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1 Research Institute in Civil and Mechanical Engineering (GeM, UMR 6183 CNRS)
Ecole Centrale de Nantes
1 rue de la Noë, Nantes
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Abstract. The material point method is extended in this work to the Discontinuous Galerkin
approximation framework for the simulation of impacts on elastic and hyperelastic solids. The
formulation is based on the weak form of conservation laws on each cell of an eulerian grid
in which volume integrals are discretized on a set of material points lying in that cell, and
on the computation of Godunov fluxes at cells faces. The resulting method is first derived
within the small strains framework and illustrated on a one-dimensional and a two-dimensional
problem of impact on an elastic media. Then a one-dimensional hyperelastic problem of a
solid undergoing large strains is presented, and a comparison is performed with an analytical
solution.
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1 INTRODUCTION

The numerical simulation of hyperbolic initial boundary value problems (IBVP) in solid
mechanics has been and is again mainly performed with the finite element method (FEM). De-
spite its well-known advantages, this method becomes less efficient and accurate for problems
involving large strains because of mesh tangling and hence, the required re-meshing and projec-
tion steps. Meshless methods have been developed to circumvent these shortcomings. Among
them, the material point method [1] (MPM) uses a collection of particles that can move in an
eulerian grid to represent a continuum with a lagrangian description. The material points carry
all the fields of the problem while the grid is only used to compute gradients and solve the dis-
crete equations. Fields travel from material points to nodes and vice versa, and since history is
known at every single particle, the grid can be discarded and reconstructed for convenience.

Hyperbolic IBVP including extreme loading conditions such as impacts require the ability
to accurately track the wave front of shock waves to provide a better understanding of physical
phenomena occurring in dynamic forming processes such as electromagnetic forming. How-
ever, classical time integrators used with the FEM introduce high frequency noise in the vicinity
of discontinuities which is hard to remove without loss of accuracy. Furthermore, the MPM
space discretization leads to a decrease of the Courant number that prevents the capture of dis-
continuities. The discontinuous galerkin finite element method (DGFEM) has been developed
for the neutron transport equation [2] and is now used in fluid and solid mechanics [3]. This ex-
tension of classical finite element method is based on the discontinuous Galerkin (DG) approx-
imation in which shape functions are discontinuous across elements boundaries. The continuity
of fields is not enforced on the whole mesh but only element-by-element and it allows to capture
sharp solutions like shocks. Moreover, the characteristic structure of hyperbolic problems can
be introduced within the numerical scheme as what has been first done with the finite volume
method [4]. Hence, the DG approximation is well-suited to accurately capture wave fronts but
is still limited by mesh tangling in a lagrangian approach where large deformations occur.

The purpose of this work is to develop a numerical method which allows to accurately follow
wave fronts in a solid that is subjected to large deformations in a lagrangian framework. The
eulerian grid of MPM can be used as a support for the DG approximation and the DGMPM in-
troduced here aims at meeting advantages of both MPM and DG methods while freeing of their
respective limits. We first derive the DGMPM formulation within the large strain framework
with a total lagrangian formulation which is then linearized to apply to small strains frame-
work. Then, we focus on the computation of interface fluxes resulting from the weak form. The
method is finally illustrated on one-dimensional and two-dimensional problems, and compar-
isons are performed with the material point method, the finite element method and the analytical
solution when it is known.

2 THE HYPERELASTIC DYNAMIC CONTINUUM PROBLEM

Let Ω0 ∈ R3 denote the reference position of a continuum body, with reference coordinates
system X , and Ωt ∈ R3 the position of the same body at a different time with the current
coordinates system x. The motion of the body is described by the smooth function ϕ(X, t)
which gives the position x at time t of a particle initially located at X . The mapping between
current and reference configurations is x ≡ ϕ(X, t). The deformation gradient tensor and the
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velocity vector are defined as :

F (X, t) :=
∂ϕ(X, t)

∂X
(1)

v(X, t) := ϕ̇(X, t) (2)

where the superposed dot denotes the material time derivative. Combination of equations (1)
and (2) yields :

Ḟ (X, t) =
∂v(X, t)

∂X
(3)

The solid must satisfy locally the conservation of linear momentum written in the reference
configuration within the time interval of interest t ∈ ]0, T ], and with neglected body forces :

∂ρ0v

∂t
−∇X ·Π = 0 ∀X ∈ Ω0 (4)

where ρ0 (X) = ρ (x, t = 0) is the reference mass density, Π is the first Piola-Kirchhoff stress
tensor and ∇X · (•) is the divergence vector with respect to reference coordinates. The Plohr
and Sharp formulation [5] consists in viewing equation (3) as a conservation law in order to
write the following homogeneous system of partial differential equations :

