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Abstract

We present a simple approach to the solution of a multi-server FCFS queueing
system with several classes of customers and phase-type service time distribu-
tions. The proposed solution relies on solving a single two-class model in which
we distinguish one of the classes and we aggregate the remaining customer
classes. We use a reduced state approximation to solve this two-class model.
We propose two types of aggregation: exact, in which we merge the phase-type
service time distributions exactly, and approximate, in which we simplify the
phase-type distribution for the aggregated class by matching only its first two
moments. The proposed approach uses simple mathematics and is highly scal-
able in terms of the number of servers, the number of classes, as well as the
number of phases per class. Our approach applies both to queues with finite
and infinite buffer space.

Keywords: Multiple servers, Multiple classes, Phase-type distribution,
First-Come First-Served discipline, Reduced-state approximation, Exact class
aggregation, Approximate class aggregation.

1. Introduction

The First-Come-First-Served (FCFS) queueing order is perhaps the most
“natural” service discipline in queueing systems. Multi-server queues with sev-
eral customer classes and such FCFS queueing discipline can be found in many
areas of life, including computer systems and computer networks. Despite the
wide-spread use of these queues, there appears to be a limited number of results
available in the literature.

Chow [1] proposed an analytical solution in the considerably simpler case
of a single server queue with multiple customer classes and Poisson arrivals.
However, his solution is limited to the case of exponential service times and it
becomes tedious when the number of classes exceeds 2. More recently, Takine [2]
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developed a solution for a single server queue with multiple customer classes,
general service times (different for each class) and general inter-arrival time
distributions.

Few studies seem to exist in the case of a FCFS queueing system with mul-
tiple customer classes and multiple servers. In fact, the presence of multiple
servers, multiple customer classes with non-memoryless service times and no
service priorities has led authors like Federgruen and Groenevelt [3] to state
that “Exact evaluation of the performance vector of even a simple priority rule
like FIFO is not possible in the general MI/GI/c model.”, due to the explosion
of the classical state description used in such systems. Nonetheless, in 2000,
Van Harten and Sleptchenko [4] proposed a solution based on the classical state
description for the case of a multi-server queue with multiple customers classes,
exponentially distributed service times distinct for each class and Poisson ar-
rivals. In 2004, Raz et al. [5], presented an analysis of the fairness in queueing
systems under various priority policies (including the FCFS discipline) in which
they used the “tagged customer” approach to derive the solution in the case of
2 servers and 2 classes with exponentially distributed service times and Poisson
arrivals. In the same year, Van Houdt and Blondia [6] derived the delay dis-
tribution for a FCFS queue with MMAP arrivals and multiple customer classes
with distinct phase-type service distributions in the case of 1 or 2 servers. Com-
pared to previous work, this paper presents a significantly improved method to
compute the delay distribution in such queues, albeit limited to systems with
unrestricted buffer space and the number of servers not exceeding 2.

This relative paucity of results seems to be due to the intrinsic complexity
of the classical state description in FCFS queues, which requires a vector whose
elements are the classes of customers at each queue position (cf. [7]). Naturally,
such a state description leads to a combinatorial explosion of the number of
states as the number of customer classes increases. Unless the service times are
exponentially distributed, this complexity is on top of the complexity inherent
in the description of the state of the servers themselves (cf. [8]).

The contribution of this paper is to present a mathematically simple ap-
proach to the computation of the steady-state queue length distribution in
FCFS queues with potentially large numbers of homogeneous servers and ar-
bitrary number of customer classes with distinct general service times. We use
a novel simplified state description to allow us to circumvent the complexity of
such a queueing system and obtain an accurate approximate solution in which
the number of equations to solve grows linearly with the number of servers and
the number of classes. Although much of our work is devoted to memoryless ar-
rivals, we present also an extension of our work to a specific class of phase-type
arrivals.

Our paper is organized as follows. Section 2 is devoted to the solution of
a multi-server FCFS queue with 2 customer classes with general (phase-type)
service times and memoryless arrivals. In Section 3, we use the solution derived
in the preceding section as a building block to handle an arbitrary number of
customer classes. Section 4 presents an extension of our approach to a class of
phase-type arrivals. Finally, Section 5 concludes this paper.
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2. Solution with two customer classes
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Figure 1: Multi-server FCFS queue with multiple classes of customers.

