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The mean estimators depend on multiple auxiliary variables and unknown parameters in a finite population setting. We propose a new generic approach for modeling multivariate mean estimators. Our approach brings naturally a graphical analysis for comparing the mean estimators.

Introduction

In survey theory, the general purpose is to find a relevant value for an aggregated stastistics non available at the population level for diverse reasons such as cost, time or feasability. For instance, it is cumbersome to query a whole population of a large country for a social survey each week. Similarly, the variable in stake may not be even observable directly thus the real population not reachable. For these reasons a sample is drawn from the finite population according to some method.

From the sample, the unknown aggregated statistics of the population -such as a mean the most oftenneeds to be infered, say estimated. In order to assist the mean estimation, auxiliary variables (or variates) bring additional information when available as some of their statistics are known at the level of the population. This helps for reduction of the mean squared error (mse) for the related mean estimators by eventually increasing the bias. The idea is that the correction applied to the sample mean of an auxiliary variable in order to retrieve its population mean can be (exactly) applied to our sample mean of interest for the characteristic or variable unknown at the population level. Several methods have been invented and developped in this domain of research, with in particular the ratio method with a multiplicative correction [START_REF] Cochran | The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce[END_REF] and the regression method with an additive correction [START_REF] Rao | On certain methods of improving ratio and regression estimators[END_REF].

For multiple auxiliary variables some proposed estimators [START_REF] Allen | A family of estimators of population mean using multi-auxiliary information in presence of measurement errors[END_REF][START_REF] Diana | Estimation of finite population mean using multi-auxiliary information[END_REF][START_REF] Vishwakarma | An efficient class of estimators for the mean of a finite population in two-phase sampling using multi-auxiliary variates[END_REF] in the literature have their expression related to an additional [START_REF] Olkin | Multivariate ratio estimation for finite populations[END_REF][START_REF] Rao | Generalized multivariate estimator for the mean of finite populations[END_REF][START_REF] Singh | On linear regression and ratio-product estimation of a finite population mean[END_REF][START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF], multiplicative [START_REF] Singh | Ratio cum product method of estimation[END_REF][START_REF] Srivastava | A generalized estimator for the mean of a finite population using multi-auxiliary information[END_REF][START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF], quotient [START_REF] Shukla | An alternative multivariate ratio estimate for finite population[END_REF][START_REF] John | On multivariate ratio and product estimators[END_REF]. These estimators are able to improve the one variable estimator by reducing the variance when several auxiliary variables are available.

A new generalizing class for the ratio estimators is introduced and the expressions of the corresponding mean squared errors are proposed for visualization purpose. The plan is as follows. In section 2 a new parametric class of univariate estimator is proposed by introducing a polynomial expansion. In section 3 existing multivariate ratio estimators are generalized and listed, their mean squared errors are approximated via two differents ways in an unifying analytical expression. In section 4, the approximated mse of several estimators defined from the proposed parametric class in section 2 are written in closed form and minimized. In section 5 the experiments demonstrate the interest of the approach for the comparison of several estimators with real populations. In section 6 a discussion and the perspectives conclude the paper.

Parametric univariate ratio estimator

Let denote Y the variable of interest and X an auxiliary variable which is correlated with Y . The population mean X of X is known while the population mean Ȳ of Y is unknown. The observation y i for Y and x i for X are available for each sampled unit: the sample (x 1 , y 1 ), (x 2 , y 2 ), • • • , (x n , y n ) is a random variable of size n on pairs of variable (X,Y ) drawn by simple random sampling for instance from a population of size N. Let define x = ∑ n i x i /n and ȳ = ∑ n i y i /n.

Definition

When f (.; .) is an one variable function with an eventual vector of parameters θ, we defined the parametric ratio estimator as written as follows:

ȳR f = f θ ( x; X) ȳ . (1) Let denote δ x = x- X X and δ y = ȳ- Ȳ Ȳ where E s [δ x ] = 0 and E s [δ y ] = 0.
Let define a = a(θ) and b = b(θ) eventually constant and taking their values according to the chosen function f θ (.; .). An explicit 2 nd order serie approximation leads to:

f θ ( x; X) = 1 + a(θ)δ x + b(θ)δ 2 x + • • • . (2)
This is mostly related to [START_REF] Diana | An improved class of estimators for the population mean[END_REF] with explicit variables a and b too, but for the derivative also to [START_REF] Srivastava | A generalized estimator for the mean of a finite population using multi-auxiliary information[END_REF][START_REF] Srivastava | A generalized estimator for the mean of a finite population using multi-auxiliary information[END_REF]Jhajj, 1981, 1983) for instance. These reseaches consider also second order approximations but without a and b being fully variables as proposed herein. Note that a serie approximation is also proposed in other publications but similarly w.r.t. differences instead of relative differences. In general the value 1 is met as the lowest coefficient in the serie of f θ (.; .) and our approach can be extended to other cases as a perspective. For f θ ( x; X) = X/ x when the usual ratio estimator is considered, the value of a is just -1 and as a constant it does not depend on a parameter θ but in for some cases of functions it does. With R = Ȳ / X, this functional approximation brings the following bias and mse for the parametric ratio estimator as,

bias (a, b) ȳR f . = Ȳ a X Ȳ Cov s ( x, ȳ) + b X2 Var s ( x) mse (a, b) ȳR f . = a 2 R 2 Var s ( x) + 2aRCov s ( x, ȳ) +Var s ( ȳ) . (3) 
Note that the expectations, variances and covariances are according to the sample which is the random variable. Their expressions depend on the chosen sampling, typically a simple random sampling with or without replacement which leads to their usual expressions. At the first order approximation, this mean squared error may be smaller than the variance of the usual sample mean estimator ȳ when a < -2Cov s ( x, ȳ)/RVar s ( x). Before presenting the multivariate case, it must be noticed the linearity of the bias when a is a free parameter and the second-degree polynomial form of the mse as a function of a, such as they may be both minimized w.r.t. a and b. This results into an estimator related to a regression estimator when the optimal expressions are replaced in the second-order approximation of f θ (.; .) above. In the following the quantities a and b are supposed constant or depending on θ, an eventual scalar or vectorial parameter.