∂q

∂t
+

3∑
l=1

∂Fl

∂Xl

= 0 (5)

where q is the vector of conserved quantities and Fl the lth flux vector :

q =


F · e1

F · e2

F · e3

ρ0v

 ; Fl = −


(v ⊗ e1) · el
(v ⊗ e2) · el
(v ⊗ e3) · el

Π · el

 = F · el (6)

In the particular case of linear elasticity within the small strains framework, the system is built
by replacing equation (3) with the geometrical compatibility equations ε̇ = 1

2
(∇v + ∇vT ),

that can also be combined with the elastic constitutive equation σ = H : ε, where H is the
fourth-order elasticity tensor. The vectors expressions are :

q =


σ · e1

σ · e2

σ · e3

ρv

 ; Fl = −


µ (v1el + viei) + λvle1

µ (v2el + viei) + λvle2

µ (v3el + viei) + λvle3

σ · el

 (7)

with σ being the Cauchy stress tensor, ε the linearized strain tensor, and (λ, µ) are Lamé’s
coefficients.

3 THE DISCONTINUOUS GALERKIN MATERIAL POINT METHOD

A continuum body Ωt is described by a set of P material points in an eulerian grid composed
of N quadrangular 4-nodes elements (or cells) such that the volume covered by the grid is
V = ∪Ne=1Ve with Vi ∩ Vj = ∅ ∀ i, j (fig. 1).
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Figure 1: Representation of a continuum body by a set of material points in R3.

3.1 Weak form of equation of motion

The discontinuous galerkin approach relies on approximation functions that are discontinu-
ous at cells interfaces and hence, the weak form of equation (5) is written on each element of
the grid [3]: ∫

Ve

∂q

∂t
·w dV +

∫
Ve

∑
l

∂Fl

∂Xl

·w dV = 0 ∀w, ∀ Ve (8)

Integration by parts leads to :∫
Ve

∂q

∂t
·w dV −

∫
Ve

∑
l

Fl ·
∂w

∂Xl

dV +

∫
Γe

(F · n) ·w dΓ = 0 ∀w, ∀ Ve (9)

where n is the outward normal vector to the boundary and F ·n = Fn denotes a normal flux at
cell faces (which computation is developed in section 4). We introduce specific quantities that
will be injected in the weak form (9) :

qs = ρ0q ; Fs
k = ρ0Fk (10)

Moreover, a particular representation of mass density based on material points mass is used :

ρ (x, t) =
P∑
α=1

mαδ (xα − x) =⇒ ρ0 (X) = ρ(x, 0) =
P∑
α=1

mαδ (Xα −X) (11)

where δ is the delta dirac distribution and mα is the mass of the αth material point. Such a
discretization of the reference mass density combined with the writing of conservation laws (5)
leads to a total lagrangian formulation. Equation (9) thus reads :∫

Ve

ρ0
∂qs

∂t
·w dV −

∫
Ve

ρ0

∑
l

Fs
l ·

∂w

∂Xl

dV +

∫
Γe

Fn ·w dΓ = 0 ∀w,∀ Ve (12)

which, with delta dirac integration properties transforms to :

P∑
α=1

(
mα

∂qs (Xα)

∂t
·w(Xα)−

∑
l

Fs
l (Xα) · ∂w (Xα)

∂Xl

)
+

∫
Γe

Fn ·w dΓ = 0 ∀w,∀ Ve

(13)

4



A. Renaud, T. Heuzé

3.2 Nodes to material points mapping

As in MPM we need to transfer fields from nodes to material points and we use shape func-
tions which support reduces to only one cell :

qs(Xα) =
N∑
i=1

Siαq
s
i (14)

where Siα denotes the shape functions attached to the ith node evaluated at X = Xα, and qsi
the specific vector of conserved quantities at node i. Once introduced in (13), it comes :

wi ·
P∑
α=1

SiαmαSjα
∂qsj
∂t
−wi ·

∑
l

∂Siα
∂Xl

mαSiαF
s
l,j +wi ·

∫
Γe

Si(X)Fn dΓ = 0 ∀wi (15)

⇔Mij

∂qsj
∂t
−

3∑
l=1

K l
ijF

s
l,j + F∗

j = 0 (16)

which is the semi-discrete system that must be solved on the grid. Time discretization is per-
formed with an explicit algorithm (forward Euler, Runge-Kutta 2), leading to discrete equations.