We consider the queueing system shown in Figure 1. There are C homo-
geneous servers serving a single queue of customers. Times between customer
arrivals are distributed according to a memoryless distribution with rate λ(n)
where n is the current number of customers in the system. For systems with
finite buffer capacity, we denote by N the maximum total number of customers
in the system (queued and in service). There is a total of L customer classes
and η` is the probability that an arriving customer is of class ` = 1, . . . , L,
independently of the current state of the system. Customers queue in the
order of their arrival and any available server starts serving the customer at
the head of the queue (FCFS queueing discipline). We assume that each cus-
tomer class has its own phase-type service time distribution. As is well known,
any distribution can be represented arbitrarily closely by a phase-type distri-
bution [9, 10]. Figure 2 illustrates such a phase-type distribution for customers
of class ` (` = 1, . . . , L). There a total of b` exponential phases, each with rate
(intensity) µ`,i(i = 1, . . . , b`). Referring to class `, we denote by σ`,i the prob-
ability that a customer service starts in phase i, and by q`,ij the probability
that the service continues in phase j following the completion of phase i. q̂`,i
is the probability that the service ends after the completion of phase i and the
customer leaves the system. We denote by T` the mean service time for a class
` customer. Table 1 summarizes the main notation used in this paper.

In this section, we consider the case where there are only L = 2 customer
classes. Let m = min(n,C) be the current number of busy servers. Following
the idea of the reduced state description for M/Ph/c queues [8], we represent
in detail the phase-type service at a single arbitrarily selected server. Thus, we
describe the state of the system by the vector (m1, `, i, n) where m1 = 0, . . . ,m−
1 is the current number of class 1 customers in service at servers other than the
selected server, ` is the class of the current customer at the selected server, i
describes the current service phase of the latter and n is the current number of
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Table 1: Notation used.

Symbol Description

C Number of servers
N Maximum total number of customers in the system
L Number of customer classes
η` Probability that an arriving customer is of class `
n Current number of customers in the system
m Current number of busy servers
m1 Current number of class 1 customers in service at servers other than the

selected server
λ(n) Arrival rate given the current number of customer is n
` Class of the current customer at the selected server
i Current service phase of the selected server

b` Number of exponential phases in the service time distribution for a class
` customer

µ`,i Rate of phase i for a class ` customer
σ`,i Probability of entering phase i upon starting serving a class ` customer
q`,ij Probability of following to phase j upon completing phase i of a class `

customer
q̂`,i Probability of ending service upon completing phase i of a class ` customer
T` Mean service time for a class ` customer

p(m1, `, i, n) Probability that the current state of the system is (m1, `, i, n)
p(m1, `, i|n) Conditional probability that there are m1 class 1 customers in service at

servers other than the selected server and that the current state of the
selected server is (`, i) given that the total number of customers in the
system is n

p(n) Probability that the current number of customers in the system is n
νk(m1, `, i, n) Rate of departures of class k customers from servers other than the se-

lected server given that the current system state is (m1, `, i, n)
γ(n) Rate of departures at the selected server given that the current total

number of customers in the system is n
u(n) Total rate of customer departures when there are n customers in the

system
ξ`(n) Conditional rate of departures from the selected server given that it is

busy serving a class ` customer and there is a total of n customers in the
system

n Mean number of customers in the system (regardless of the customer
class)

U Mean number of busy servers (regardless of the customer class)
θ Attained throughput (regardless of the customer class)
W Mean response time (regardless of the customer class)
Q Mean waiting time (regardless of the customer class)
nk Mean number of class k customers in the system

Uk Mean number of busy servers serving class k customers
θk Attained throughput for class k customers
Wk Mean response time for class k customers
Qk Mean waiting time for class k customers

4



phase-distribution1.pdf

latex: taille 30

Service time phase-type distribution for customers of class \ell

µ`,1

µ`,2

µ`,b`

�`,1

�`,2

�`,b`

q`,12

q`,1b`

q̂`,1

q̂`,2

q̂`,b`

Figure 2: Phase-type distribution for the service times of class ` customers.

customers in the system (queued and in service). The possible values for ` are

` =





0 if the selected server is idle

1 if the selected server is serving a customer of class 1

2 if the selected server is serving a customer of class 2,

and i = 1, . . . , b` where by convention we set b0 = 1.
We consider the system in its steady state (if it exists) and we denote by

p(m1, `, i, n) the probability that the current state of the system is (m1, `, i, n).
We also denote by p(m1, `, i|n) the corresponding conditional probability that
there are m1 class 1 customers in service at servers other than the selected
server and that the current state of the selected server is (`, i) given that
the total number of customers in the system is n. We have p(m1, `, i, n) =
p(m1, `, i|n)p(n) where p(n) is the marginal probability for n. We must have∑m−1

m1=0

∑2
`=0

∑b`
i=1 p(m1, `, i|n) = 1 for all values of n. Note that the value ` = 0

is possible only when m < C and it is the only value possible when m = 0.
It is not difficult to derive the balance equations for the system considered.

