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ABSTRACT
In this paper, we propose to improve the classical lifting-
based wavelet transforms by defining three classes of pixels
which will be predicted differently. More specifically, the
proposed idea is inspired by the Essentially Non-Oscillatory
(ENO) transform and consists in shifting the stencil used for
prediction in order to reduce the error near image singular-
ities. Moreover, the different filters associated with these
classes will be optimized in order to design a multiresolution
representation well adapted to image characteristics. Our
simulations show that the resulting multiscale representation
leads to much lower amplitudes of the detail coefficients and
improves the linear approximation properties.

Index Terms— Adaptive wavelets, Lifting scheme, ENO
prediction, filter optimization, image approximation

1. INTRODUCTION

An alternative to the classical filter bank approach for the
computation of the discrete wavelet transform (DWT) is the
lifting scheme (LS), initially introduced by Sweldens [1, 2].
Due to their many advantages, LS has been found to be an ef-
ficient tool for still image coding [3, 4]. A generic LS applied
to one dimensional (1D) signal consists of three successive
steps referred to as split, predict and update. In the first step,
the input 1D signal sj(n) is partitioned into two disjoint sub-
sets formed by the even s0,j(n) := sj(2n) and odd samples
s1,j(n) := sj(2n − 1), respectively. Then, the prediction
step consists in estimating the even samples s0,j(n) from the
neighboring odd ones s1,j(n) (or inversely). Thus, a predic-
tion error, called a detail signal, is then computed as follows:

dj+1(n) = s0,j(n)− p⊤
j s1,j(n) (1)

where pj is the prediction filter, s1,j(n) = (s1,j(n−k))k∈Pj ,
and Pj represents the support of pj . When the signal is highly
correlated, using an appropriate prediction operator yields a
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detail signal dj+1 which contains much less information than
the original one. Finally, the update step generates a coarser
approximation of the original signal by smoothing the odd
samples using the detail coefficients:

sj+1(n) = s1,j(n) + u⊤
j dj+1(n) (2)

where uj is the update vector, dj+1(n) = (dj+1(n−k))k∈Uj ,
and Uj represents the support of uj .

A separable 2D lifting scheme (2D-LS) is often imple-
mented on an image by successively applying 1D-LS to its
rows and columns (or inversely). This leads to an approx-
imation coefficients and three detail coefficients subspaces.
Then, a multiscale representation of the image is derived by
recursively applying these steps to the resulting approxima-
tion coefficients.

In addition to the LS-based image representation, vari-
ous attempts have been made to improve the wavelets by de-
signing nonlinear transforms. For instance, a multiresolution
transform, called the Piecewise Polynomial Harmonic (PPH),
has been developed in [5] to take into account the potential
irregularity in the input data. Moreover, Harten et al. have
proposed another transform , referred to as Essentially Non-
Oscillatory (ENO), in order to increase the accuracy of the
prediction step near the jumps or the singularities of the data
[6]. It is important to note that this transform has been exten-
sively used in image processing [7, 8].

Motivated by the advantages of the latter transform, we
propose in this paper to incorporate the concept of ENO in a
typical LS-based wavelet transform. More precisely, contrary
to the classical LS structure where a symmetric prediction fil-
ter is used by taking the same number of neighboring pixels
located on the left and right side of the pixel to be predicted,
the improved structure involves three kinds of prediction fil-
ters based on the characteristics of the pixel to be predicted.
Thus, three classes of pixels will be defined. Moreover, the
prediction filter associated with each class will be optimized
in order to design a multiscale decomposition well adapted to
the contents of the images.

The remainder of this paper is organized as follows. In



Section 2, the principle of the nonlinear ENO transform is
recalled. Then, the improved lifting structure based on opti-
mized ENO filters is described in Section 3. Finally, exper-
imental results are given in Section 4 and some conclusions
are drawn in Section 5.

2. IMPROVED LIFTING SCHEME BASED ON ENO
PREDICTION FILTERS

The most popular examples of LS are the family of (L, L̃)
wavelet transforms where L and L̃ represent the number of
coefficients of the prediction and update vectors, respectively.
When (L, L̃) = (4, 2), Eqs. (1) and (2) are expressed as:

dj+1(n) = s0,j(n)−
( 9

16
(s1,j(n) + s1,j(n+ 1))

− 1

16
(s1,j(n− 1) + s1,j(n+ 2))

)
(3)

sj+1(n) = s1,j(n) +
1

4
(dj+1(n) + dj+1(n− 1)). (4)

Note that, in such a case, the prediction filter for an ar-
bitrary length L is obtained by means of polynomial in-
terpolation. Indeed, for a fixed n, let us consider the set
{s1,j(n− k)}−L

2 +1≤k≤L
2

and the polynomial P that interpo-
lates these L values at abscissae (n−k). Then, one can check
that the prediction vector satisfies p⊤

j s1,j(n) = P (n + 1
2 ).