Remark : In particular configurations of material points, the consistent mass matrix Mij can
be singular [6] and it is avoided by lumping this matrix : ML

i =
∑

jMij .

3.3 Material points to nodes mapping

In order to solve system (16), fields have to be defined at nodes and an interpolation of
conserved quantity is performed :

qi = ML
i q

s
i =

P∑
α=1

Siαmαq
s
α (17)

to be solved for each qsi . This mapping is a mass weighted interpolation that stabilized the
MPM.

Remark : Every fields are defined at nodes in DGMPM and constitutive equations are inte-
grated in fluxes contained in volume and surface integrals whereas in MPM, velocity is updated
at nodes and constitutive equations are integrated at material points.

4 INTERFACE FLUXES COMPUTATION

Fields continuity is relaxed across elements boundary and interface fluxes appear in the weak
form. They can be used to introduce the characteristic structure of hyperbolic problems in the
numerical scheme. One possibility is to solve a Riemann problem normal to each edge of a
given cell and to compute the Godunov flux corresponding to the stationary solution (x/t = 0)
of the Riemann problem [7]. For the two-dimensional case (fig 2), the problem at a given edge
consists in finding the solution of the auxiliary initial value problem (IVP):
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∂q̃

∂t
+
∂Fn

∂ξ
= 0, ξ = X · n ∈]−∞,∞[, t > 0 (18)

q̃(ξ, 0) =

{
q̃L if ξ < 0

q̃R if ξ > 0
(19)

whereL andR denote states belonging to the Left cell and the Right cell to the edge respectively.
These states are constructed by averaging the values defined at nodes for each side (remind that
the DG approximation gives one nodal field value for each cell connected to a given node). The

e2

e1

ξ
n

L R

Figure 2: Edge separating two cells indexed L (left) and R (right). A local coordinate ξ and a normal vector n are
defined.

normal flux vector can be decomposed with the consideration that n = n1e1 + n2e2 :

Fn = F · n = n1F1 + n2F2 (20)

The conservation laws system (18) combined with (20) yields :

∂q̃

∂t
+
∑
p

np
∂Fp

∂ξ
= 0

∂q̃

∂t
+
∑
p

np
∂Fp

∂q̃
· ∂q̃
∂ξ

= 0

∂q̃

∂t
+
∑
p

npA
p · ∂q̃
∂ξ

= 0

The characteristic analysis of this system written with vectors (6) can be conducted with the
study of the jacobian matrix J =

∑
p npA

p. In two dimensions :

Ap =

 0 0 −Hip1jei ⊗ ej
0 0 −Hip2jei ⊗ ej
− δ1p

ρ0
1 − δ2p

ρ0
1 0

 (21)

and Hklmn are the fourth-order material elasticity tensor components. The eigenvalues and
eigenvectors of the Jacobian matrix are used to obtain the solution of the Riemann problem
for linear (elastic) problems, or to build an approximate Riemann Solver [7] for hyperelas-
tic nonlinear problems. The solution is used to compute Godunov fluxes at cells interfaces
Fn (q̃(x/t = 0)).
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5 NUMERICAL RESULTS

5.1 One dimensional compression wave in a bar (small strain)

Let us consider an elastic bar of length l = 6mmade of a linear elastic material with Young’s
modulusE = 2.1011Pa, density ρ = 7800kg.m−3 and unit cross section area S. The left end of
the bar is suddenly loaded with a surface force T d = 1.109 Pa. The bar is discretized with 150
regular grid cells (each containing one single centered material point) and the time integration
is carried out with an explicit Euler scheme. This problem has been solved with DGMPM and
a comparison is performed with MPM and the analytical solution [8] for different time steps
(fig 3).

0 1 2 3 4 5 6
x (m)

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

σ(
Pa

)

1e9 Axial stress in the bar at time t=3.98e-04 s.
DGMPM
MPM (CFL=0.5)
MPM (CFL=0.1)
Analytique

(a)

0 1 2 3 4 5 6
x (m)

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

σ(
Pa

)

1e9 Axial stress in the bar at time t=9.54e-04 s.
DGMPM
MPM (CFL=0.5)
MPM (CFL=0.1)
Analytique

(b)

Figure 3: Axial stress in a bar at different times. Comparison of DGMPM, MPM and analytical solution.