As an example, for n > C, 0 < m1 < C − 1, ` = 1, 2 and i = 1, . . . , b` we have

p(m1, `, i, n)[λ(n) + µ`,i + ν1(m1, `, i, n) + ν2(m1, `, i, n)]

= p(m1, `, i, n− 1)λ(n− 1) +

2∑

k=1

bk∑

i=1

p(m1, k, i, n+ 1)µk,iq̂k,iη`σ`,i

+

b∑̀

j=1

p(m1, `, j, n)µ`,jq`,ji +

2∑

k=1

p(m1, `, i, n+ 1)νk(m1, `, i, n)ηk

+ p(m1 + 1, `, i, n+ 1)ν1(m1 + 1, `, i, n+ 1)η2

+ p(m1 − 1, `, i, n+ 1)ν2(m1 − 1, `, i, n+ 1)η1. (1)
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Note that in our equations the probability that a departing customer of any
class is replaced by a customer of class ` is given simply by η` (here ` = 1, 2) .
The quantities νk(m1, `, i, n) represent the rate of departures of class k customers
(k = 1, 2) from servers other than the selected server given that the current
system state is (m1, `, i, n). These quantities are not given a priori and will be
approximated in our solution.

Let γ(n) be the rate of departures (completions) at the selected server given
that the current total number of customers in the system is n. We have

γ(n) =

m−1∑

m1=0

2∑

`=1

b∑̀

i=1

p(m1, `, i|n)µ`,iq̂`,i. (2)

Since the servers are homogenous and thus statistically identical, the total
rate of customer departures when there are n customers in the system, denoted
by u(n), is given by u(n) = Cγ(n). If it exists, the steady-state probability
p(n), can be expressed as

p(n) =
1

G

n∏

j=1

λ(j − 1)

u(j)
for n = 0, 1, . . . (3)

where G is a normalizing constant such that
∑

n≥0 p(n) = 1.
Denote by ξ`(n) the conditional rate of departures from the selected server

given that it is busy serving a class ` customer (` = 1, 2) and there is a total of
n customers in the system. We have

ξ`(n) =

∑m−1
m1=0

∑b`
i=1 p(m1, `, i|n)µ`,iq̂`,i∑m−1

m1=0

∑b`
i=1 p(m1, `, i|n)

. (4)

We approximate the unknown rates of departures from other servers νk(m1, `, i, n)
as

νk(m1, `, i, n) ' mkξk(n) for k = 1, 2 where m2 =

{
m− 1−m1 if ` > 0

m−m1 if ` = 0.
(5)

We believe that the approximate computation of the departure rates from
servers other than the selected server is the only approximation in our solution
of a FCFS multi-server queue with two classes of customers. Refer to the Ap-
pendix for an additional discussion of this approximation. Using the identity
p(m1, `, i, n) = p(m1, `, i|n)p(n) together with formula (3) relating the prob-
abilities p(n) to the arrival and conditional completion rates λ(n) and u(n),
we can transform the balance equations for p(m1, `, i, n) into equations for the
conditional probabilities p(m1, `, i|n).

The resulting system of equations for p(m1, `, i|n) can be solved using a
straightforward fixed-point iteration (see Appendix). We do not have a formal
proof of convergence of our iterative scheme to a unique solution. However, in
the many examples we ran, we never encountered any convergence problems.
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For systems with finite buffer capacity, the number of equations to solve is de-
termined by the maximum number of customer in the system, N . For systems
with infinite buffer, the number of equations to solve at each iteration is de-
termined by the speed of convergence of the probabilities p(m1, `, i|n) to their
asymptotic values as n increases. This is analogous to the approach used by
the authors for M/Ph/c queues (cf. [11]). Like in the latter, the number of
equations to solve in our case grows linearly with the number of servers and the
number of phases in service time distributions.

Having obtained the conditional probabilities p(m1, `, i|n), we readily get
the conditional rate of customer departures for the selected server γ(n) from
formula (2), the overall conditional rate of completions u(n) and the steady-
state probabilities p(n) from formula (3). Hence, we can obtain the following
performance indices for the system as a whole

• attained throughput θ =
∑

n>0 u(n)p(n)

• mean number of busy servers U =
∑

n>0 min(n,C)p(n)

• mean number of customers in the system n =
∑

n>0 np(n)

• mean response time W = n/θ

• mean time in the queue waiting for service Q = (n− U)/θ,

as well as specifically for customers of class 1

• attained throughput for class 1, θ1 = θη1

• mean number of class 1 customers in service, U1 = θ1T1

• mean number of class 1 customers in the system (queued and in service),
n1 = Qθ1 + U1

• mean class 1 response time, W1 = n1/θ1.

Relationships between mean numbers and mean times are derived using Lit-
tle’s law [12]. We can readily obtain analogous performance indices for class 2
customers. The reduced state description used in our approach yields directly
the steady-state distributions for the overall queue length and for the number
of class 1 (and hence class 2) customers in service. We can obtain also the
steady-state distribution that there are k1 (k1 = 0, 1, . . . ) customer of class 1

queued for service as P{k1} =
∑

n≥C+k1
p(n)ηk1

1 η
n−C−k1
2

(n−C)!
k1!(n−C−k1)!

