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Abstract
In this paper, we present finite element approximations of a class of Generalized random fields

defined over a bounded domain of Rd or a smooth d-dimensional Riemannian manifold (d ≥ 1). An
explicit expression for the covariance matrix of the weights of the finite element representation of
these fields is provided and an analysis of the approximation error is carried out. Finally, a method
to generate simulations of these weights while limiting computational and storage costs is presented.
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1 Introduction

The "SPDE approach", as popularized by Lindgren et al. (2011), consists in characterizing stationary
continuous Markov random fields on Rd (d ≥ 1) as solutions of stochastic partial differential equations
(SPDE). This approach has two benefits:

• Discrete approximations of the solutions of these SPDEs, obtained using Galerkin methods such
as the Finite Element method, are used in place of the original field in numerical computations.
Lindgren et al. (2011) actually derived the expression of the precision matrix of the weights of the
discrete representation of the solution, thus facilitating the use of this approach.

• By tinkering with these same SPDEs, generalizations of stationary continuous Markov random
fields on Rd can be defined on manifolds, and oscillating and even non-stationary random fields can
be produced (Fuglstad et al., 2015; Lindgren et al., 2011).

This work aims at generalizing the SPDE approach to fields that are not continuously Markovian while still
keeping the benefits mentioned above. First, the motivations for this work are detailed in order to point
out the type of random fields that will be used throughout the developments. Then, an explicit formula for
the covariance matrix of the weights of the finite element representation of such fields is provided, and an
error analysis is carried out. Finally, an algorithm based on a Chebyshev polynomial approximation and
allowing to compute simulations of these weights with a linear computational complexity is introduced.

Note : This paper is a stub presenting the main results obtained by the authors. It is planned to be
expanded.

2 Motivations

Denote W the spatial Gaussian white noise on Rd defined on a complete probability space (Ω,A,P). It
can be seen as a Gaussian random measure satisfying:

∀A,B ∈ BB(Rd), Cov [W(A),W(B)] = Leb(A ∩B)

where BB(Rd) is the collection of bounded Borel sets of Rd and Leb denotes the Lebesgue measure.
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2.1 Solutions of stochastic partial differential equations

Let g : R+ → R be a continuous, polynomially bounded function such that:

∃N > 0,

∫
Rd
|g(‖ω‖2)|−2(1 + ‖ω‖2)−Ndω <∞

And let Lg be the pseudo-differential operator defined over sufficiently regular functions of Rd by :
Lg[.] = F

[
ω 7→ g(‖ω‖2)F [.](ω)

]
Consider then the stochastic partial differential equation (SPDE) defined over Rd by (Carrizo Vergara
et al., 2018):

LgZ =W (1)

where W is a spatial Gaussian white noise and the equality is understood in the second order sense, i.e.
both sides have same (generalized) covariance. The existence and uniqueness of a stationary solution of (1)
are guaranteed if g is inferiorly bounded by the inverse of a strictly positive polynomial (Carrizo Vergara
et al., 2018).
Numerical solutions of (1) on a triangulated domain D can be obtained using the Finite element method.
A finite element approximation of the solution of (1) is then built as:

Z(x) =

n∑
k=1

ziψi(x), x ∈ D

where {ψ}1≤i≤n is a family of deterministic basis functions and z = (z1, . . . , zn)T is a vector of Gaussian
weights. Lindgren et al. (2011) provided an expression for the precision matrix of these weights in the
special case where g is a real polynomial taking strictly positive values on R+, which corresponds to the
case where Z is a continuous Markov random field.
A first motivation for this work is to come up with numerical solutions of (1) for a wider class of functions
g, using the fact that within the framework presented above, the solution of (1) is actually the Generalized
random field defined by (Carrizo Vergara et al., 2018):

Z = L 1
g
W

2.2 Generalized random fields

Let Z be an isotropic stationary real Gaussian random field on Rd with spectral density f . In particular,
f is a positive radial function of Rd. Lang and Potthoff (2011) showed that then, Z can be seen as a
Generalized random field defined by:

Z = L√fW = F−1
[
ω 7→

√
f(‖ω‖2)F [W](ω)

]
where W is once again a spatial Gaussian white noise. They used this characterization of Gaussian
fields with spectral density f to derive algorithms for the fast generation of samples of such fields over
rectangular lattices of Rd using Fast Fourier transform.
A second motivation for this work is to combine this characterization of Gaussian fields with a given
spectral density and the SPDE approach to come up with a way to generate samples of these fields on
domains more complex than lattices, namely irregular grids, general bounded domains of Rd and even
Riemannian manifolds. This type of generalization was in particular exploited by Lindgren et al. (2011)
in the particular case of continuous Markov random fields.
In the next section, the approximation of such Generalized random fields using the Finite element method
is presented, and an error analysis on this approximation is carried out.
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3 Finite element approximation of Generalized random fields

