitable solvent, due to a very low glycolipid solubility: a complete glucose 

acylation was obtained in 40 hours in the presence of very low amounts of lipase. 

CALB gave the best conversions into glycolipid. Full glucose acylations were observed 

at 45°C and 60°C, but partial deactivation of the enzyme was observed at higher 

temperature.  
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1. Solvent drying procedures 

Cyclohexane, dimethylsulfoxide and dimethylformamide were dried through alumina columns and used immediately. The other dried 

solvents were distilled from the desiccant right before use. 

Solvent 1st drying 2nd drying 3rd drying 

Acetone 72h on CaSO4 72h on 3Å molecular sieves beads - 

Acetonitrile 72h on P2O5 72h on 3Å molecular sieves beads - 

tert-Butanol 72h on CaSO4 24h on Na/benzophenone 72h on 3Å molecular sieves beads 

Cyclohexane Dried through an alumina column - - 

Dichloromethane 72h on CaH2 - - 

Dimethylsulfoxide Dried through an alumina column - - 

Dimethylformamide Dried through an alumina column - - 

Dioxane 72h on CaH2 - - 

Tetrahydrofuran 72h on Na/benzophenone 72h on 3Å molecular sieves beads - 

Table S1: Drying procedures applied for each solvent 
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2. Determination of glucose and 6-O-glucose palmitate solubilities by HPLC  

HPLC conditions are given in the Materials and Methods section 

 

2.1 Glucose  

2.1.1 Calibration curve 

Calibration curve for glucose was determined by injecting in HPLC samples from six glucose 

solutions in water at known concentrations. For each sample, peak areas were measured 

and the obtained values were plotted versus injected mass. The relation between measured 

areas (AG) and corresponding glucose mass (mG) was obtained by linear regression.  

Sample Concentration 

(mg/mL) 

Injected 

volume (L) 

Corresponding 

mass (mg) 

Measured area 

(pA*min) 

1 1.50 10 0.015 13.75 

2 1.25 10 0.0125 11.82 

3 1.00 10 0.01 9.62 

4 0.75 10 0.0075 7.17 

5 0.50 10 0.005 5.18 

6 0.25 10 0.0025 2.54 

Table S2: Measured areas by HPLC for six glucose solution samples 

 

Figure S1: Calibration curve for glucose  
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𝐴𝐺 = 942.76 ∗ mG (1) 

 

2.1.2 Determination of glucose solubility in acetone, tert-butanol, acetonitrile, THF and 

dioxane  

An excess of glucose was put in capped glass vials containing a magnetic bar, in presence 

of 1 mL of solvent. For each solvent, 2 or 3 samples (2 in acetone) were prepared. All the 

vials were put under agitation in a thermostated oil bath at 25°C for 72 hours. The samples 

were filtrated on 0.4 m cellulose filters to remove insoluble glucose and the soluble parts 

were analyzed by HPLC. For each sample, the glucose peak areas were measured and the 

corresponding concentrations were calculated using Equation (1). All results are plotted in 

Table S3. 
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Solvent Sample 

Injected 

volume (L) 

Measured 

area 

Corresponding 

mass (mg) 

Corresponding 

concentration (mg/mL) 

Average concentration 

mg/mL mM 

Acetone 

1 50 12.78 0.0136 0.271 

0.27 1.49 

2 50 12.55 0.0133 0.266 

t-BuOH 

1 50 45.27 0.0480 0.960 

0.95 5.25 2 50 43.89 0.0466 0.931 

3 50 44.52 0.0472 0.944 

Acetonitrile 

1 50 3.94 0.0042 0.084 

0.09 0.50 2 50 3.85 0.0041 0.082 

3 50 5.00 0.0053 0.106 

THF 

1 50 20.05 0.0213 0.425 

0.43 2.40 2 50 19.10 0.0203 0.405 

3 50 22.06 0.0234 0.468 

Dioxane 

1 50 33.73 0.0358 0.716 

0.70 3.90 2 50 32.12 0.0340 0.681 

3 50 33.48 0.0355 0.710 

Table S3: Determination of glucose solubility in various organic solvents 
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2.2 6-O-glucose palmitate  

Conditions are given in the Materials and Methods section 

 

2.2.1 Calibration curve 

Calibration curve for glucose was determined by injecting in HPLC samples from five  

6-O-glucose palmitate solutions in DMSO at known concentrations. For each sample, peak 

areas were measured and the obtained values were plotted versus injected mass. The 

relation between measured areas (AGP) and corresponding 6-O-glucose palmitate 

concentration (CGP) was obtained by linear regression. 

Sample Concentration 

(mg/mL) 

Injected 

volume (L) 

Corresponding 

mass (mg) 

Measured 

area (pA*min) 

1 10 50 0.5 62.04 

2 5 50 0.25 31.07 

3 1 50 0.05 15.00 

4 0.5 50 0.025 9.89 

5 0.25 50 0.0125 6.28 

Table S4: Measured areas by HPLC for 6 O-glucose palmitate solution samples 

 

 

Figure S2: Calibration curve for 6 O-glucose palmitate  
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𝐴𝐺𝑃 = 6.31 ∗ CGP (2) 

 

Solvent Injected 

volume (L) 

Measured 

area 

Concentration 

mg/mL mM 

Acetone 50 7.662 1.21 2.9 

t-BuOH 50 24.796 3.93 9.4 

Acetonitrile 50 1.061 0.17 0.41 

THF 50 21.143 3.35 0.80 

Dioxane 50 15.461 2.45 0.59 

Table S5: Determination of 6 O-glucose palmitate solubility in various organic solvents 

 

3. Calculation of conversions into 6-O-glucose palmitate based on 1H NMR spectra: 

1H NMR spectra of vinyl palmitate, palmitic acid, 6-O-glucose palmitate, glucose and crude 

mixture after 16 hours of reaction are plotted in Figure 7. Attributions have been checked by 

COSY, HSQC and HMBC NMR. All signals and their attributions are plotted in Table 10. Vinyl 

palmitate, palmitic acid and 6-O-glucose palmitate contents have been calculated using 

Equation S1.  