. Simi-

larly, we can get the steady-state distribution of the number of customers of
class 2 waiting for service. Although we have focused on mean values, from the
steady-state queue length distribution we can readily obtain higher moments of
the number of customers queued.

In the next section we consider a FCFS multi-server queue with an arbitrary
number of customer classes.
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3. Solution with more than two customer classes

3.1. Exact class aggregation

Consider again the system represented in Figure 1, this time with L > 2
customer classes. Let’s select any class `, e.g. ` = 1. We keep the selected
class separate and we aggregate the remaining L − 1 customer classes into a
single class whose service time distribution is the result of a merger of these
customer classes. In practice, the phase-type distributions of the classes merged
are simply combined as branches of the resulting phase-type distribution. The
initial phase selection probabilities in the resulting distribution are modified
as follows: σk,i for class k 6= ` becomes σk,iηk/

∑
j 6=` ηj . This is illustrated in

Figure 3.
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Figure 3: Service time distribution resulting from the aggregation of all classes other than
class `.

The performance indices obtained from the solution of the resulting two-class
queue (cf. Section 2) include the attained throughput for the system as a whole
θ, as well as the mean time in the queue waiting for service Q. From these two
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quantities we readily derive desired performance indices for any customer class
k, k = 1, . . . , L:

• attained throughput for class k, θk = θηk

• mean number of class k customers in service, Uk = θkTk

• mean number of class k customers in the system, nk = Qθk + Uk

• mean class k response time, Wk = nk/θk.

Note that in this approach the customer classes other than the arbitrarily
selected class ` are aggregated exactly and no approximation is involved in this
step.

First example

As an example, consider a queue with C = 10 servers, L = 4 customer classes
and the total number of customers in the system limited to N = 70. The cus-
tomer service times are exponentially distributed with means T1 = 1/µ1,1 = 1/3,
T2 = 1/µ2,1 = 1/1, T3 = 1/µ3,1 = 1/9 and T4 = 1/µ4,1 = 1/30, respectively. In
this example, arrivals come from a Poisson source with rate λ and the following
probabilities for each customer class: η1 = 6/19, η2 = 3/19, η3 = 9/19 and
η4 = 1/19. This is equivalent to each class having its own Poisson stream of
arrivals with a rate λη`. We solve this system for several load levels ranging
from λ = 1.9 to λ = 57 (the arrival rate is independent of n in our example).
This set of offered load levels covers a spectrum of server utilization values from
less than 10% to nearly 100%. For a given load level, we solve a single two-
class model, corresponding to class ` = 1 kept separate and the three other
customer classes combined into one. Thus, for ` = 1, the first customer class
in the two-class model has an exponentially distributed service time with mean
1/3. The service time distribution of the second class is a hyperexponential with
three phases (H-3) whose intensities are given by 1, 9 and 30, respectively. The
corresponding phase selection probabilities in this H-3 distribution are given by
3/13, 9/13 and 1/13.

Figure 4 shows the numerical results obtained for the four-class queue con-
sidered using the proposed approach (with the approximate solution for the
two-class model described in Section 2). We show the attained throughput
and the mean total number of customers for each class of customers as the
selected performance metrics. For comparison, we have also included the re-
sults of discrete-event simulations of the same FCFS queue with four customer
classes. The simulation results were obtained using the independent replications
method [13] with 14 replications of 2,000,000 completions each. The estimated
confidence intervals at 95% confidence level being quite narrow, only the middle
points of the confidence intervals are shown in our figure. We observe the very
close agreement between simulation and the proposed solution in the case stud-
ied. The mean and the median relative errors for the mean number of customers
in the system were 0.6% and 0.3%, respectively. Table 2 shows the correspond-
ing distribution of relative errors. Relative errors for the attained throughputs
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were negligible. As mentioned before, the choice of ` = 1 for the class kept
separate in the two-class model is arbitrary. Because the solution presented in
Section 2 is approximate, a choice of a different value for ` might yield slightly
different results. In our example, the relative differences in results were on the
order of 0.1%.

(a) Attained throughput per class. (b) Mean number of customers per class.

Figure 4: Accuracy of the proposed solution using the “Exact class aggregation” (Section 3.1)
for the first example (exponentially distributed service times, finite buffer).

Table 2: Distribution of the relative errors for the mean number of customers per class using
the “Exact class aggregation” (Section 3.1) for the first example.