Le d ∈ N∗ and let D be either a bounded (convex and polygonal) domain of Rd, or a compact d-
dimensional smooth Riemannian manifold. Denote H = L2(D), the separable Hilbert space of (real)
square-integrable functions on D. Denote (., .)H the inner product of H.
Let L denote a densely defined, self-adjoint, positive semi-definite linear differential operator of second
order, defined in a domain D(L) ⊂ H with Dirichlet boundary conditions on D. L is diagonalizable
on a orthonormal basis {ej}j∈N of H. In particular, the eigenvalue-eigenfunction pairs of L, denoted
{(λj , ej)}j∈N, are arranged so that the eigenvalues {λj}j∈N satisfy (Courant and Hilbert, 1966):

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . , lim
j→+∞

λj = +∞

3.1 Theoretical framework

Differential operator on H

For γ : R+ 7→ R, denote Hγ =
{
ψ ∈ H :

∑
j∈N γ(λj)

2(ψj , ej)
2
H <∞

}
. Then we define the action of the

differential operator γ(L) : Hγ → H on Hγ by:

γ(L)φ :=
∑
j∈N

γ(λj) (φ, ej)H ej , φ ∈ Hγ (2)

Remark that the subspace Hγ is itself a Hilbert space with respect to the inner product (., .)γ and
corresponding norm ‖.‖γ defined by:

(φ,ψ)γ = (γ(L)φ, γ(L)ψ)H =
∑
j∈N

γ(λj)
2(φ, ej)H(ψ, ej)H (3)

The following lemma gives a sufficient condition so that Hγ = H.

Lemma 3.1. If γ satisfies
∑

j∈N γ(λj)
2 <∞ then Hγ = H.

Proof. ∀φ ∈ H,
∑

j∈N(φ, ej)
2
H = ‖φ‖2H < ∞, so in particular limj→+∞(φ, ej)

2
H = 0. Therefore, ∃J > 0

such that j > J ⇒ (φ, ej)
2
H < 1, and so γ(λj)

2(φ, ej)
2
H < γ(λj)

2 which allows to conclude that the series∑
j∈N γ(λj)

2(φ, ej)
2
H is convergent given that the series

∑
j∈N γ(λj)

2 is convergent.

In the particular case where L = −∆, where ∆ denotes the Laplacian (or the Laplace-Beltrami operator)
on D, the operator γ(L) satisfies the following property:

Lemma 3.2. ∀φ ∈ Hγ,
γ(−∆)φ = F−1

[
w 7→ γ(‖w‖2)F [φ](ω)

]
= Lγφ

where F denotes the extension of the Fourier transform over D.

Details and proof of this lemma are provided in Appendix A. In particular, the motivational cases
presented in Section 2 correspond to the case where γ = 1/g for Section 2.1 and γ =

√
f for Section 2.2.

Generalized random fields of H

Denote W the spatial Gaussian white noise on D defined on a complete probability space (Ω,A,P). A
characterization of W based on the Hilbert space H is given by the following lemma.

Lemma 3.3. Let {ξ̃j}j∈N be a sequence of independent, standard normally-distributed random variables.
Then, the linear functional defined over H by :

φ ∈ H 7→
∑
j∈N

ξ̃j(φ, ej)H
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is a Gaussian white noise (which is also denoted W). In particular, it satisfies:
∀φ, ψ ∈ H, Cov [W(φ),W(ψ)] = (φ, ψ)H

Proof. Denote Ξ : φ ∈ H 7→
∑

j∈N ξ̃j(φ, ej)H . For an integer m ≥ 1, take a set φ1, . . . , φm ∈ H of linearly
independent elements of H and denote X = (Ξ(φ1), . . . ,Ξ(φm))T . Let’s show that X is a Gaussian
vector. Indeed, the characteristic function of this vector is:

Φ(w) = E
[
eiw

TX
]

= E

[
exp

(
i

m∑
k=1

wkΞ(φk)

)]
= E

exp

i∑
j∈N

ξ̃j

m∑
k=1

wk(φk, ej)H


Using the fact that the ξj are independent standard Gaussian variables yields:

Φ(w) =
∏
j∈N

E

[
exp

(
iξ̃j

m∑
k=1

wk(φk, ej)H

)]
=
∏
j∈N

exp

−1

2

(
m∑
k=1

wk(φk, ej)H

)2


= exp

−1

2

∑
j∈N

m∑
k=1

m∑
l=1

wk(φk, ej)Hwl(φl, ej)H

 = exp

−1

2

m∑
k=1

m∑
l=1

wkwl
∑
j∈N

(φk, ej)H(φl, ej)H


= exp

(
−1

2

m∑
k=1

m∑
l=1

wkwl(φk, φl)H

)
= exp

(
−1

2
wTKw

)
where K is the positive definite matrix whose entries are Kkl = (φk, φl)H , 1 ≤ k,l ≤ m. Therefore, we
can conclude that X is a Gaussian vector, and in particular, by definition of K, (10) is satisfied by Ξ.
Hence, Ξ can be identified to the spatial Gaussian white noise on D by defining for A ∈ B(D) the measure
Ξ(A) := Ξ(1A) where 1A ∈ H is the indicator function of the set A.