Exemples of values for a(θ) and b(θ)

A list of the corresponding values for a and b for several functions (from the literature) is presented in the table 1. The functions are defined in [START_REF] Singh | On the estimation of ratio and product of the population parameters[END_REF] for f 1 , in [START_REF] Singh | On the estimation of ratio and product of the population parameters[END_REF] for f 2 , in [START_REF] Bahl | Ratio and product type exponential estimators[END_REF] for f 3 and f 4 , in [START_REF] Muneer | Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables[END_REF] for f 5 , in [START_REF] Khoshnevisan | A general family of estimators for estimating population mean using known value of some population parameter(s)[END_REF][START_REF] Yadav | Improved class of ratio and product estimators[END_REF] for f 6 , in [START_REF] Haq | Improved family of ratio estimators in simple and stratified random sampling[END_REF] for f 7 , in [START_REF] Diana | Using auxiliary information under a generic sampling design[END_REF] for f 8 , f 9 is inspired from f 7 and f 8 while f 10 is adapted from [START_REF] Bhushan | A new log type estimator for estimating the population variance[END_REF] for positive means. 

f θ ( x; X) θ a(θ) b(θ) f 1 x X 1 0 f 2 X x -1 1 f 3 e [ x- X x+ X ] 1 2 -1 8 f 4 e [ X-x X+ x ] -1 2 3 8 f 5 α 2 -e x- X x+ X + (1 -α)e X-x X+ x α -1 2 3 8 -α 4 f 6 c X+d τ(c x+d)+(1-τ)(c X+d) g (c, d) -gτc X d+c X g(g+1) 2 τc X d+c X 2 f 7 e c X+d τ(c x+d)+(1-τ)(c X+d) -1 (c, d) -τc X d+c X 3 2 τc X d+c X 2 f 8 X+γ x+γ γ -X γ+ X X γ+ X 2 f 9 e X+γ x+γ -1 γ -X γ+ X 3 2 X γ+ X 2 f 10 1 + γ ln x X γ γ -γ 2
Next section, these functions f θ are introduced further in the ratio estimators for the case when two auxiliary variables are available instead of just one.

Generalized bivariate estimators and mse

In this section, we review several bivariate estimators from the statistical literature in order to propose an expression of their mse when the function f θ (.; ) from the previous section 2 is considered. Some estimators like the quotient in [START_REF] Shukla | An alternative multivariate ratio estimate for finite population[END_REF][START_REF] John | On multivariate ratio and product estimators[END_REF] or the classes of estimators in [START_REF] Solanki | Efficient classes of estimators in stratified random sampling[END_REF] are not presented herein and are an appealing perspective. Considering the highly extensive research in the literature on modeling of ratio estimators, the purpose is not to review the whole literature in the domain but to show on several selected models the interest of a generic modeling associated to a visualisation of the estimators. Several auxiliary variables seem more appealing than just one because adding more information in the estimators is often able to reduce the bias or the variability.

In a bidimensional setting, the notation are as follows. Two auxiliary variables X j are available with population mean Xj and sample mean x j for j = 1 and j = 2. Hence x i = (x i1 , x i2 ) is bidimensional. Let define x j = ∑ n i x i j /n and ȳ = ∑ n i y i /n and similarly Xj and Ȳ for the population means. Let denote the p = 2 free parameters α j aggregated in the vector α = (α 1 , α 2 ) T , such that the contraint ∑ 2 j=1 α j = 1 is usually introduced. Let denote δ x j = ( x j -Xj )/ Xj such as f θ j (.; .) is obtained by replacing in f θ (.; .) θ by a new vector θ j eventually different for each j if not equal to θ and also replacing δ x by δ x j . Let also denote C 0 j = S yx j / Xj Ȳ , C jk = S x j x k / Xj Xk , C 2 0 = S 2 y / Ȳ 2 , and

C 2 j = S 2 x j / X2 j , Cov s ( ȳ, x j ) = λ n S yx j , Cov s ( x j , xk ) = λ n S x j x k , Var s ( ȳ) = λ n S 2 y , Var s ( x j ) = λ n S 2
x j , and λ n = (1f )/n where f = n/N. Let also denote the correlations ρ 0 j = S yx j /S y S yx j and ρ 12 = S x 1 x 2 /S x 1 S x 2 . Several kinds of bivariate ratio estimators are obtained by the combination of functions f θ (.; .) as explained nextafter.

Exemples of generalized estimators

When denoting new coefficients, a j = a j (θ j ) and b j = b j (θ j ) per function f θ j (.; .), let define the following estimators for two auxiliary variables X 1 and X 2 .

-The additive parametric ratio estimator is defined via a weighted sum of ratio estimators as follows,

ȳR a f = (α 1 f θ 1 ( x1 ; X1 ) + α 2 f θ 2 ( x2 ; X2 )) ȳ . ( 4 
)
Some related literature is in [START_REF] Olkin | Multivariate ratio estimation for finite populations[END_REF][START_REF] Rao | Generalized multivariate estimator for the mean of finite populations[END_REF][START_REF] Singh | On linear regression and ratio-product estimation of a finite population mean[END_REF][START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF]. When there are or not constraints on α to sum to one, the closed-form expression for α is found in [START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF] for the cases of quotients. See also [START_REF] Kumar | Estimation of mean in double sampling using exponential technique on multi-auxiliary variates[END_REF] for a more complex sampling design.

-The multiplicative parametric ratio estimator is defined via a weighted product of ratio estimators as follows,

ȳR m f = f θ 1 ( x1 ; X1 ) α 1 f θ 2 ( x2 ; X2 ) α 2 ȳ . (5) 
Some related literature is in [START_REF] Singh | Ratio cum product method of estimation[END_REF], [START_REF] Srivastava | A generalized estimator for the mean of a finite population using multi-auxiliary information[END_REF][START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF]. As for the additive case, there are several possible cases. It may be chosen a geometrical mean with α j = 1/p (but negative weights could be better if the sign of a j is wrong) or just α j = 1 as met in some estimators in the literature. When a j = ±1, the closed-form expressions for the mse are found in [START_REF] Singh | On the estimation of ratio and product of the population parameters[END_REF][START_REF] Singh | Ratio cum product method of estimation[END_REF] for the case of quotients.