The solution consists of a discontinuous elastic disturbance propagating rightward at speed
c =

√
E
ρ

and is here accurately captured by the DGMPM solution. It is known that a numerical
scheme is able to capture a discontinuity providing the Courant number be one without loss
of stability (α = c∆t

∆x
). The MPM is unstable with α = 1 and hence, it is unable to track

discontinuities. The stability analysis of DGMPM will not be developed here, but it can be
shown that when a single material point is located in each cell, the Courant number can be
equal to one and a wave front can be represented. This property is lost with more points in each
cell but it can be improved by using a Runge-Kutta 2 time integrator.
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5.2 Two dimensional partial impact on a plate (small strain)

We are now interested in two-dimensional plane strains cases and the problem treated con-
cerns a linear elastic rectangular plate undergoing an impact on a part of its left boundary (fig 4).
The plate dimensions are l x h = 4 x 3m2 discretized with 33 x 25 material points, and the width
of impact area is a = 1 m. A velocity Dirichlet boundary condition is enforced on material
points directly in the MPM while ghost nodes are used in the DGMPM grid [4]. The problem
has been solved with the finite element code Cast3M [9] (explicit time integration), the material
point method and its discontinuous Galerkin extension and the comparison is shown in fig 5 for
one point per cell.

{
vx = vd

ey · σ · (−ex) = 0 {
vy = 0

ex · σ · (−ey) = 0

{
vx = 0

ey · σ · ex = 0

σ · ey = 0

σ · ex = 0

ex

eya

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Material points
Mesh nodes

Figure 4: Elastic plate undergoing a compressive impact on a part of its left boundary. Parameters : E = 2.1011Pa,
ν = 0.3, ρ = 7800 kg ·m−3, vd = 5m.s−1.

As mentioned above about FEM and MPM, the time integration used involves oscillations
in the solution and the Courant condition (α < 1) introduces numerical diffusion. This two
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Figure 5: Longitudinal stress profile resulting from MPM (top left), FEM (top right) and DGMPM (bottom left)
and superposed plot along the bottom boundary of the plate at different times for DGMPM and MPM and FEM
(bottom right). αMPM = 0.5, αFEM = 0.9, αDGMPM = 1
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dimensional problem involves two families of waves : tensile/compression waves traveling at
celerity cp =

√
(λ+ 2µ)/ρ and shear waves traveling at celerity cs =

√
µ/ρ. These waves can

make the DGMPM solution scheme unstable when the Courant number equals one. To avoid it,
a transverse Riemann solver based on the Corner Transport Upwind method [4] has been used
and sharp solutions can be captured more accurately. These results confirm that the extension
of MPM to DG framework provides a better wave front tracking.

5.3 One dimensional compression wave in a hyperelastic bar (large strain)

The last numerical test is an extension of the first one to the large strains framework. The
bar is now made of a hyperelastic Saint-Venant-Kirchhoff material for which the constitutive
equation is :

Π = 2µF ·E + λ trace (E)F (22)

whereE = 1
2
(F T ·F −1) is the Green-Lagrange strain tensor and Π is the first Piola-Kirchhoff

stress tensor. For a one-dimensional bar, this relation reduces to : Πxx = E
2
Fxx(F

2
xx − 1). The

bar is suddenly loaded on its left side (T d = 8.108Pa). In figure 6, the upper subplot shows the
material points positions at different times updated with the velocity solution. The bottom one
shows the Piola-Kirchhoff stress from MPM, DGMPM (both in total Lagrangian formulation)
and an analytical solution.
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Figure 6: Saint-Venant-Kirchhoff hyperelastic bar undergoing large deformations (positions - Piola stress) plot at
different times. Material parameters are the same as in the linear elastic case.

The DGMPM is no longer exactly on the analytical solution of this nonlinear problem and
the reason might be the use of an approximate Riemann solver instead of the nonlinear one
(which is more expensive). Once again classical MPM fails to represent the discontinuity and
introduces oscillations in the results.

6 CONCLUSION

In this work, the Material Point Method has been extended to the Discontinuous Galerkin ap-
proximation framework in order to improve wave front tracking. This extension is based on the
use of shape functions defined element-by-element and discontinuous across cells interfaces.
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The weak form of the problem within the large strains framework is written for the equation of
motion (4) and for the lagrangian kinematic equation (3). The DGMPM hyperbolic system is
built with a total lagrangian formulation (13) and contains numerical fluxes at cells interfaces
which are computed with the solution of a Riemann problem. The main difference with the
original scheme is that the constitutive equations are contained in nodal fluxes and the charac-
teristic structure of hyperbolic problems can be introduced in the numerical solution, providing
a better description of discontinuities.
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