Denote L2(Ω, H) the Hilbert space of H-valued random variables satisfying E[‖f‖2H ] <∞ and equipped
with the scalar product (f, g)L2(Ω,H) = E [(f, g)H ]. The next result introduces a class of Generalized
random fields defined through the white noise that can be identified with elements of L2(Ω, H).

Definition 3.1. Let γ : R+ 7→ R such that :∑
j∈N

γ(λj)
2 <∞ (4)

Then, γ(L)W denotes the Generalized random field defined by:
(γ(L)W)[φ] :=W(γ(L)[φ]), φ ∈ H (5)

Lemma 3.4. γ(L)W can be identified to an element Z ∈ L2(Ω, H) defined by:

Z =
∑
j∈N

ξ̃jγ(λj)ej

for a sequence {ξ̃j}j∈N of independent standard normally-distributed random variables, through the linear
functional of H : (γ(L)W)(φ) = (Z, φ)H , φ ∈ H.

Proof. Clearly, Z is an element of L2(Ω, H) given that

‖Z‖2L2(Ω,H) = E
[
‖Z‖2H

]
=
∑
j∈N

γ(λj)
2 <∞

Let’s now show that the linear functional φ ∈ H 7→ (Z, φ)H is equal to γ(L)W. Indeed, ∀φ ∈ H,

(γ(L)W)(φ) =W(γ(L)φ) =W

∑
j∈N

γ(λj) (φ, ej)H ej



4



So, using Lemma 3.3,

(γ(L)W)(φ) =
∑
j∈N

ξ̃jγ(λj) (φ, ej)H = (Z, φ)H

From now on, Generalized random fields Z of the form γ(L)W will be directly identified with their
L2(Ω, H) representation, and we will write:

Z = γ(L)W =
∑
j∈N

ξ̃jγ(λj)ej (6)

where {ξ̃j}j∈N is a sequence of independent, standard normally-distributed random variables. In the next
section, the simulation of such random fields through a finite element scheme is presented.

3.2 Finite element approximation of a Generealized random field

Let Th denote a triangulation of D with mesh size h and Ψ = {ψk}1≤k≤n a family of linearly independent
basis functions associated with Th such that Ψ ⊂ H.
Denote Vh ⊂ H the linear span of Ψ, which is a n-dimensional space. Denote {fj,h}1≤j≤n an orthonormal
basis of Vh with respect to the scalar product (., .)H . The discretization of the operator L on Vh is denoted
Lh and is defined by:

Lh : Vh → Vh, ψ 7→ Lhψ =

n∑
j=1

(Lψ, fj,h)H fj,h (7)

Let C and G be the matrices defined by:
C = [(ψi, ψj)H ]1≤i,j≤n

G = [(Lψi, ψj)H ]1≤i,j≤n
C is a symmetric positive definite matrix called Mass matrix and G is a symmetric positive semi-definite
matrix called stiffness matrix. Denote C1/2 the symmetric positive definite square root of C, and C−1/2

its inverse.

Lemma 3.5. Lh is diagonalizable on Vh and its eigenvalues are those of the matrix S defined by:
S = C−1/2GC−1/2

In particular, the application:

E : v ∈ Rn 7→
n∑
j=1

[C−1/2v]jψj

is an isometric isomorphism that maps the eigenvectors of S to the eigenfunctions of Lh.

Proof. Take λ an eigenvalue of S and denote v 6= 0 an associated eigenvector. Then, Sv = C−1/2GC−1/2v =
λv and so, Gu = λCu where u = C−1/2v. Hence, ∀k ∈ [[1, n]],

∑
j (Lψk, ψj)H uj = λ

∑
j (ψk, ψj)H uj ,

which, using the fact that L is self-adjoint, gives
∀k ∈ [[1, n]], (LE(v), ψk)H = λ (E(v), ψk)H (8)

In particular, given that Ψ is also a basis of Vh, we denote A = [aij ]1≤i,j≤n the invertible change-of-basis
matrix between Ψ and {fj,h}1≤j≤n. Then (8) can be written,

A

(LE(v), f1,h)H
...

(LE(v), fn,h)H

 = λA

(E(v), f1,h)H
...

(E(v), fn,h)H


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And therefore, ∀j ∈ [[1, n]], (LE(v), fj,h)H = λ (E(v), fj,h)H . And so, given that E(v) ∈ Vh,

LhE(v) =
∑
j

(LE(v), fj,h)H fj,h =
∑
j

λ (E(v), fj,h)H fj,h = λE(v)

Therefore λ is an eigenvalue of Lh and E maps the eigenvectors of S to the eigenfunctions of Lh.
E is an isometry: Indeed, ∀v ∈ Rn, ‖E(v)‖2H = (E(v), E(v))H =

∑
i,j [C

−1/2v]i(ψi, ψj)H [C−1/2v]j =(
C−1/2v

)T
CC−1/2v = vTv. Consequently, given that it is also linear, E is injective. And finally, using

the rank–nullity theorem, E is bijective (as an injective application between two vector spaces with same
dimension).