-The parametric combinations of additive and multiplicative ratio estimators are written as follows:

ȳR am f = α + + α -f θ j ( x1 ; X1 ) f θ 2 ( x2 ; X2 ) ȳ ȳR am2 f = α + f θ 1 ( x1 ; X1 ) + α -f -1 θ 1 ( x1 ; X1 ) f θ 2 ( x2 ; X2 ) ȳ ȳR am3 f = α + f θ 1 ( x1 ; X1 ) f θ 2 ( x2 ; X2 ) + α -f -1 θ 1 ( x1 ; X1 ) f -1 θ 2 ( x2 ; X2 ) ȳ ȳR am4 f = α + f θ 1+ ( x1 ; X1 ) f θ 2+ ( x2 ; X2 ) + α -f θ 1-( x1 ; X1 ) f θ 2-( x2 ; X2 ) ȳ . (6) 
The first one is related to [START_REF] Upadhyaya | On the estimation of population means and ratios using supplementary information[END_REF][START_REF] Singh | An efficient use of two auxiliary variables in stratified random sampling[END_REF] for mean estimation. The second one is a parametric bivariate ratio-product estimator extending the estimator in [START_REF] Singh | On linear regression and ratio-product estimation of a finite population mean[END_REF] by averaging a function f θ (.; .) and its inverse while adding a product for the second variable. This model generalizes several contribution to the literature. When X 1 = X 2 such as for variance estimation in [START_REF] Muneer | A new improved ratio-product type exponential estimator of finite population variance using auxiliary information[END_REF], this is a particular case of the additive parametric ratio estimator introduced just above. The third one is related to [START_REF] Yasmeen | Generalized exponential estimators of finite population mean using transformed auxiliary variate[END_REF][START_REF] Adichwal | Generalized class of estimators for population variance using information on two auxiliary variables[END_REF]. See (Singh and Yadav, 2018) for a comparison of this kind of estimators. The fourth one is related to [START_REF] Solanki | Efficient classes of estimators in stratified random sampling[END_REF]Singh and Yadav, 2018), this generalized estimator looks more general than the three other ones.

-A parametric bivariate combined ratio and regression estimator is written:

ȳR c f = (k 0 ȳ + k 1 δ x 1 ) f θ ( x2 ; X2 ) . (7) 
For combining a regression estimator with several auxiliary variables, diverse models have been developped in the literature. Pioneer reseach with this kind of estimator can be found in [START_REF] Kadilar | Ratio estimators in simple random sampling[END_REF][START_REF] Gupta | On improvement in estimating the population mean in simple random sampling[END_REF][START_REF] Haq | Improved family of ratio estimators in simple and stratified random sampling[END_REF]. The case when two different auxiliary variables are introduced, one in the regression part and one in the ratio part is presented further herein. Such estimator is presented by [START_REF] Muneer | Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables[END_REF] for particular values a = -0.5 and b = 3/8 or b = 1/8. And in [START_REF] Hanif | A modified regression type estimator in survey sampling[END_REF] with k 0 = 1 and with the same function f θ (.; .) than in the ratio-product estimator [START_REF] Singh | On linear regression and ratio-product estimation of a finite population mean[END_REF], its authors have shown that its minimum mse is the same than for the difference estimator.

-Other parametric bivariate combined ratio and regression estimators are written:

ȳR c2 f = (k 0 ȳ + k 1 δ x 1 + k 2 δ x 2 ) f θ 1 ( x1 ; X1 ) f θ 2 ( x2 ; X2 ) ȳR c3 f = k 0 ȳ f θ 1 ( x1 ; X1 ) α 1 f θ 2 ( x2 ; X2 ) α 2 + k 1 δ x 1 + k 2 δ x 2 ȳR c4 f = k 0 ȳ + k 1 δ x 1 f θ 2 ( x2 ; X2 ) + k 2 δ x 2 f θ 1 ( x1 ; X1 ) . (8)
For combining a regression estimator with a generic function in the ratio part, see for instance [START_REF] Lu | Efficient estimator of a finite population mean using two auxiliary variables and numerical application in agricultural,biomedical, and power engineering[END_REF][START_REF] Shabbir | A generalized class of estimators under two-phase stratified sampling for non response[END_REF] for the first alternative model and [START_REF] Kadilar | A new estimator using two auxiliary variables[END_REF] for the second alternative model. With generic functions introduced in the ratio part, this underlines the generality of the parametric estimators through the function f θ (.; .). When k 0 = 1, the mse of the combined estimator ȳR c2 f generalizes several ones from the literature. When

f θ 1 = f θ 2 = 1, the estimator ȳR c2
f reduces to the one in [START_REF] Rao | On certain methods of improving ratio and regression estimators[END_REF][START_REF] Lu | Efficient estimator of a finite population mean using two auxiliary variables and numerical application in agricultural,biomedical, and power engineering[END_REF] denoted ȳR rao91 = k 0 δ y + k 1 δ x 1 + k 2 δ x 2 which reduces the mse of ȳR di f f when k 0 = 1 as explained next section. Note that other expressions such as in [START_REF] Shahzad | A new estimator for mean under stratified random sampling[END_REF] for instance are not considered herein.

Usual approximated mse (to second order) of estimators

In this subsection, we consider the case when two auxiliary variables are available and also third order terms in the approximations of f θ 1 (.; .) and f θ 2 (.; .) respectively with c 1 and c 2 as the coefficients associated to δ 3

x 1 and δ 3

x 2 , such that a generalized estimator ȳRest is as follows:

ȳRest - Ȳ . = T +U 0 δ y + ∑ j U j δ x j + ∑ j V j j δ 2 x j + ∑ j V 0 j δ y δ x j + ∑ j,k;k> j V jk δ x j δ x k + ∑ j W j j j δ 3 x j + ∑ j,k W jkk;k = j δ x j δ 2 x k + ∑ j W 0 j j δ y δ 2 x j + ∑ j,k;k> j W 0 jk δ y δ x j δ x k . (9) 
The expressions of the corresponding values for T , U 0 , U j , V j j , V 0 j , V jk , W j j j , W 0 j j , W jkk and W 0 jk , depend on the given estimator. The expectation of the expression just before leads to the bias of the generalized estimator. For the mean squared error it is obtained that:

( ȳRest -Ȳ ) 2 . = T +U 0 δ y + ∑ j U j δ x j 2 +2 T +U 0 δ y + ∑ j U j δ x j ∑ j V j j δ 2 x j + ∑ j V 0 j δ y δ x j + ∑ j,k;k> j V jk δ x j δ x k +2T ∑ j W j j j δ 3 x j + ∑ j,k;k = j W jkk δ x j δ 2 x k + ∑ j W 0 j j δ y δ 2 x j + ∑ j,k;k> j W 0 jk δ y δ x j δ x k . (10) 
The expectation w.r.t. the sampling may lead to the mean squared error in the general case which is a new result to our knowledge. This general expression remains relevant even when T = 0 which is the case of the multiplicative parametric ratio estimator for instance. When the third order terms are removed, this leads to the approximated mean squared error:

mse [ ȳRest ] . = amse [ ȳRest ] amse [ ȳRest ] = λ n U 2 0 C 2 0 + λ n ∑ j,k U j U k C jk + 2T λ n ∑ j,k;k> j V jk C jk + 2T λ n ∑ j V j j C 2 j +2λ n ∑ j (TV 0 j +U j U 0 )C 0 j + T 2 = λ n U 2 0 C 2 0 + 2λ n (TV 11 + 0.5U 2 1 )C 2 1 + 2λ n (TV 22 + 0.5U 2 2 )C 2 2 + T 2 +2λ n (TV 12 +U 1 U 2 )C 12 + 2λ n (TV 01 +U 1 U 0 )C 01 + 2λ n (TV 02 +U 2 U 0 )C 02 . (11)
The first row in the expression above may be relevant for more than one auxiliary variable while the second row provides directly the mean squared error one when the unknown values for

T , U 0 , U 1 , U 2 , V 1 , V 2 , V 01 ,
V 02 , and V 12 are filled for two auxiliary variables. Note that instead of directly minimizing the amse (11) w.r.t. these parameters, the ratio framework prefers to introduce constraints which depend on a smaller set of unknown parameters as considered in section 4.