Mean Median <1% <5% <10% <25% ≥25%

0.59% 0.28 % 84.17% 99.17% 100.00% 0.00% 0.00%

Second example

In our second example, we consider a similar FCFS queue except that this
time the service time of each customer class is no longer exponential but rep-
resented by H-2 distributions (two exponential branches). The mean service
times are as before given by 1/3, 1, 1/9 and 1/30. The squared coefficients of
variation of the class service times (defined as the ratio of the variance to the
square of the mean) are given by 16, 9, 4 and 2, respectively. The parameters
of the corresponding H-2 distributions are as follows: σ1,1 =0.115, σ1,2 =0.885,
µ1,1 =0.349, µ1,2 =267.706, σ2,1 =0.392, σ2,2 =0.608, µ2,1 =0.396, µ2,2 =61.0,
σ3,1 =0.196, σ3,2 =0.804, µ3,1 =1.782, µ3,2 =729.0 and σ4,1 =0.653, σ4,2 =0.347,
µ4,1 =19.802, µ4,2 =1030.0. The two-class model solved as part of the proposed
solution procedure comprises one class with the original H-2 service time dis-
tribution for the selected customer class and one class with an H-6 service time
distribution (six exponential branches which represent the combination of the
remaining three classes in the original system).

Figure 5 illustrates the numerical results obtained using our approach for the
four-class queue with H-2 service time distributions. As before, class ` = 1 was
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(a) Attained throughput per class. (b) Mean number of customers per class.

Figure 5: Accuracy of the proposed solution using the “Exact class aggregation” (Section 3.1)
for the second example (non-exponentially distributed service times, finite buffer).

Table 3: Distribution of the relative errors for the mean number of customers per class using
the “Exact class aggregation” (Section 3.1) for the second example.

Mean Median <1% <5% <10% <25% ≥25%

3.02% 1.75 % 28.33% 84.17% 91.67% 100.00% 0%

kept separate. We show the throughputs and the mean numbers of customers of
each class in the system for the same load levels as in Figure 4. We also include
the results of discrete-event simulation for comparison. Again, we observe a
close agreement between the results obtained using the proposed approach and
simulation. Here, the mean and the median relative errors for the mean number
of customers in the system were 3% and 1.7%, respectively. The corresponding
distribution of relative errors in Table 3 shows that for this example almost
92% of errors were below 10%. Relative errors for the attained throughput were
below 1%.

Comparing Figures 5 and 4 provides an example of the effect of the service
time distributions in a FCFS queue with multiple servers. Depending on the
load level, relative difference in the mean number of customers may exceed 30%
in the example considered. Not surprisingly, the relative differences appear most
pronounced for medium load levels. Attained throughputs seem less sensitive
to service time distributions in our example.

Third example

In our third example, we consider again the system with four customer classes
with non-exponentially distributed service time studied in our second example
except that this time the buffer capacity (queueing room) is infinite. We solve
this system for values of arrival rate λ ranging from 1.9 to 29 i.e., for server
utilization values ranging from some 6% to over 90% (we don’t believe that
models with infinite buffers are of practical interest at higher server utilization).
Figure 6 shows the mean number of customers for each class obtained with
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our exact aggregation method, as well as the corresponding relative errors. We
observe the generally good agreement with simulation results, even at high server
utilization levels. In this example, the mean and the median relative errors for
the mean numbers of customers in the system were 5% and 1.6%, respectively.
The distribution of relative errors shown in Table 4 indicates that in this example
the relative errors are below 10% in over 80% of cases. We notice in Figure 6
that the largest relative errors occur for a class with the smallest mean number
of customers at a server utilization of some 60%.

(a) Mean number of customers per class.
(b) Relative errors for the mean number of
customers per class.

Figure 6: Accuracy of the proposed solution using the “Exact class aggregation” (Section 3.1)
for the third example (non-exponentially distributed service times, infinite buffer).

Table 4: Distribution of the relative errors for the mean number of customers per class using
the “Exact class aggregation” (Section 3.1) for the second example.

Mean Median <1% <5% <10% <25% ≥25%

5.04% 1.62% 46.67% 63.33% 81.67% 100.00% 0.00%

The exact aggregation method is the recommended approach unless the num-
ber of phases in the aggregated class becomes intractably large.

3.2. Approximate class aggregation

If the number of phases in the aggregated second class (corresponding to L−1
classes in the original L class model) becomes too large to handle, we propose
to simplify the aggregated class by replacing it by a simpler distribution with
the same first two moments. In practice, if the coefficient of variation of the
aggregated second class is greater than 1/

√
2, two phases suffice to match the

first two moments [14]. We propose to solve the resulting simplified two-class
model and use the attained throughput for the system as a whole θ as well as
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the mean time in the queue waiting for service Q to derive desired performance
indices for each class as described in Section 3.1. This is similar in spirit to the
solutions to multiclass problems proposed over the years by several authors (cf.
[15]).

Since in our approximate aggregation we are matching only the first two
moments of the merged classes and the performance of M/Ph/c queues is known
to potentially exhibit higher-order distributional dependencies [16], we expect
some loss of accuracy. This is indeed the case and the relative differences versus
simulation results seem to increase somewhat compared to exact aggregation.
This is illustrated in Figure 7 for our second example, i.e. for the same set of
four classes as in Figure 5. The mean and relative errors for the mean number
of customers in the system are 3.7% and 3%, respectively (versus 3% and 1.7%
previously). The distribution of relative errors in Table 5 indicates that for this
example in 92% of cases the relative errors were below 10%. The corresponding
values for the attained throughput remain below 1%. We observe that, while
the approximation results deviate somewhat from simulation midpoints, they do
stay sufficiently close to the latter to be a good approximation. And, of course,
the complexity of the resulting two-class model is generally greatly reduced,
especially as the number of customer classes increases.