Let’s denote {λj,h}1≤j≤n ⊂ R+ the eigenvalues of Lh (or equivalently S) and {ej,h}1≤j≤n the associated
orthonormal eigenfunctions, obtained by mapping by E the orthonormal eigenbasis V = (v1| . . . |vn) of
S. In particular,

S = V

λ1,h

. . .
λn,h

V T , and ej,h = E(vj), 1 ≤ j ≤ n (9)

Take γ : R+ 7→ R. The discretization of the operator γ(L) on Vh, denoted γ(Lh), can now be defined as:

γ(Lh) : Vh → Vh, ψ 7→ γ(Lh)ψ :=

n∑
j=1

γ(λj,h) (ψ, ej,h)H ej,h

Definition 3.2. Let Wh be a Vh-valued random variable defined by :

Wh =
n∑
j=1

ξ̃iej,h

where ξ̃ = (ξ1, . . . , ξn)T is a vector whose entries are independent zero-mean (standard) normally-
distributed random variables. Then, Wh is called white noise on Vh.

Lemma 3.6. Let Wh be white noise in Vh. Then Wh can be written Wh =
∑n

j=1 ξiψi where ξ =

(ξ1, . . . , ξn)T ∼ N (0,C−1).

Proof. Using the linearity of E,Wh ∈ Vh can be writtenWh =
∑n

j=1 ξ̃iE(vi) = E
(∑n

j=1 ξ̃ivi

)
= E

(
V ξ̃
)

where ξ̃ ∼ N (0,I). But also, in the basis Ψ, we get Wh =
∑n

j=1 ξiψi = E
(
C1/2ξ

)
. In particular, using

the fact that E is bijective, ξ = C−1/2V ξ̃ which proves the result.

Definition 3.3. The Vh-valued random variable Zh defined by:
Zh = γ(Lh)Wh (10)

is called finite element approximation of the generalized random field Z defined by (6).

Theorem 3.1. The finite element approximation Zh defined by (10) can be decomposed as:

Zh =

n∑
j=1

ziψi

for some multi-normally distributed weights z = (z1, . . . , zn)T with mean 0 and covariance matrix:

Σz = C−1/2γ2(S)C−1/2 where γ2(S) := V

 γ(λ1,h)2

...
γ(λn,h)2

V T (11)
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Proof. Notice that Zh =
∑n

j=1 ziψi = E
(
C1/2z

)
. But also,

Zh = γ(Lh)Wh =

n∑
j=1

γ(λi)ξ̃iE(vi) = E

 n∑
j=1

γ(λi)ξ̃ivi

 = E

(
V

(
γ(λ1,h)

. . .
γ(λn,h)

)
ξ̃

)

Therefore, given that E is bijective, z = C−1/2V

(
γ(λ1,h)

. . .
γ(λn,h)

)
ξ̃ where ξ̃ ∼ N (0, I), which proves

the result.

Theorem 3.1 provides an explicit expression for the the covariance matrix of the weights of the finite
element approximation of a field defined by (6). This expression agrees in particular with the expression
of the precision matrix of those same weights exposed in (Lindgren et al., 2011) for the particular case of
continuous Markovian fields on Rd. Given the generality of domains D (convex bounded or Riemannian
manifold), differential operators L and functions γ, a wide class of fields are now open to study.
Note in particular that Riemannian manifolds provide a generic framework for the study of non-stationary
fields on a manifold. Indeed, stationary fields on a Riemannian manifold M equipped with a metric u
can be seen as non-stationary random fields on the manifold M with locally-varying anisotropies defined
by u.
In the next section, an error bound between a generalized random field Z defined by (6) and its finite
element approximation defined by (10) is provided, using the same framework as in (Bolin et al., 2017).

3.3 Error analysis of the finite element approximation

First, we recall the notations used in this paper.
Let (Vh)h∈]0,1] be a family of finite element spaces indexed by a mesh size h over a domain D ⊂ Rd. Let’s
denote Nh = dim(Vh) be the number of basis functions associated with the triangulation of D with mesh
size h.
Let L denote a densely defined, self-adjoint, positive semi-definite linear differential operator of second
order defined on a subset of H = L2(D), and let Lh denote its discretization over Vh. Let {λj}j∈N and
{λj,h}1≤j≤Nh be the eigenvalues of L and Lh, listed in non-decreasing order.
Let γ : R+ → R.
The following assumptions are considered to derive an error bound between a Generalized random field
Z defined by (6) and its finite element approximation defined by (10).

Assumption 3.1 (Growth of the eigenvalues of L). There exists tree constants α > 0, cλ > 0 and Cλ > 0
such that:

∀j ∈ N, λj > 0⇒ cλj
α ≤ λj ≤ Cλjα

Assumption 3.2 (Derivable of γ). γ is derivable on R+, and there exist CDeriv > 0 and a ≥ 0 such that:

∀x > 0, |γ′(x)| ≤ CDeriv

xa

Assumption 3.3 (Asymptotic behavior of γ). There exists a constant β > 0 such that γ satisfies
|γ(λ)| = O

λ→+∞

(
λ−β

)
, i.e.