Linearizing approximated mse of estimators

The random variable ȳRest is a function of δ = (δ y , δ x 1 , δ x 2 ) T , as follows:

ȳRest . = Z(δ) . ( 12 
)
An expression of the variance via a linearization is proposed for more completenesss. The corresponding mean squared error may be computed as follows at the first order:

mse [ ȳRest ] . = amse L [ ȳRest ] amse L [ ȳRest ] = ∂Z ∂δ T Var[δ] ∂Z ∂δ + bias 2 [ ȳRest ] . (13) 
The positivity of the variance and the squared lead to the positivity of this amse. This new approximation of the mse adds several terms to the usual one in order to insure its positivity:

amse

L [ ȳRest ] = amse [ ȳRest ] + bmse L [ ȳRest ] bmse L [ ȳRest ] = λ 2 n V 11 C 2 1 +V 22 C 2 2 +V 01 C 01 +V 02 C 02 +V 12 C 12 2 . ( 14 
)
Next, several examples of mean squared errors are computed with the usual and the linearizing approaches for two auxiliary variables.

Approximation of the mean squared error for several estimators

The following results on the mse are obtained for our proposed generic estimators.

Approximated mse of the additive and multiplicative estimators

The mse for the additive bivariate estimator and the multiplicative estimators are written from:

ȳR a f . = 2 ∑ j=1 α j + 2 ∑ j=1 α j a j δ x j + 2 ∑ j=1 α j b j δ 2 x j ȳ . ȳR m f . = 1 + 2 ∑ j=1 α j a j δ x j + α 1 a 2 α 1 a 2 δ x 1 δ x 2 + 2 ∑ j=1 α j 2b j +(α j -1)a 2 j 2 δ 2 x j ȳ . ( 15 
)
This results into the following expressions entering the general amse in (11) listed in table 2. The corresponding expressions for the approximated mean squared error are discusses nextafter. 

T U 0 U j V j j V 0 j V 12 ȳR a f (α 1 + α 2 -1) Ȳ (α 1 + α 2 ) Ȳ a j α j Ȳ b j α j Ȳ a j α j Ȳ 0 ȳR m f 0 Ȳ a j α j Ȳ α j 2b j +(α j -1)a 2 j 2 Ȳ a j α j Ȳ a 1 α 1 a 2 α 2 Ȳ Case α 1 = 1 -α 2 = α
The additive and multiplicative estimators have identical mse at the first order:

mse (α 1 + α 2 = 1) ȳR a f . = mse (α 1 + α 2 = 1) ȳR m f . = λ n Ȳ 2 C 2 0 + 2 2 ∑ j=1 α j a j C 0 j + 2 ∑ j,k=1 α j α k a j a k C jk . (16) 
A direct computation or the general expression (11) with U 0 = Ȳ , U j = Ȳ α j a j while T = 0 leads to this approximated mse. The optimal value of α minimizing the mse of ȳR a f and ȳR m f is found by replacing the expression of α 1 and α 2 depending of α in the mse ȳR a f , and derivating w.r.t. α. The solution generalizes the usual one when a j = -1 for a quotient, it is written:

α opt = a 2 C 02 -a 1 C 01 + a 2 2 C 2 2 -a 1 a 2 C 12 a 2 1 C 2 1 + a 2 2 C 2 2 -2a 1 a 2 C 12 -1 . (17) 
Note the identical analytical expression in [START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF] with quotients when a j is for an exponentiation. When the optimal values α 1;opt = α opt and α 2;opt = 1α opt are inserted in the expression of the mean squared error, it is denoted mse (α 1 + α 2 = 1) (min)

for both ȳR a f and ȳR m f . The resulting mse are minimum for these two estimators under constraints.

Case α 1 + α 2 = 1 The additive and multiplicative estimators have different mse. The additive bivariate estimator and its combinations with the multiplicative one are not considered further herein, and left as a perspective. For the multiplicative bivariate estimator with any value of a 1 , a 2 , b 1 and b 2 , the mean squared error obtained after finding the optimal values for α 1 and α 2 without constraints or by recognizing the estimator in the first terms from ( 15) is written for the usual case:

mse (α 1 + α 2 = 1) (min) ȳR m f . = mse ȳR di f f , (18) 
where,

mse ȳR di f f . = λ n C 2 0 Ȳ 2 1 - ρ 2 01 + ρ 2 02 -2ρ 12 ρ 01 ρ 02 1 -ρ 2 12 . ( 19 
)
Here ȳR di f f = ȳ + k 1 δ x 1 + k 2 δ x 2 denotes the difference estimator where the computed mse is such that k 1 and k 2 minimize the mse depending on these parameters. Hence at the first order, according to this result, the mean squared error does not depend on the parameters a j and b j for this combination of functions, and the mse remains identical for any function f θ 1 (.; .) and f θ 2 (.; .). This is a complement to the similar result known for the product of two functions in a ratio adjustement with just quotients [START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF].