(a) Attained throughput per class. (b) Mean number of customers per class.

Figure 7: Accuracy of the proposed solution using the “Approximate class aggregation” (Sec-
tion 3.2) for the second example (non-exponentially distributed service times, finite buffer).

Table 5: Distribution of the relative errors for the mean number of customers per class using
the “Approximate class aggregation” (Section 3.2) for the second example.

Mean Median <1% <5% <10% <25% ≥25%

3.66% 3.00% 25.00% 84.17% 92.50% 100.00% 0.00%

In Figure 8, we show the numerical results obtained with our approximate
aggregation for the model with infinite buffer considered in our third example.
We observe again the close agreement between our approximation and simu-
lation results. The mean and median relative errors for the mean number of
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customers in the system remain around 5% and 2%, respectively, in the example
considered. As shown in Table 6, in this example, the relative errors were below
10% in over 80% of cases. Figure 8b indicates that the largest relative errors
occur for a class with a small mean number of customers in the system at a
server utilization of close to 60%.

(a) Mean number of customers per class.
(b) Relative errors for the mean number of
customers per class.

Figure 8: Accuracy of the proposed solution using the “Approximate class aggregation” (Sec-
tion 3.2) for the third example (non-exponentially distributed service times, infinite buffer).

Table 6: Distribution of the relative errors for the mean number of customers per class using
the “Approximate class aggregation” (Section 3.2) for the third example.

Mean Median <1% <5% <10% <25% ≥25%

4.76% 1.64% 46.67% 63.33% 81.67% 100.00% 0.00%

Note that our approximate aggregation approach keeps one customer class
intact while preserving only the first two moments of the aggregate of remaining
customer classes. In our examples, the resulting accuracy appears sufficient for
practical purposes. Clearly, if desired, one can match the first three (or more)
moments of the aggregated class using available algorithms [9] (see Appendix).

With both exact and approximate aggregation, we solve the two-class model
only once, so that the resulting overall complexity in terms of the number of
equations to solve grows no more than linearly with the number of classes.

3.3. Coefficients of variation of the number of customers

Formula (3) gives us p(n), the steady-state probability that there are n
customers in the system. Thus, we can compute the second moment of the
number of customers in the system as

∑
n n

2p(n). As shown in Section 2, the
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state description chosen readily produces the conditional probabilities for the
first class in our two-class system that there are m1 customers in service, as well
as k1 customers in the queue given the total number of customers n. Hence,
we obtain the conditional second moments of the number in the queue and in
service for the selected customer class given n and the corresponding conditional
variances. As an approximation, we assume that the conditional variance of the
number of class 1 customers in the system given n can be evaluated as the sum
of the latter conditional variances. We then use the law of total moments to
evaluate the non-conditional second moment of the total number of customers
of the selected class.

As an example, we show in Figure 9 the results obtained for the coefficients of
variation for the number of class 2 customers, as well as for the total number of
customers in the system computed from our approximate solution for Example 2.

(a) Coefficient of variation of the number
of customers.

(b) Relative errors for the coefficient of
variation of the number of customers.

Figure 9: Accuracy of the proposed solution for the coefficient of variation of the number
of customers in the system using the “Exact class aggregation” (Section 3.1) for the second
example (non-exponentially distributed service times, finite buffer)

In this example, while some of the relative errors for smaller values of of-
fered load can approach 25%, the mean and the median relative errors for the
approximate coefficient of variation of class 2 remain below 10%. The mean
and median relative errors for the coefficient of variation of the total number of
customers in the system are below 6%.

In the next section we consider an extension of our approach to a class of
phase-type arrivals.

4. Extension to phase-type arrivals

In this section, we briefly discuss an extension of our model to a more general
arrival process. Specifically, we consider a queue in which the times between
consecutive customer arrivals are distributed according to a phase-type distri-
bution with a exponential phases. As before, we assume that the probability
that an arriving customer is of class ` is given by η`, ` = 1, . . . , L, regardless of
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the state of the system. Obviously, unlike in the case of Poisson arrivals, a su-
perposition of individual phase-type times between arrivals, in general, does not
correspond to the same type of arrival process unless the class arrival processes
are phase synchronized.