∃Cγ > 0, ∃Rγ > 0, λ ≥ Rγ ⇒ |γ(λ)| ≤ Cγλ−β

Assumption 3.4 (Dimension of the finite element space). There exists two constants d̃ > 0, CFES > 0
such that:

Nh = dim(Vh) = CFESh
−d̃
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Assumption 3.5 (Mesh size). The mesh size h shall satisfy:

h ≤

(
1

CFES

⌈(
Rγ
cλ

)1/α
⌉)−1/d̃

where CFES, Rγ, α and cλ are the constants defined in Assumptions 3.4, 3.3 and 3.1.
Consequently, following Assumptions 3.4 and 3.1, for all j ≥ Nh, λj ≥ Rγ.

Assumption 3.6 (Eigenvalues and eigenvectors of Lh). There exists constants C1, C2 > 0, h0 ∈]0,1[ and
exponents r, s > 0 and q > 1 such that the eigenvalues {λj,h}1≤j≤Nh and the eigenvectors {ej,h}1≤j≤Nh
of the discretisation Lh of the operator L onto the finite element space associated with a triangulation of
mesh size h satisfy:

0 ≤ λj,h − λj ≤ C1h
rλqj

‖ej,h − ej‖2H ≤ C2h
2sλqj

for all h ∈]0,h0[ and for all j ∈ [[1, Nh]]

Following the notations of the previous sections, let Z and Zh be the random fields defined by:

Z = γ(L)W =
∑
j∈N

γ(λj)ξ̃jej (12)

and

Zh = γ(Lh)Wh =

Nh∑
j=1

γ(λj,h)ξ̃jej,h (13)

The expected error defined by :

‖Z − Zh‖L2(Ω;H) =
√
E
[
‖Z − Zh‖2H

]
(14)

is bounded using the following result.

Theorem 3.2. If Vh, γ, L and Lh satisfy Assumptions (1-6), and if the growth of eigenvalues α defined
in Assumption 3.1 satisfies:

max

(
1

2β
,

1

2a

)
≤ α ≤ min

(
2s

dq
,
r

dq

)
where the constants a, β, s, d̃, q, r are defined in Assumptions (1-6), then, for h sufficiently small (cf.
Assumption 3.5), the L2(Ω, H) error between the generalized random field Z defined by (6) and its finite
element approximation defined by (10) is bounded by:

‖ZNh − Zh‖L2(Ω;H) ≤Mhmin(s−dqα/2,r−dqα,d̃(αβ−1/2),d̃(αa−1/2)) (15)
where M is a constant independent of h.

The proof of this theorem is provided in Appendix B and is an adaptation of proof of Theorem 2.10
of (Bolin et al., 2017), which provide a bound for the same approximation error for the particular case
where γ : x 7→ 1/xβ , β ∈]0,1[, and L is a positive definite.

Example 3.1. In the particular case where L = −∆, L is a strongly elliptic differential operator of order
2. Weyl’s law (Weyl, 1911) gives an exponent α for which Assumption 3.1 is satisfied:

α =
d

2
Moreover, if we assume that the finite element spaces are quasi-uniform and are composed of continuous
piecewise polynomial functions of degree p ≥ 1, then Assuptions 3.4 and 3.6 are satisfied for the exponents
(Bolin et al., 2017; Strang and Fix, 1973):

r = 2(p− 1), s = min{p+ 1, 2(p− 1)}, q =
p+ 1

2
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4 Finite element simulations

Simulation of the finite element approximation (10) of fields satisfying (6) comes down to the simulation
of the weights z = (z1, . . . , zn)T of the decomposition onto the basis functions of the finite element space.
These weights are Gaussian, with covariance matrix (11).
A straightforward method to generate admissible samples z would consist in computing:

z = C−1/2V

(
γ(λ1,h)

. . .
γ(λn,h)

)
ε

where ε is a vector with n independent standard Gaussian components. But this method supposes that
the matrix S has been diagonalized and that its eigenvalues {λj,h} and its eigenvectors V have been
stored. Both operations being tremendously costly (O(n3) for the diagonalization and O(n2) for the
storage), another method that doesn’t involve them is highly preferable.
We propose to rather simulate the weights using the Chebyshev simulation algorithm presented in (Pereira
and Desassis, 2018). Indeed, the algorithm can provides vector samples with covariance matrix (11) with
a computational complexity that is linear with the number of non-zeros S (which is small as S is a sparse
matrix) and an order of approximation which is fixed using a criterion that ensures that the statistical
properties of the output are valid. Concerning the storage needs, only a matrix as sparse as S needs to
be stored as the algorithm relies on matrix-vector multications. This algorithm is reminded below.