Approximated mse of the combined ratio and regression estimators

Case k 0 = 1 When for ȳR c2 f , k 0 = 1, while k 1 , k 2 are free parameters or when for ȳR c3 f , k 0 = 1, α 1 , α 2 are free parameters while k 1 and k 2 are the regression coefficients (assimilated to the population ones [START_REF] Kadilar | A new estimator using two auxiliary variables[END_REF]), or for ȳR c4 f the free parameters are k 1 , k 2 with k 0 = 1, then the mses of the four estimators are written from the expectation of the squared of:

ȳR c f - Ȳ . = δ y Ȳ + k 1 δ x 1 + Ȳ aδ x 2 ȳR c2 f - Ȳ . = δ y Ȳ + (k 1 + a 1 Ȳ )δ x 1 + (k 2 + a 2 Ȳ )δ x 2 ȳR c3 f - Ȳ . = δ y Ȳ + (k 1 + α 1 a 1 Ȳ )δ x 1 + (k 2 + α 2 a 2 Ȳ )δ x 2 ȳR c4 f - Ȳ . = δ y Ȳ + k 1 δ x 1 + k 2 δ x 2 . ( 20 
)
Thus it is recognized the difference estimator such that at the first order approximation, the estimators have same mse for optimal values of k 1 , k 2 , α 1 , α 2 , or a respectively such that:

mse *(k 0 = 1) (min) ȳR c f . = mse (k 0 = 1) (min) ȳR c2 f . = mse (k 0 = 1) (min) ȳR c3 f . = mse (k 0 = 1) (min) ȳR c4 f . = mse ȳR di f f . ( 21 
)
Case k 0 = 1 The corresponding terms as defined from the generalized expression proposed in ( 11) are presented in table 3 for each estimator. 

ȳR c f ȳR c2 f ȳR c3 f ȳR c4 f ȳR rao91 T (k 0 -1) Ȳ (k 0 -1) Ȳ (k 0 -1) Ȳ (k 0 -1) Ȳ (k 0 -1) Ȳ U 0 k 0 Ȳ k 0 Ȳ k 0 Ȳ k 0 Ȳ k 0 Ȳ U 1 k 1 k 1 + a 1 k 0 Ȳ k 1 + a 1 α 1 k 0 Ȳ k 1 k 1 U 2 ak 0 Ȳ k 2 + a 2 k 0 Ȳ k 2 + a 2 α 1 k 0 Ȳ k 2 k 2 V 11 0 a 1 k 1 + b 1 k 0 Ȳ b 1 k 0 Ȳ 0 0 V 22 bk 0 Ȳ a 2 k 2 + b 2 k 0 Ȳ b 2 k 0 Ȳ 0 0 V 01 0 a 1 k 0 Ȳ a 1 k 0 Ȳ 0 0 V 02 ak 0 Ȳ a 2 k 0 Ȳ a 2 k 0 Ȳ 0 0 V 12 ak 1 a 1 k 2 + a 2 k 1 + a 1 a 2 k 0 Ȳ a 1 a 2 k 0 Ȳ k 1 a 2 + k 2 a 1 0
In comparaison to the Rao estimator [START_REF] Rao | On certain methods of improving ratio and regression estimators[END_REF][START_REF] Lu | Efficient estimator of a finite population mean using two auxiliary variables and numerical application in agricultural,biomedical, and power engineering[END_REF], the combined estimatord adds new terms in the general expression (11), hence may be able to improve the mse for some populations. As an example, the estimator ȳR c f and ȳR c4 f are considered nextafter in the generalized cases while the other combined estimators (regression and additive) are left for perspective.

Approximated mse of ȳR c f -The mse for the parametric bivariate combined ratio and regression is written as a function of k 0 and k 1 , a and b by taking the expectation of the squared of:

ȳR c f - Ȳ . = k 0 Ȳ + k 0 δ y Ȳ + k 1 δ x 1 + k 0 Ȳ aδ x 2 + k 0 Ȳ aδ y δ x 2 + k 1 aδ x 1 δ x 2 + k 0 Ȳ bδ 2 x 2 -Ȳ . (22) Thus, mse (k 0 ,k 1 ) ȳR c f . = λ n C 2 0 k 2 0 Ȳ 2 + 2bλ n C 2 2 k 2 0 Ȳ 2 + a 2 λ n C 2 2 k 2 0 Ȳ 2 + k 2 0 Ȳ 2 -2aλ n C 02 k 0 Ȳ 2 -2k 0 Ȳ 2 -2bλ n C 2 2 k 0 Ȳ 2 + Ȳ 2 + 2λ n k 0 k 1 Ȳ (C 01 + 2aC 12 ) -2aλ n C 12 k 1 Ȳ + λ n C 2 1 k 2 1 . = Ak 2 0 + Bk 2 1 + 2Ck 0 k 1 -2D 0 k 0 -2D 1 k 1 + E . (23) 
Where,

A = Ȳ 2 + Ȳ 2 λ n C 2 0 + (a 2 + 2b)C 2 2 + 4aC 02 B = λ n C 2 1 C = 2 Ȳ λ n (aC 12 + 0.5C 01 ) D 0 = Ȳ 2 + Ȳ 2 λ n bC 2 2 + aC 02 D 1 = a Ȳ λ n C 12 E = Ȳ 2 . ( 24 
)
-There are two cases to solve for identifying the optimal values of k 0 and k 1 .

-If k 0 = 1, in order to find the optimal values of k 0 and k 1 by minimizing the mse, the system coming from the derivatives is solved. The solution if its exists is given by:

k 0;opt = {BD 0 -CD 1 } AB -C 2 -1 k 1;opt = {AD 1 -CD 0 } AB -C 2 -1 . (25) 
Thus, the minimum value for the mse is obtained when these two optimal values k 0;opt and k 1;opt are inserted in the amse ( 23). The resulting minimal mse is a quotient of two polynomials of the two variables a and b.

-If k 0 = 1, the mean squared error is rewritten as follows, mse (1,k 1 ) ȳR c f . = Bk 2 1 + 2(C -D 1 )k 1 + A -2D 0 + E. When k 0 = 1 and constant, the minimum is reached at the new optimal solution given by k 1;opt = (D 1 -C)B -1 . The resulting mse is rewritten (A-2D 0 +E)-(D 1 -C) 2 B -1 , and is higher than when k 0 is a free parameter. Note that on the contrary to the previous expression when k 0 is a free parameter, this expression of the mse does not depend on b because the term depending on b cancels out by difference in A -2D 0 . When X 1 and X 2 are not perfectly correlated (ρ 12 = 0), it can be shown that it exists a value of the scalar a where its mean squared error is minimum at a = a opt ,

a opt = C 01 C 12 -C 2 1 C 02 C 2 1 C 2 2 -C 2 12 -1 . ( 26 
)
The corresponding minimum is found equal to:

mse *(k 0 = 1) (min) ȳR c f . = mse ȳR di f f . ( 27 
)
Note that this mse does not depend on a or b anymore, hence it corresponds to all the functions f θ (.; .) with same values a = a opt as higher order derivatives do not enter the mse at the first order.

At the first order approximation, the approximated mse of the generalized estimator related to [START_REF] Hanif | A modified regression type estimator in survey sampling[END_REF][START_REF] Muneer | Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables[END_REF] can be smaller than several usual estimators when the scalars a and b are well chosen.