Since our reduced-state solution of Section 2 produces explicitly the con-
ditional rate of completions u(n), we propose to apply the simple approach
presented in a recent paper on modeling of cloud systems [17]. This approach
decomposes the solution of a system with non-memoryless arrivals into two so-
lutions of simpler models: a model in which the arrivals are represented as
memoryless with a state-dependent rate w(n) and a model with the original
phase-type arrivals and the service process represented by a state-dependent
service rate u(n). This is represented in Figure 10.Ph-arrivals.pdf

latex: taille 20

Schematic view of the solution in case of phase-type times between 
arrivals

Memoryless 
arrivals rate

Phase-type 
services

Memoryless 
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w(n)
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Figure 10: Schematic view of the solution in case of phase-type times between arrivals.

Note that the fixed-point iteration between models shown in Figure 10 needs
to happen only for a single two-class model in our solution procedure. The next
section concludes this paper.

5. Conclusions

We have presented a simple approach to the solution of a FCFS queueing sys-
tem with memoryless arrivals, multiple servers and several classes of customers
with distinct phase-type service time distributions. The proposed solution pro-
cedure relies on solving a single two-class model in which one of the classes has
the same parameters as in the original multiclass model while the other is the
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result of a merger (aggregation) of the remaining customer classes. With exact
aggregation, we merge the phase-type service time distributions exactly into a
phase-type distribution with a higher number of phases. If the resulting number
of phases becomes unmanageable, we propose to use approximate aggregation
in which we simplify the phase-type distribution for the aggregated class by
matching only the first two moments of the aggregated customer class. Our
solution of the two-class model involves a fixed-point iteration. Although we
do not have a theoretical proof of convergence of the fixed point to a unique
solution, in practice, in the many examples we ran, it never failed to converge.

The proposed approach uses only simple mathematics together with basic
flow conservation ideas and fundamental queueing properties such as Little’s
law. Because it relies on the reduced state description for the solution of the
two-class FCFS queue, the proposed approach is highly scalable in terms of
the number of servers, the number of classes, as well as the number of phases
per class. Our approach applies to queues with finite and infinite buffer space.
It readily yields class performance measures such as the attained throughput
and the mean response time, as well as distributions for the overall number of
customers in the system or in the queue.
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Appendix A. Solving the balance equations

The example equation in Section 2 for n > C, 0 < m1 < C − 1, ` = 1, 2
and i = 1, . . . , bk can be transformed into the following equation for conditional
probabilities

p(m1, `, i|n)[λ(n) + µ`,i + ν1(m1, `, i, n) + ν2(m1, `, i, n)]

= p(m1, `, i|n− 1)u(n) +

2∑

k=1

bk∑

i=1

p(m1, k, i|n+ 1)µk,iq̂k,iη`σ`,iλ(n)/u(n+ 1)

+

i−1∑

j=1

p(m1, `, j|n)µ`,jq`,ji +

b∑̀

j=i

p(m1, `, j|n)µ`,jq`,ji

+

2∑

k=1

p(m1, `, i|n+ 1)νk(m1, `, i, n)ηkλ(n)/u(n+ 1)

+ p(m1 + 1, `, i|n+ 1)ν1(m1 + 1, `, i, n+ 1)η2λ(n)/u(n+ 1)

+ p(m1 − 1, `, i|n+ 1)ν2(m1 − 1, `, i, n+ 1)η1λ(n)/u(n+ 1). (A.1)

In a similar way, we can obtain equations for values of n = 1, . . . , C.
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If we sum equation (A.1) over all values of m1, ` and i, we get

λ(n)
∑

m1

∑

`

∑

i

p(m1, `, i|n) + γ(n)

+
∑

m1

∑

`

∑

i

p(m1, `, i|n)[ν1(m1, `, i, n) + ν2(m1, `, i, n)]

= u(n)
∑

m1

∑

`

∑

i

p(m1, `, i|n− 1) + λ(n){γ(n+ 1)

+
∑

m1

∑

`

∑

i

p(m1, `, i|n+ 1)[ν1(m1, `, i, n+ 1) + ν2(m1, `, i, n+ 1)]}/u(n+ 1)

(A.2)

Recall that u(n) = Cγ(n). For values of n > C considered in equa-
tion (A.1), if we have, as must be,

∑
m1

∑
`

∑
i p(m1, `, i|n − 1) = 1, then

requiring that
∑

m1

∑
`

∑
i p(m1, `, i|n)[ν1(m1, `, i, n) + ν2(m1, `, i, n)] = (C −

1)γ(n) and
∑

m1

∑
`

∑
i p(m1, `, i|n+1)[ν1(m1, `, i, n+1)+ν2(m1, `, i, n+1)] =

(C − 1)γ(n + 1) allows us to normalize the probabilities p(m1, `, i|n) (so that∑
m1

∑
`

∑
i p(m1, `, i|n) = 1).