Algorithm: Simulation of the weights using Chebyshev approximation (Pereira and Desassis, 2018)

Require: An order of approximation K ∈ N. A vector of n independent standard Gaussian compo-
nents ε.
Output: A vector z with covariance matrix (approximately equal to) (11).

1. Find an interval [a, b] containing all the eigenvalues of S (using for instance the Gershgorin
cirle theorem).

2. Compute a polynomial approximation P of the function γ over [a, b], by truncating its (shifted)
Chebyshev series at order K.
The coefficients of the development in Chebyshev series of γ are computed by Fast Fourier
Transform.

3. Compute iteratively the product u = P(S)ε using the recurrence relation satisfied by the
Chebyshev polynomials.

4. The simulated field is given by: z = C−1/2u

5 Conclusion

In this work we provided an explicit expression for weights of the finite element approximation of a Gen-
eralized random field defined over of domain D consisting of a bounded domain of Rd or a d-dimensional
smooth Riemannian manifold, by Z = γ(L)W where γ : R+ → R, L is a second-order self-adjoint positive
definite differential operator, and W is a Gaussian white noise. An error bound on this approximation
was derived and an algorithm for fast and efficient sampling of this field was exposed.
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Appendix A Laplacian and Fourier transform

A.1 Multivariate Fourier series and transform

Let g(x) be a 2π-periodic function of Rd, i.e. g is 2π-periodic with respect to each variable x1, . . . , xd
and suppose that g ∈ L2([−π,π]d). Then g can be represented as the limit on L2 of its Fourier series
Sf [g] defined by (Osborne, 2010):

SF [g](x) =
∑
j∈Zd

cj(g)eij
Tx

where the coefficients cj(g) are given by:

cj(g) =
1

(2π)d

∫
[−π,π]d

e−ij
Txg(x)dx

10



The Fourier transform of g is then defined from its Fourier series as a train of impulses (corresponding
to the Fourier transform of each term of Fourier series):

F [g](ω) = (2π)d
∑
j∈Zd

cj(g)δj(ω) (16)

where δj(ω) =
d∏
j=1

δjk(ωk) and δλ(.) is the Dirac impulse at λ.

A.2 Proof

Let’s first consider the case D = [0,π]d and denote H = L2(D). The eigenvalues and eigenfunctions of
−∆ on D with Dirichlet boundary conditions are given for j ∈ Nd by (Grebenkov and Nguyen, 2013):

ej =

(
2

π

)d d∏
k=1

sin(jkx), λj =

d∑
k=1

j2
k (17)

Lemma A.1. Let f ∈ L2([0,π]d) and define f̃ : Rd → R by:
f̃(x) = f(x), ∀x ∈ [0,π]d

f̃(x1, . . . ,−xk, . . . ,xd) = −f̃(x1, . . . , xk, . . . ,xd) ∀x ∈ Rd, 1 ≤ k ≤ d
f̃(x+ 2πn) = f̃(x), ∀x ∈ Rd,n ∈ Zd

(18)

Then the coefficients cj(f̃) of the Fourier series of f̃ satisfy ∀j ∈ Zd:

cj(f̃) =
1

(2i)d
ε(j)(f, e|j|)H (19)

where ε(j) =
∏d
k=1 sign(jk), |j| := (|j1|, . . . , |j1|)T ∈ Nd and e|j| is an eigenfunction of −∆ on [0,π]d with

Dirichlet boundary conditions, as defined in (17). (Note : sign : x ∈ R 7→ 1 if x ≥ 0, −1 otherwise)
In particular, the Fourier series of f̃ (restricted to [0,π]d) coincides (up to a normalization constant) with
the development of f in the eigenbasis of the Laplacian.

Proof.

cj(f̃) =
1

(2π)d

∫
[−π,π]d

e−ij
Txf̃(x)dx =

1

(2π)d

∫
[−π,π]d−1

e
−i

d−1∑
k=1

jkxk
∫

[−π,π]
e−ijdxd f̃(x)dx

And,∫
[−π,π]

e−ijdxd f̃(x)dxd =

∫
[−π,0]

e−ijdxd f̃(x)dxd +

∫
[0,π]

e−ijdxd f̃(x)dxd =

∫
[0,π]

(−eijdxd + e−ijdxd)f̃(x)dxd

= −2i

∫
[0,π]

sin(jdxd)f̃(x)dxd

So,

cj(f̃) =
−2i

(2π)d

∫
[−π,π]d−1

e
−i

d−1∑
k=1

jkxk
∫

[0,π]
sin(jdxd)f̃(x)dx

By induction, the same process yields,

cj(f̃) =
(−2i)d

(2π)d

∫
[0,π]d

d∏
k=1

sin(jkxk)f̃(x)dx =
1

(iπ)d

∫
[0,π]d

d∏
k=1

sin(jkxk)f(x)dx

=
1

(iπ)d

∫
[0,π]d

d∏
k=1

sin(sign(jk)|jk|xk)f(x)dx =
1

(iπ)d

∫
[0,π]d

ε(j)

d∏
k=1

sin(|jk|xk)f(x)dx

=
1

(iπ)d
ε(j)