-When the linearizing amse is considered, after adding the terms coming from bmse L in ( 14), the new coefficients to enter the linear system may be written as follows, D0 = D 0 , D1 = D 1 , Ȇ = E, and,

Ȃ = A + Ȳ 2 λ 2 n (bC 2 2 + aC 02 ) 2 , B = B + a 2 λ 2 n C 2 12 , C = C + a Ȳ λ 2 n (bC 2 2 + aC 02 )C 12 .
As expected only terms with λ 2 n add up to the new expressions. Similarly than for the usual form of the mean squared error, the coefficients k 0 and k 1 are found by solving a linear program. Thus, the new minimum value for the linearizing amse is obtained when these two new optimal values k0;opt and k1;opt are inserted in the mse.

Approximated mse of ȳR c4 f -When k 0 = 1, the mse of the combined estimator ȳR c4 f is written from the following difference which is squared for computing the mse:

ȳR c4 f - Ȳ . = (k 0 -1) Ȳ + k 0 Ȳ δ y + k 1 δ x 1 + k 2 δ x 2 + (a 1 k 2 + a 2 k 1 )δ x 1 δ x 2 . ( 28 
)
The mean squared error at the first order is written as proposed in the formula (11) for instance. For its minimization, the mean squared error is rewritten via a quadratic function as follows:

mse (k 0 ,k 1 ,k 2 ) ȳR c4 f . = Ak 2 0 + Bk 2 1 +Ck 2 2 + 2Dk 0 k 1 + 2Ek 0 k 2 + 2Fk 1 k 2 -2G 0 k 0 -2G 1 k 1 -2G 2 k 2 + H . ( 29 
)
With coefficients:

A = Ȳ 2 (1 + λ n C 2 0 ) B = λ n C 2 1 C = λ n C 2 2 D = Ȳ λ n (a 2 C 12 +C 01 ) E = Ȳ λ n (a 1 C 12 +C 02 ) F = λ n C 12 G 0 = Ȳ 2 G 1 = a 2 λ n C 12 Ȳ G 2 = a 1 λ n C 12 Ȳ H = Ȳ 2 . ( 30 
)
The solutions for the values of k 0 , k 1 and k 2 for this estimator are found in closed-form as follows. Let denote the symmetric inverted matrix with cell values A = BC -F 2 , B = AC -E 2 , C = AB -D 2 , D = EF -CD, E = DF -BE, and F = DE -AF, and the inverted matricial determinant ∆ -= {AA + DD + EE } -1 from the linear problem. The optimal solution minimizing the amse is given by:

k 0;opt = {A G 0 + D G 1 + E G 2 }∆ - k 1;opt = {D G 0 + B G 1 + F G 2 }∆ - k 2;opt = {E G 0 + F G 1 +C G 2 }∆ -. (31) 
The minimum value for the mse is obtained when these three optimal values k 0;opt , k 1;opt and k 2;opt are inserted in the amse (29). The resulting mean squared error is a function of a 1 , a 2 , b 1 and b 2 .

-When the linearizing amse is considered, after adding the terms coming from bmse L in ( 14), the new coefficients to enter the linear system may be written as follows,

Ȃ = A, D = D, Ȇ = E, G0 = G 0 , G1 = G 1 , G2 = G 2 , H = H, and, B = B + a 2 2 λ 2 n C 2 12 , C = C + a 2 1 λ 2 n C 2 12 , F = F + a 1 a 2 λ 2 n C 2 12 .
Similarly than for the usual form of the mean squared error, the coefficients k 0 , k 1 and k 2 are found by solving a linear program. Thus, the new minimum value for the linearizing amse is obtained when these two new optimal values k0;opt , k1;opt and k2;opt are inserted in the amse (29).

Approximated mse of ȳRest

For the minimization of the amse, the usual way from the literature needs to identify the quantities A, B, . . . which becomes more tedious when the ratio model increases in complexity. We propose a new approach more generic via matrix algebra which provides a numerical solution such as finding an analytical expression via matricial products becomes facultative for visualization purpose. For our proposed generic approach, let denote Ψ = (T,U 0 ,U 1 ,U 2 ,V 11 ,V 22 ,V 01 ,V 02 ,V 12 ) T , and:

Q =               1 0 0 0 λ n C 2 1 λ n C 2 2 λ n C 01 λ n C 02 λ n C 12 0 λ n C 2 0 λ n C 01 λ n C 02 0 0 0 0 0 0 λ n C 01 λ n C 2 1 λ n C 12 0 0 0 0 0 0 λ n C 02 λ n C 12 λ n C 2 2 0 0 0 0 0 λ n C 2 1 0 0 0 λ 2 n C 4 1 λ 2 n C 2 1 C 2 2 λ 2 n C 01 C 2 1 λ 2 n C 02 C 2 1 λ 2 n C 2 1 C 12 λ n C 2 2 0 0 0 λ 2 n C 2 1 C 2 2 λ 2 n C 4 2 λ 2 n C 01 C 2 2 λ 2 n C 02 C 2 2 λ 2 n C 12 C 2 2 λ n C 01 0 0 0 λ 2 n C 01 C 2 λ 2 n C 01 C 2 2 λ 2 n C 2 01 λ 2 n C 01 C 02 λ 2 n C 01 C 12 λ n C 02 0 0 0 λ 2 n C 02 C 2 1 λ 2 n C 02 C 2 2 λ 2 n C 01 C 02 λ 2 n C 2 02 λ 2 n C 02 C 12 λ n C 12 0 0 0 λ 2 n C 2 1 C 12 λ 2 n C 12 C 2 2 λ 2 n C 01 C 12 λ 2 n C 02 C 12 λ 2 n C 2 12               . (32) 
Let denote K = (1, K T ) T where K = (k 0 , k 1 , k 2 ) T or any other vector of coefficients K = (k 0 , k 1 ) T for instance. Let also denote the matrix Φ which maps the vector K to the parameters Ψ, hence Ψ = Φ K and it is defined by two blocks Φ = [ξ 0 |ξ K ]. For instance, for ȳR c2 f , ȳR c4 f , ȳR c f and ȳR a f , it is obtained respectively Φ = Φ Rc2 , Φ = Φ Rc4 , Φ = Φ Rc and Φ = Φ Ra where:

Φ Rc2 =               -Ȳ Ȳ 0 0 0 Ȳ 0 0 0 a 1 Ȳ 1 0 0 a 2 Ȳ 0 1 0 b 1 Ȳ a 1 0 0 b 2 Ȳ a 2 0 0 a 1 Ȳ 0 0 0 a 2 Ȳ 0 0 0 a 1 a 2 Ȳ a 2 a 1               , Φ Rc4 =               -Ȳ Ȳ 0 0 0 Ȳ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 2 a 1               , Φ Rc =               -Ȳ Ȳ 0 0 Ȳ 0 0 0 1 0 a Ȳ 0 0 0 0 0 b Ȳ 0 0 0 0 0 a Ȳ 0 0 0 a               , Φ Ra =               -Ȳ Ȳ Ȳ 0 Ȳ Ȳ 0 a 1 Ȳ 0 0 0 a 2 Ȳ 0 b 1 Ȳ 0 0 0 b 2 Ȳ 0 a 1 Ȳ 0 0 0 a 2 Ȳ 0 0 0               . ( 33 
)
Then,

amse L [ ȳRest ] = Ψ T QΨ = ξ T 0 Qξ 0 + 2ξ T 0 Qξ K K + K T ξ T K Qξ K K . (34) 
Thus, after derivation, the system to solve for identifying the optimal value of K is as follows:

ξ T K Qξ 0 + ξ T K Qξ K K = 0 . ( 35 
)
When three parameters are involved, this leads to retrieve the notation in the paragraph just before:

  G 0 G 1 G 2   = -ξ T K Qξ 0 and   A D E D B F E F C   = ξ T K Qξ K . ( 36 
)
When the solution K opt is inserted in the expression of the approximated mse, the amse is minimum. This may be relevant for one variable or more than two variables by updating Q as a perspective.

Experiments

In summary to the previous section, the generalized expressions of the amse of the considered estimators with the functions f θ (.; .) lead to complementary results. To demonstrate the interest of using the parameterization for the comparison of estimators, it is proposed to perform an empirical analysis of ratio estimators in this section.

Empirical settings

The empirical results allow to check the behavior of several estimators with diverse datasets when the function f θ (.; .) is in stake. They are:

• ȳ1 for the estimator denoted ȳR rao91 in the previous sections as a competitive baseline,

• ȳ2 for the additive estimator ȳR a f with a 1 = a 2 = a varying and α 1 + α 2 = 1, • ȳ3 for the difference estimator ȳR di f f which does not depend on the quantity a,

• ȳ4 for the combined estimator ȳR The other settings are the choice for the functions in the ratio estimator and the choice of an indicator for summarizing the numerical informations.

Parametric functions

The functions for the ratio adjustement part are as follows.

-In [START_REF] Diana | Using auxiliary information under a generic sampling design[END_REF] a particular function is defined f θ ( x; X) = X+γ x+γ with θ = γ. From the secondorder polynomial approximation, the corresponding coefficients a and b from the serie approximation are a(γ) and b(γ) given at subsection 2.2. Note that the range for γ is chosen in order to have the range of a equal to [-1.2; +1.2] while removing the values around 0.

-In the generic case, f θ ( x; X) . = 1 + aδ x + bδ 2 x , even if a and b are allowed to change jointly, b is generally fixed to b = 3/8 in the proposed experiments.

Indicators The indicator computed in the experiments for an estimator ȳk where 1 ≤ k ≤ 8 is defined as follows, PRE = λ n Ȳ 2 C 2 0 /mse [ ȳk ], and similarly for ȳ8 . This is the gain when the variance of the usual mean estimator is compared with the mean squared error of a given mean estimator.

Real data The four selected datasets are D1 [START_REF] Muneer | Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables[END_REF] (Data 1, page 2185), D2 [START_REF] Muneer | Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables[END_REF] (Data 3, page 2185) and D3 [START_REF] Abu-Dayyeh | Some estimators of a finite population mean using auxiliary information[END_REF] (page 296) and an other dataset from the literature. Their corresponding statistics entering in the expression of the estimators are in the table 4 below. Note that the value n = 8 is small but seems suitable for the computation of the mse according to the experiments. 

Empirical results with the usual amse

-As a can vary in the generalized expressions of the mse, it is observed graphically the shape of the indicator named PRE when b is fixed to 3/8 while a varies in [-1.2; +1.2] in order to observe the variations of the different mse and compare their values. On the figure 1, it is shown from the graphical output of RStudio in (R Core Team, 2017), the indicators PRE for most of the estimators considered, as a curve depending on the scalar a. The value of the indicator PRE for the estimator ȳ4 is at the intersection of the curve for ȳ5 and the vertical line passing through a = -0.5. -The numerical results corresponding to the figure 1 with the indicator PRE are in Table 5. The optimization of the parameter a in ȳ5 is able to decrease the mse of the estimator ȳ4 for at least one dataset out of four when a opt (see table 5) is very different from -0.5. According to the figure 1, the mse of the estimators ȳR a f and ȳR m f with α 2 = 1α 1 and a 1 = a 2 is minimum for a particular value of a depending on the population and for which it reaches the one of the difference estimator: this result may ask to solve for a quartic equation in order find the optimal analytical value of a. Visually, the graphics allow to compare the estimators and empirically validate the expressions and bounds of the mse. The additional term bmse in (14) divived by the amse for each dataset is respectively equal to 2.6 10 -7 , 2.1 10 -2 , 2.7 10 -3 and 6.1 10 -4 , thus these numbers associated to quadratic shapes of the curves in figure 1 may justify the computation of the usual amse instead of the linearizing one for the considered populations. -Considering the smaller mean squared error of ȳ8 for some populations, it is optimized analytically the amse of ȳR c f with respect to a and b despite the nonlinearities. A solution leads to the same result for a equal to a opt also and for b a new analytical value with the following expression,

b opt = C 2 12 (C 2 12 C 2 0 +C 2 1 C 02 2 -2C 01 C 12 C 02) -2C 2 1 C 2 2 (C 2 1 C 02 2 +C 2 12 C 2 0 -2C 01 C 12 C 02) +(C 2 1 C 2 0 -C 01 2 )C 2 1 C 2 4 (C1 4 C 2 4 -2C 2 1 C 2 12 C 2 2 +C 12 4 )C 2 2 . ( 37 
)
Changing the value of b while keeping the same value for a implies that the estimator denoted ȳ8 may be improved with this new value of b. But due to the nonlinearities of the mse w.r.t. the parameters a and b, the value of b opt looks less reliable than a opt which is obtained from a quadratic equation: there is no insurance that the resulting solution is a minimum of the mse according to the conducted numerical results. When denoting the corresponding estimator ȳ8 , these results are summarized in table 5 at the six last columns.