In this case, the corresponding multiresolution representation
is equivalent to the Deslaurier-Dubuc interpolatory wavelet
transform [9, 10]. Regarding the properties of the interpolant
as well as the smoothness of the limit of this iterative process,
the reader is referred to [9, 10, 11].

It is worth noting here that most prediction based on cen-
tered stencil, like the (4,2) LS, can be written in the following
general form [12]:

p⊤
j s1,j(n) =

1

2
(s1,j(n) + s1,j(n+ 1))

+ f(∆2s1,j(n),∆
2s1,j(n+ 1)), (5)

where f is a given function and ∆2 is the second order fi-
nite difference. PPH nonlinear transform [5] follows the same
writing with:

f(∆2s1,j(n),∆
2s1,j(n+ 1)) =

− 1

16
(sgn(∆2s1,j(n)) + sgn(∆2s1,j(n+ 1)))

× |∆
2s1,j(n) + ∆2s1,j(n+ 1)

2
|

× (1− |∆
2s1,j(n)−∆2s1,j(n+ 1)

∆2s1,j(n) + ∆2s1,j(n+ 1)
|2). (6)

As mentioned before, ENO has also been found to be an
efficient transform that aims to improve the prediction process
around the jumps or the singularities of the input data. In this

context, the prediction filter is defined using polynomial in-
terpolation on shifted stencils which leads, when a 3-rd order
polynomial is used, to three kinds of prediction filters:

• centered prediction

p⊤
j,cs1,j(n) = − 1

16s1,j(n− 1) + 9
16s1,j(n)

+ 9
16s1,j(n+ 1)− 1

16s1,j(n+ 2) (7)

• left-shifted prediction

p⊤
j,ls1,j(n) = 1

16s1,j(n− 2)− 5
16s1,j(n− 1)

+15
16s1,j(n) +

5
16s1,j(n+ 1) (8)

• right-shifted prediction

p⊤
j,rs1,j (n) = 5

16s1,j(n) +
15
16s1,j(n+ 1)

− 5
16s1,j(n+ 2) + 1

16s1,j(n+ 3). (9)

In that framework, at each location n of the even pixels to be
predicted s0,j(n), one has to choose between three candidate
prediction filters. To this end, the retained cost functions are
firstly determined from the neighboring odd samples as fol-
lows:

∆c,j(n) = |s1,j(n+ 1)− s1,j(n)|,
∆l,j(n) = |s1,j(n)− s1,j(n− 1)|,
∆r,j(n) = |s1,j(n+ 2)− s1,j(n+ 1)|.

After that, according to the obtained cost functions, three
classes image labelling Lj(n) are deduced:

If ∆l,j(n) > ∆c,j(n) and ∆r,j(n) > ∆c,j(n),

Lj(n) = 0. (10)

If ∆c,j(n) > ∆l,j(n) and ∆r,j(n) > ∆l,j(n),

Lj(n) = −1. (11)

If ∆c,j(n) > ∆r,j(n) and ∆l,j(n) > ∆r,j(n),

Lj(n) = 1. (12)

Finally, if Lj(n) = 0 (resp. −1 or 1), the centered (resp. left
or right shifted) prediction is used to predict the pixel s0,j(n)
and generate the detail coefficients dj+1(n).

3. MULTISCALE REPRESENTATION USING
OPTIMIZED ENO PREDICTION FILTERS

Once the modified LS structure based on the ENO prediction
filters has been described, we now focus on the optimization
task of the different possible predictors pj,c, pj,l and pj,r.



3.1. Determination of the labels

To build the labels Lj(n) of the different resolution levels for
an original input image S0, we define SJ the image subsam-
pled by a factor of 2J and then compute the linear approx-
imation of SJ−1 using centered prediction on the columns
and then on the rows without adding any detail coefficients.
By iterating on this approximation J − 1 times, we obtain
an approximation of S0. At each time, the labels Lj(n) are
computed by using Eqs. (10)-(12). We should note here that,
when the update step is omitted, such determination proce-
dure allows to ensure that the labels are the same at the direct
and inverse steps of the decomposition, and so, guarantees
the stability of the transform. However, this property will not
be satisfied when an update step is performed to compute the
approximation coefficients.