∫
[0,π]d

(π
2

)d
e|j|(x)f(x)dx =

1

(2i)d
ε(j)

(
f, e|j|

)
H

11



Moreover, f can be written ∀x ∈ Rd:
f(x) =

∑
k∈Nd

(f, ek)Hek(x)

Using Euler’s formula, it is quite straightforward to show that ∀k ∈ Nd:
d∏
l=1

sin(klxl) =
1

(2i)d

∑
j∈Zd:|j|=k

ε(j)eij
Tx

Therefore,

f(x) =
1

(iπ)d

∑
k∈Nd

(f, ek)H
∑

j∈Zd:|j|=k

ε(j)eij
Tx =

1

(iπ)d

∑
j∈Zd

ε(j)(f, e|j|)He
ijTx

=
(2i)d

(iπ)d

∑
j∈Zd

cje
ijTx =

(
2

π

)d
SF [f̃ ](x)

It is therefore possible to define the Fourier transform of a function of f ∈ L2([0,π]d) as the Fourier
transform of its associated 2π-periodic function (of Rd) f̃ defined as in (18). Using this convention, the
Fourier transform F [f ] of f ∈ L2([0,π]d) is given by:

F [f ](ω) = (2π)d
∑
j∈Zd

cj(f̃)δj(ω) = (−iπ)d
∑
j∈Zd

ε(j)(f, e|j|)Hδj(ω) (20)

Lemma A.2. Let φ ∈ L2([0,π]d) such that γ(−∆)φ ∈ L2([0,π]d). Then, γ(−∆)φ is equal to the restric-
tion to [0,π]d of F−1

[
w 7→ γ(‖w‖2)F [φ](ω)

]
, where F is the Fourier transform operator.

Proof. On one hand, by definition of γ(−∆),

γ(−∆)φ =
∑
j∈Nd

g(λj)(φ, ej)Hej

where λj and ej are defined in (17). Then ∀ω ∈ Rd,

F [γ(−∆)φ] (ω) = (−iπ)d
∑
j∈Zd

ε(j)γ(λ|j|)(φ, e|j|)Hδj(ω)

On the other hand, notice that ∀ω ∈ Rd:
γ(‖ω‖2)F [φ](ω) = (−iπ)d

∑
j∈Zd

ε(j)(φ, e|j|)Hγ(‖ω‖2)δj(ω)

= (−iπ)d
∑
j∈Zd

ε(j)(φ, e|j|)Hγ(‖j‖2)δj(ω) = (−iπ)d
∑
j∈Zd

ε(j)(φ, e|j|)Hγ(λ|j|)δj(ω)

= F [γ(−∆)φ] (ω)

which proves the result.

This last result can be generalized to more general bounded domains D or to Riemannian manifolds by
defining the Fourier transform on such domains from the decomposition onto the orthonormal basis of
eigenfunctions of the Laplacian (Adcock, 2010).
More precisely, the Fourier transform is seen as an application from L2(D) to `2(N), that associates to
each f ∈ L2(D) the sequence {(f, ej)H}j≥1 of coefficients of the decomposition of f onto the eigenbasis
of the Laplacian {ej}j≥1. The frequency domain `2(N) is a discrete one, indexed by the eigenvalues
of the Laplacian: functions on this domain are therefore square-summable sequencies representing the
evaluation of a function over the set of admissible frequencies, i.e. the eigenvalues of the Laplacian. From
this definition, it is straightforward to check that γ(−∆) coincides with the operator F−1 [γF [.]].
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Appendix B Proof of Theorem 3.2

Let ZNh be the random field defined by as the truncation of Z after Nh terms:

ZNh =

Nh∑
j=1

γ(λj)ξ̃jej (21)

Then, from the triangular inequality:
‖Z − Zh‖L2(Ω;H) ≤ ‖Z − ZNh‖L2(Ω;H) + ‖ZNh − Zh‖L2(Ω;H) (22)

B.1 Truncation error

‖Z − ZNh‖
2
L2(Ω;H) = E

‖ ∑
j>Nh

γ(λj)ξ̃jej‖2H

 = E

∑
j>Nh

γ(λj)
2ξ̃2
j

 =
∑
j>Nh

γ(λj)
2

Then from Assumptions 3.5 and 3.3, we have:

‖Z − ZNh‖
2
L2(Ω;H) ≤ C

2
γ

∑
j>Nh

λ−2β
j

And using Assumption 3.1:

‖Z − ZNh‖
2
L2(Ω;H) ≤ C

2
γc
−2β
λ

∑
j>Nh

j−2αβ ≤
C2
γc
−2β
λ

(2αβ − 1)
× 1

N2αβ−1
h

Finally, Assumption 3.4 yields:

‖Z − ZNh‖
2
L2(Ω;H) ≤

C2
γc
−2β
λ

(2αβ − 1)C2αβ−1
FES

× hd̃(2αβ−1) (23)