In the particular case when the two customer classes in the model of Section 2
have exponentially distributed service times with parameters µ1,1 and µ2,1, re-
spectively, formulas (4) and (5) yield simply ξ`(n) = µ`,1 and νk(m1, `, i, n) =
mkµk,1. This is the expected result and the relationship∑

m1

∑
`

∑
i p(m1, `, i|n)[ν1(m1, `, i, n) + ν2(m1, `, i, n)] = (C − 1)γ(n) happens

to hold exactly. For general service times, formulas (4) and (5) introduce an
approximation that results in a slight violation of this relationship. Therefore,
in actual computation we simply scale the values of νk(m1, `, i, n) computed
using formulas (4) and (5) so as to have the proper values for∑

m1

∑
`

∑
i p(m1, `, i|n)[ν1(m1, `, i, n) + ν2(m1, `, i, n)].

In equation (A.1), if we treat u(n) as an independent parameter, we no-
tice that the values of p(m1, `, i|n) are increasing functions of u(n). It is not
difficult to show that the sum

∑
m1

∑
`

∑
i p(m1, `, i|n) as a function of u(n)

increases from a value less than 1 for u(n) = 0 to arbitrarily large values for
u(n) → ∞. This suggests that there can be only one value of u(n) such that∑

m1

∑
`

∑
i p(m1, `, i|n) = 1.

A simple fixed-point solution of the equations for the conditional probabili-
ties p(m1, `, i|n) might proceed as follows. Consider system states in the order
of increasing n = 1, 2, . . . , for each value of n, enumerate the states in the or-
der of increasing m1, for each value of m1, in the order of increasing values of
`, and for each value of `, in the order of increasing i = 1, . . . , b`. Denote by
the superscript t the current iteration number. We start with a feasible initial
distribution p0(m1, `, i|n) and the corresponding set of u0(n), ξ0` (n) and hence
ν0k(m1, `, i, n) for n = 1, 2, . . . . In the case of the equations given above for
n > C, 0 < m1 < C − 1, ` = 1, 2 and i = 1, . . . , bk, we can compute values at
iteration t = 1, 2, . . . as
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pt(m1, `, i|n) = 1/[λ(n) + µ`,i + νt−11 (m1, `, i, n) + νt−12 (m1, `, i, n)].

[pt(m1, `, i|n−1)ut−1(n)+

2∑

k=1

bk∑

i=1

pt−1(m1, k, i|n+1)µk,iq̂k,iη`σ`,iλ(n)/ut−1(n+1)

+

i−1∑

j=1

pt(m1, `, j|n)µ`,jq`,ji +

b∑̀

j=i

pt−1(m1, `, j|n)µ`,jq`,ji

+

2∑

k=1

pt(m1, `, i|n+ 1)νt−1k (m1, `, i, n)ηkλ(n)/ut−1(n+ 1)

+ pt−1(m1 + 1, `, i|n+ 1)νt−11 (m1 + 1, `, i, n+ 1)η2λ(n)/ut−1(n+ 1)

+ pt−1(m1 − 1, `, i|n+ 1)νt−12 (m1 − 1, `, i, n+ 1)η1λ(n)/ut−1(n+ 1)]. (A.3)

For each value of n (in the case where n > C), we must have∑m−1
m1=0

∑2
`=1

∑b`
i=1 p

t(m1, `, i|n) = 1. We use this relationship to normalize the
values obtained for a given n. Having normalized the probabilities pt(m1, `, i|n),
we compute new values for ut(n) and ξt`(n) using formulas (2) and (4) (and hence
νtk(m1, `, i, n) from formula (5)). Then, we move on to the next value of n. The
fixed-point iteration for values of n = 1, . . . , C proceeds in an analogous manner.

We stop the iteration when, for instance, |u
t−1(n)
ut(n) −1| < ε for all n = 1, 2, . . . ,

where ε > 0 is the desired convergence stringency (e.g. ε = 10−6).

Appendix B. Number of equations solved at each iteration

With the state description chosen, the number of equations solved at each
iteration is given by:

NC(b1 + b2) + (C − 1)− (C − 1)C(b1 + b2 − 1)/2 (B.1)

where b1 is the number of phases of the first class in our two-class model. For
the exact aggregation approach, b2 is the sum of the numbers of phases of all
the other customer classes. For the approximate aggregation, b2 is the number
of phases chosen to represent the aggregate of all the other classes (in our case,
it is most often 2). In the case of infinite buffer capacity, N is replaced by
the value of the number of customers n at which the conditional probabilities
become sufficiently close to their asymptotic values (typically, between 100 and
1000).

Thus, the complexity in terms of the number of equations to solve increases
linearly with the number of servers and at most linearly with the number of
service phases.
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Appendix C. Approximate aggregation matching three moments

As mentioned in Section 3.2, one can use existing algorithms to match more
than the first two moments of the aggregated user class. For our examples,
the results of matching the first three moments tend to be marginally better
than using only two moments, but the improvement is not always uniform. For
instance, the mean and the median relative errors may be lower but there may
be higher maximum errors. This is likely due to the fact that errors introduced
in limiting the approximate aggregation to the first two moments sometimes
compensate errors introduced by the reduced state approximation.
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