3.2. Design of the optimized ENO prediction filters

Aiming at producing a multiscale decomposition well adapted
to the image content, we propose here to optimize the ENO
prediction filters by minimizing the variance of the prediction
error (i.e. the detail signal). To this end, we recall that the
detail coefficients are computed as follows:

dj+1(n) =


s0,j(n)− p⊤

j,cs1,j,c(n) if Lj(n) = 0

s0,j(n)− p⊤
j,ls1,j,l(n) if Lj(n) = −1

s0,j(n)− p⊤
j,rs1,j,r(n) if Lj(n) = 1,

(13)

where s1,j,c(n) = (s1,j(n−1), s1,j(n), s1,j(n+1), s1,j(n+
2))⊤, s1,j,l(n) = s1,j,c(n− 1) and s1,j,r(n) = s1,j,c(n+ 1).
By minimizing the variance of the detail coefficients, the op-
timal prediction vectors p

opt
j,c , popt

j,l and p
opt
j,r can be deter-

mined by solving the Yule-Walker equations:

E[s1,j,c(n)s⊤1,j,c(n)]p
opt
j,c = E[s0,j(n)s1,j,c(n)] if Lj(n) = 0

(14)

E[s1,j,l(n)s⊤1,j,l(n)]p
opt
j,l = E[s0,j(n)s1,j,l(n)] if Lj(n) = −1

(15)

E[s1,j,r(n)s⊤1,j,r(n)]p
opt
j,r = E[s0,j(n)s1,j,r(n)] if Lj(n) = 1.

(16)

It should be noticed here that the optimization is performed
on each class of pixels. Moreover, two strategies will be
considered in this work. The first one is a global approach
where the three optimized filters are firstly computed over all
the rows of the image Sj in order to generate the approxima-
tion subband Sj+ 1

2
and the detail one Dj+ 1

2
. After that, the

same optimization procedure is applied along the columns of
Sj+ 1

2
and Dj+ 1

2
to produce the approximation subband Sj+1

as well as the three detail subbands. However, the second one
is a local approach which consists in determining the opti-
mal prediction filters for each row of the image and then for
each column. Concerning the update step, and for the sake of
simplicity, we have used for the different resolution levels the
same update operator given by Eq. (4).

4. EXPERIMENTAL RESULTS

In this part, we study the ability of the different multiscale
techniques to accurately represent an image without adding
any new details. More precisely, we propose to construct an
approximation of image S0 of size N ×M only knowing its
approximation SJ for a certain resolution level J ≥ 1. To this
end, we consider the following transforms.
The first one, denoted by LS, is the classical LS-based wavelet
transform defined by Eqs. (3). The second and the third ones
are the nonlinear PPH [5] and ENO transforms [12]. Finally,
the improved lifting scheme based on the optimized ENO pre-
diction filters is designated by LS-ENO-OPT-L (resp. LS-
ENO-OPT-G) where a local (resp. global) optimization ap-
proach is considered. To show the interest of the proposed
transforms, we also compare them with the optimized ver-
sion of the classical LS-based wavelet transform which will
be denoted by LS-OPT-L and LS-OPT-G. Note that the lat-
ter, where only the centered prediction is considered and then
optimized, has already been studied in the literature [13, 14].

4.1. Image reconstruction using approximation subspace

First, Figures 1(a) and 1(b) illustrate the PSNR of the recon-
structed images with respect to the proportion of coefficients
kept for images “Einst” and “Cameraman”, respectively. Note
that one half (resp. fourth) of the coefficients are kept when
the approximation of S0 is built from S 1

2
(resp. S1). Let us

recall that the PSNR is given by:

PNSR = 10 log10(
2552

1
NM

∑
n,m(S0(n,m)− Ŝ0(n,m))2

), (17)

where Ŝ0 stands for the linear approximation of S0.
Thus, it can be noticed that using either nonlinear prediction
filters such as PPH prediction, keeping a centered stencil as
performed in the classical LS, or optimizing the filters glob-
ally leads to similar or small improvement of the quality of
the linear approximation compared with the fixed linear tech-
niques based on LS. Moreover, our improved LS based on
ENO prediction filters, optimized through a local approach,
yields the best linear approximation results. Such results con-
firm that the three retained classes are really discriminant and
give rise to different optimal predictors.

4.2. Decay of detail coefficients

In addition, the quality of approximation given by the differ-
ent multiscale representations is also measured by the decay
of the detail coefficients: the faster the coefficients decay, the
more compact the representation. Fig. 2(a) (resp. 2(b)) dis-
plays the detail coefficients ranked in decreasing order when
one (resp. two) resolution levels of decomposition is consid-
ered. The obtained results show that LS-ENO-OPT-L yields
detail coefficients that decay much faster than those obtained
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Fig. 1. Linear approximation results using only a certain approximation subspace for the images: (a) Einst, (b) Cameraman
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Fig. 2. Decay of detail coefficients associated with: (a) one level of decomposition, (b) two levels.

with the other transforms, which confirm again the interest of
the proposed multiresolution representation.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an improved LS-based
wavelet transform based on ENO prediction filters. The op-
timization of these operators over three classes of pixels has
also been investigated. Experimental results have shown the
benefits of the resulting multiscale decomposition in terms
of quality of approximation. Since the optimized filters are
determined based on a local approach, this requires to ef-
ficiently store the filter coefficients. This constitutes a first
issue that will be addressed in a future work. Moreover, due

to its interesting linear approximation properties, we propose
also to investigate this kind of representation to design an
efficient image coding scheme.
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