B.2 Finite element discretization error

‖ZNh − Zh‖L2(Ω;H) =

∥∥∥∥∥∥
Nh∑
j=1

γ(λj)ξ̃jej −
Nh∑
j=1

γ(λj,h)ξ̃jej,h

∥∥∥∥∥∥
L2(Ω;H)

≤

∥∥∥∥∥∥
Nh∑
j=1

γ(λj)ξ̃jej −
Nh∑
j=1

γ(λj)ξ̃jej,h

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥
Nh∑
j=1

γ(λj)ξ̃jej,h −
Nh∑
j=1

γ(λj,h)ξ̃jej,h

∥∥∥∥∥∥
L2(Ω;H)

= (I) + (II)

On one hand,

(I)2 =

∥∥∥∥∥∥
Nh∑
j=1

γ(λj)ξ̃j(ej − ej,h)

∥∥∥∥∥∥
2

L2(Ω;H)

= E

 Nh∑
j=1

γ(λj)ξ̃j(ej − ej,h),

Nh∑
j=1

γ(λj)ξ̃j(ej − ej,h)


H


=

Nh∑
j=1

Nh∑
k=1

γ(λj)γ(λk)E
[
ξ̃j ξ̃k

]
((ej − ej,h), (ek − ek,h))H =

Nh∑
j=1

γ(λj)
2‖ej − ej,h‖2H

So, following Assumption 3.6,

(I)2 ≤ C2 × h2s
Nh∑
j=1

γ(λj)
2λqj

Let J0 be the integer defined by J0 =

⌈(
Rγ
cλ

)1/α
⌉
. According to Assumptions 3.5 and 3.4, Nh ≥ J0.

Therefore, we write:
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(I)2 ≤ C2S0 × h2s + C2 × h2s
Nh∑
j=J0

γ(λj)
2λqj

where S0 the constant defined by S0 =
∑J0−1

j=1 γ(λj)
2λqj .

Remark then that according to Assumptions 3.1 and 3.3, j ≤ J0 ⇒ λj ≥ Rγ and therefore,

(I)2 ≤ C2S0 × h2s + C2C
2
γ × h2s

Nh∑
j=J0

λ−2β
j λqj

≤ C2S0 × h2s + C2C
2
γC

q−2β
λ × h2s

Nh∑
j=J0

jα(q−2β)

≤ C2S0 × h2s + C2C
2
γC

q−2β
λ × h2sN

1+α(q−2β)
h

So, following Assumption 3.4,

(I)2 ≤ C2S0 × h2s + C2C
2
γC

q−2β
λ C

1+α(q−2β)
FES × h2s−d̃αq+d̃(2αβ−1)

On the other hand,

(II)2 =

∥∥∥∥∥∥
Nh∑
j=1

(γ(λj)− γ(λj,h))ξ̃jej,h

∥∥∥∥∥∥
L2(Ω;H)

= E

‖ Nh∑
j=1

(γ(λj)− γ(λj,h))ξ̃jej,h‖2H


= E

 Nh∑
j=1

(γ(λj)− γ(λj,h))2ξ̃2
j

 =

Nh∑
j=1

(γ(λj)− γ(λj,h))2

In particular, using the mean value theorem, for all 1 ≤ j ≤ Nh there exists lj ∈ [λj , λj,h] such that:
γ(λj)− γ(λj,h) = γ′(lj)(λj,h − λj)

So, using Assumption 3.2,

|γ(λj)− γ(λj,h)| = |γ′(lj)||λj,h − λj | ≤
CDeriv

laj
|λj,h − λj | ≤

CDeriv

λaj
|λj,h − λj |

And using Assumptions 3.1 and 3.6,

|γ(λj)− γ(λj,h)| ≤ CDeriv

(cλjα)a
C1h

r(Cλj
α)q

Therefore,

(II)2 ≤
(
CDerivc

−a
λ C1C

q
λ

)2 × h2r
Nh∑
j=1

j2α(q−a) ≤
(
CDerivc

−a
λ C1C

q
λ

)2 × h2rN
2α(q−a)+1
h

And using Assumption 3.4:

(II)2 ≤
(
CDerivc

−a
λ C1C

q
λ

)2
C

2α(q−a)+1
FES × h2r−2dα(q−a)−d̃

B.3 Total error

Combining the terms (I) and (II) gives:

‖ZNh − Zh‖L2(Ω;H) ≤
√
M1 × h2s +M2h2s−d̃αq+d̃(2αβ−1) +M3h

(r−dqα)+d̃(aα−1/2)

whereM1,M2,M3 are constants independent of h. Using the fact that h < 1, this last bound can actually
be simplified by noticing that all the terms hu can be bounded by the one with the smallest exponent:

‖ZNh − Zh‖L2(Ω;H) ≤Mhmin(s,s−dqα/2,d̃(αβ−1/2),r−dqα,d̃(αa−1/2))

where M is a constant independent of h.
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