% 𝑉𝑃 =

1
2

∗ (0.5 𝐼2.41 𝑝𝑝𝑚 +  𝐼7.21 𝑝𝑝𝑚)

1
2

∗ (0.5 𝐼2.41 𝑝𝑝𝑚 +  𝐼7.21 𝑝𝑝𝑚) +
1
2

(0.5 𝐼2.17 𝑝𝑝𝑚 + 𝐼11.93 𝑝𝑝𝑚) +
1
7

∗ (0.5 𝐼2.26 𝑝𝑝𝑚 + 𝐼3.76 𝑝𝑝𝑚 +  𝐼3.99 𝑝𝑝𝑚 +  𝐼5.01 𝑝𝑝𝑚 +  𝐼5.07 𝑝𝑝𝑚 +  𝐼6.33 𝑝𝑝𝑚 + 𝐼6.64 𝑝𝑝𝑚)
 

 

%𝑃𝐴 =

1
2

(0.5 𝐼2.17 𝑝𝑝𝑚 + 𝐼11.93 𝑝𝑝𝑚)

1
2

∗ (0.5 𝐼2.41 𝑝𝑝𝑚 +  𝐼7.21 𝑝𝑝𝑚) +
1
2

(0.5 𝐼2.17 𝑝𝑝𝑚 + 𝐼11.93 𝑝𝑝𝑚) +
1
7

∗ (0.5 𝐼2.26 𝑝𝑝𝑚 + 𝐼3.76 𝑝𝑝𝑚 +  𝐼3.99 𝑝𝑝𝑚 +  𝐼5.01 𝑝𝑝𝑚 +  𝐼5.07 𝑝𝑝𝑚 +  𝐼6.33 𝑝𝑝𝑚 + 𝐼6.64 𝑝𝑝𝑚)
  

 

%𝐺𝑃 =

1
7

∗ (0.5 𝐼2.26 𝑝𝑝𝑚 + 𝐼3.76 𝑝𝑝𝑚 +  𝐼3.99 𝑝𝑝𝑚 +  𝐼5.01 𝑝𝑝𝑚 +  𝐼5.07 𝑝𝑝𝑚 +  𝐼6.33 𝑝𝑝𝑚 + 𝐼6.64 𝑝𝑝𝑚)

1
2

∗ (0.5 𝐼2.41 𝑝𝑝𝑚 +  𝐼7.21 𝑝𝑝𝑚) +
1
2

(0.5 𝐼2.17 𝑝𝑝𝑚 + 𝐼11.93 𝑝𝑝𝑚) +
1
7

∗ (0.5 𝐼2.26 𝑝𝑝𝑚 + 𝐼3.76 𝑝𝑝𝑚 +  𝐼3.99 𝑝𝑝𝑚 +  𝐼5.01 𝑝𝑝𝑚 +  𝐼5.07 𝑝𝑝𝑚 +  𝐼6.33 𝑝𝑝𝑚 + 𝐼6.64 𝑝𝑝𝑚)
 

 

Equation S1: Calculation of vinyl palmitate (VP), palmitic acid (PA), and 6-O-glucose 

palmitate (GP) percentages of a given crude sample. I represents the integral value for each 

signal on the corresponding NMR spectrum. Integrals were calculated by setting I0.85 ppm = 3 
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Figure S3: Stacked 1H NMR spectra of (from top to bottom) pure vinyl palmitate, pure palmitic 

acid, pure 6-O-glucose palmitate, pure glucose, and crude reaction mixture after 16h 

(conditions: vinyl palmitate/glucose ratio = 1/1, concentration = 90mM, 5% 20 mg of CALB, 

in 10 mL of anhydrous acetonitrile; reaction performed at 45°C) 
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Table S6: List of chemical shifts on a typical raw mixture of vinyl palmitate, palmitic acid, 

glucose and 6-O-glucose palmitate 

Chemical 

shifts (ppm) 

Vinyl palmitate Palmitic acid Glucose 6-O-glucose 

palmitate 

0.85 CH3 CH3   

1.14-1.34 CH2 alkyl chain CH2 alkyl chain  CH2 alkyl chain 

1.54 CH2-CH2-CO CH2-CH2-CO  CH2-CH2-CO 

2.17  CH2-CO   

2.26    CH2-CO 

2.41 CH2-CO    

2.89   H2  

3.04    H4 

3.10    H2 

3.42   H5, H6b, H6b  H3 

3.57   H4, H6a  

3.66   H6a  

3.76    H5 

3.99    H6a 

4.26   H1 H6b 

4.33   H6’  

4.41   H2’  

4.45   H6’  

4.50     

4.56 CH2=CH    

4.60   H3’  

4.73    H3’ 
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4.74   H4’  

4.80   H2’, H3’, H4’  

4.86 CH2=CH    

4.90   H1 H1 

5.01    H4’ 

5.07    H4’ 

6.18   H1’  

6.33    H1’ 

6.55   H1’  

6.64    H1’ 

7.21 CH=CH2    

11.93  COOH   

 