-The case when a and b are both free to vary jointly may be presented for each population in a three dimensional space with dimensions a, b, and PRE. This graphics leads to a visual comparison of the estimator for different values of a and b, each point of the surface is a different estimator such as it is possible to check if it is enough near the optimum given the chosen intervals. In figure 1, it is shown several sections of the surface denoted as ȳ9 for different values b ∈ {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}. For two datasets, the surface does not depend on b for the range of values considered while mostly for D2 and slightly for D3 it does.

Conclusion and perspectives

Herein, we propose to review and analyze graphically several existing ratio estimators from the literature via generic models when two auxiliary variables are available. The main difference with previous serie approximations is to consider the relative differences for the means, the derivatives as fully variables and the visualization when the derivatives take their values inside intervals. This brings a complementary view of their behaviors as it becomes possible to compare visually their efficiency (and eventually their bias) while checking the validity of their mse approximation in the vicinity of a chosen function for modeling the ratios.

The main perspective remains a further study of the behaviour of the mses plus the bias w.r.t. the function f θ (.; .) with eventually higher orders in the approximations.

  c f with a = -0.5 and b = 0.375 (see subsection 3.1), • ȳ5 for the combined estimator ȳR c f with a varying, b = 0.375, and with no constraint, • ȳ6 for the combined estimator ȳR c f with a = a(γ) and b = b(γ) (see subsection 2.2), • ȳ7 for the combined estimator ȳR c f with a (and b) varying but with the constraint k 0 = 1, • ȳ8 for the combined estimator ȳR c f with a = a opt and b = 0.375, • ȳ8 for combined estimator ȳR c f with a = a opt and b = b opt , • ȳ9 for the combined estimator ȳR c f with a varying, b ∈ {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}. The experiments are based on several datasets for comparing the considered ratio estimators with real data.

Figure 1 :

 1 Figure 1: Curves for the populations D1 (top) and D2 (bottom) in the left column D3 (top) and D4 (bottom) in the right column, of the indicator PRE as a function of the varying quantity a.

Table 1 :

 1 Examples of values for a and b.

Table 2 :

 2 Parameterization for the additive and multiplicative estimators.

Table 3 :

 3 Parameterization for four combined estimators and the Rao estimator.

Table 4 :

 4 Statistics for the considered populations.

	N n	Ȳ	X1	X2	C 2 0	C 2 1	C 2 2	C 12	ρ 01	ρ 02	ρ 12
	D1 100 29	2.364	2.925	5.2390 2.5582 0.0661 0.0461 0.0047 0.1602 0.0829 0.0846
	D2 97 30 3135.619 3050.278 2743.9587 4.8674 5.4812 6.2422 3.5810 0.8072 0.8501 0.6122
	D3 332 80 1093.100 181.570 143.3100 0.7626 0.7684 0.7616 0.6441 0.9730 0.8620 0.8420
	D4 18 8 13.797	2.444 38.4440 0.1864 12.5025 0.1184 0.4950 0.8210 0.5903 0.4069

Table 5 :

 5 Empirical numerical results with the indicator PRE for the four datasets and height estimators for the first height columns. (*) The written solutions for ȳ5 , ȳ6 and ȳ7 are numerical optima: they are not algebrical hence may be not directly useful for practical interest because generally an explicit solution is required for the estimates. At the six last columns, empirical numerical results with the indicator PRE for the four datasets with the estimator ȳ8 found by optimizing the approximation of the mse, while the corresponding optimal values for a, b, k 0 and k 1 are also presented.

	ȳ1	ȳ2	ȳ3	ȳ5 (*)	ȳ6 (*)	ȳ7 (*)	ȳ4	ȳ8	ȳ8 k 0;opt	k 1;opt	a opt	b opt
	D1 1.0941 1.0287 1.0315 1.0944 1.0941 1.0943 1.0944 1.0943 1.2159 0.910	-2.073 -0.5203 37.4471
	D2 6.9710 6.6723 6.8589 7.4174 6.9753 7.3578 7.3658 7.3579 9.7233 1.076 -1379.910 -0.5027 -0.3041
	D3 21.2856 21.2583 21.2783 21.8135 21.2856 21.8127 12.0856 21.8126 21.2871 0.999 -924.634 -0.1469 0.0265
	D4 4.0559 2.4561 4.0430 4.0755 4.0560 4.0754 3.9588 4.0754 4.0481 0.998	-1.1706 -0.3853 0.0048

* Only the published paper at [Communications in Statistics -Theory and Methods, 2019] is complete. A complementary contents is available via a separated document.

Complementary contents to 'Visualization of generalized mean estimators using auxiliary information in survey sampling' Appendix 1: Approximated mse from a quadratic function From the definion of the matrices Q and Φ and the resulting matricial expression of the amse, the optimal vector K which minimizes the amse is defined as follows:

Note that for the constraints such as the sum of the components of K is one, we need to add a Lagrangian which leads to update this unconstrained solution K opt as in the usual linear regression with constraints. The constraint is typically the sum to one for an additive estimator. More generally let suppose ΩK = ω, for instance ω = 1 while Ω is a vector of 1 in order to insure k 0 + k 1 = 1. The constrained solution is written:

When the unconstrained solution K opt is inserted in the matricial expression of the amse, the amse is minimum:

The corresponding bias is denoted bias (opt) [ ȳRest ], it is written afterwards when the quantities T , U 0 , U 1 , U 2 , V 11 , V 22 , V 01 , V 02 , and V 12 from the optimal vector

Note that a common requirement for a mean squared error is that it becomes small [START_REF] Diana | An improved class of estimators for the population mean[END_REF]) with λ n and cancels out when the sample equals the whole population. When n = N, this induces that λ n = 0 hence the matrix (ξ T K Qξ K ) is not invertible because Q reduces to a zero matrix except that its first cell (top-left) is equal to 1, thus this singularity may be addressed as a perspective.

Appendix 2: Approximated mse of estimators via sampling

The resampling procedures are usually used after a first step such as an estimation: this is a way to find the variability of the estimates. For instance, boostrapping and Jackknifing lead to the variance and the bias wanted for constructing an approximate mse from a sample. This supposes the existence of a sample which is the case when one wants to estimate a population mean from a sample mean. This is an alternative to the subsection on a direct linearization in order to avoid any analytical approximation. The corresponding numerical approximation of the mean squared error is thus as follows:

In the case of the bootstrap, the resampling statistics are written for instance as follows:

The positivity of the variance and the squared lead to the positivity of this amse. Note that other expressions from sampling for the bias, variance and mean squared error are available such as from the Jackknife framework. A nice property of the resampling approach is to avoid any serie expansion while bringing an objective function for any hidden parameter such as the regression coefficients. If some exponentiation is involved, it is required here an optimisation via a numerical or an expansion approach.