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Abstract  13 

Radar data have been used to retrieve and monitor the surface soil moisture (SM) changes in various 14 

conditions. However, the calibration of radar models whether empirically or physically-based, is still 15 

subject to large uncertainties especially at high-spatial resolution. To help calibrate radar-based retrieval 16 

approaches to supervising SM at high resolution, this paper presents an innovative synergistic method 17 

combining Sentinel-1 (S1) microwave and Landsat-7/8 (L7/8) thermal data. First, the S1 backscatter 18 

coefficient was normalized by its maximum and minimum values obtained during 2015-2016 agriculture 19 

season. Second, the normalized S1 backscatter coefficient was calibrated from reference points provided 20 

by a thermal-derived SM proxy named soil evaporative efficiency (SEE, defined as the ratio of actual to 21 

potential soil evaporation). SEE was estimated as the radiometric soil temperature normalized by its 22 

minimum and maximum values reached in a water-saturated and dry soil, respectively. We estimated both 23 

soil temperature endmembers by using a soil energy balance model forced by available meteorological 24 

forcing. The proposed approach was evaluated against in situ SM measurements collected over three bare 25 

soil fields in a semi-arid region in Morocco and we compared it against a classical approach based on radar 26 

data only. The two polarizations VV (vertical transmit and receive) and VH (vertical transmit and horizontal 27 

receive) of the S1 data available over the area are tested to analyse the sensitivity of radar signal to SM at 28 

high incidence angles (39°-43°). We found that the VV polarization was better correlated to SM than the 29 

VH polarization with a determination coefficient of 0.47 and 0.28, respectively. By combining S1 (VV) 30 

and L7/8 data, we reduced the root mean square difference between satellite and in situ SM to 0.03 m3 m-31 

3, which is far smaller than 0.16 m3 m-3 when using S1 (VV) only. 32 

Keywords: near surface soil moisture, Sentinel-1 (A/B), Landsat-7/8, energy balance modelling, soil evaporation, 33 

bare soil. 34 

1. Introduction  35 

Soil moisture plays a very important role in many domains, such as agriculture, hydrology and meteorology. 36 

Consequently, the development of innovative techniques to monitor this variable from space becomes 37 

crucial. Remote sensing has demonstrated a strong potential for estimating the surface soil moisture (SM) 38 

in the first cm of soil (Bruckler et al., 1988; Du et al., 2000; Engman, 2000) while SM can be estimated 39 

using optical/thermal data (Gillies and Carlson, 1995; Sandholt et al., 2002). Several studies have generally 40 

acknowledged that microwave techniques have a higher potential for retrieving SM on a regular basis, 41 

either from active (Dubois and Engman, 1995a; Ulaby et al., 1979, 1978; Zribi et al., 2005; Zribi and 42 

Dechambre, 2003) or passive (Kerr et al., 2010; Entekhabi et al., 2010) sensors.  43 
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Microwave methods are based on the large difference existing in the dielectric constant between a dry soil 44 

(around 4) and that of water, which is around of 80 at microwave frequencies (Ulaby et al., 1986). Radiative 45 

transfer models have hence been developed based on the SM-dielectric constant relationship (Dobson et 46 

al., 1985). 47 

In the recent past, the use of imaging radar to estimate SM has become a subject of strong interest, notably 48 

due to i) the high-spatial resolution achievable by synthetic aperture radars (SAR) and ii) the advent of SAR 49 

data available at high-temporal resolution. Especially, the Sentinel-1 (S1) constellation (composed of two 50 

satellites S1-A and S1-B) potentially provides SAR data at 20 m resolution every 3 days (Torres et al., 51 

2012). Thus, numerous studies have investigated and exploited the sensitivity of the radar signal to SM 52 

(Baghdadi et al., 2002a; Baghdadi and Zribi, 2006; Fung, 1994; Holah et al., 2005a; Oh et al., 1992; 53 

Srivastava et al., 2003; Ulaby et al., 1986; Van Oevelen and Hoekman, 1999; Vereecken et al., 2008; Zribi 54 

et al., 2005). Retrieval approaches can be categorized into i) purely empirical modelling approaches 55 

(Baghdadi et al., 2002a; Holah et al., 2005; Mathieu et al., 2003; Wickel et al., 2001; Baghdadi et al., 2016) 56 

without any physical basis, which makes them valid for the studied area solely, and ii) semi-empirical 57 

approaches (Attema and Ulaby, 1978; Dubois and Engman, 1995a; Oh, 2004; Oh et al., 1992; Shi et al., 58 

1997), which usually combine empirical (data fits) and theoretical (physically-based) models like integral 59 

equation model (IEM) (Fung et al., 1992). In general, each model has a certain validity range in terms of 60 

observation incidence angle, soil parameters and vegetation cover (Fung et al., 1992; Karam et al., 1992).  61 

Models, previously mentioned, do not reach the expected accuracy in SM retrievals (Alexakis et al., 2017; 62 

Bai et al., 2017; Fieuzal et al., 2011; Gao et al., 2017; Rakotoarivony L. et al., 1996; Remond et al., 1999; 63 

Zribi et al., 1997). This is owing to the various radar (incidence angle, frequency and polarization) and 64 

surface (soil moisture and roughness) parameters that affect the behaviour of the backscattered signal. The 65 

surface roughness is one of the most important factors that impact on the SM estimation, and probably the 66 

most difficult to measure periodically when monitoring SM changes over wide areas (Loew et al., 2006). 67 

Usually, the use of such models requires a calibration step to reduce discrepancies between simulated 68 

backscatter coefficient (or inverted SM) and reference (measured) SM. Calibration is often performed using 69 

in situ SM measurements (Dubois and Engman, 1995b; Oh, 2004; Oh et al., 1992). In this vein, various 70 

research studies have focused on the calibration of the IEM (Baghdadi et al., 2006, 2011, 2004, 2002b; 71 

Susaki, 2008), in which in situ SM measurements have been used to invert the local roughness 72 

(autocorrelation length and standard deviation of surface height). However, calibrating IEM over large 73 

areas is not a trivial issue due to the lack of available in situ measurements. Moreover, the surface roughness 74 

generally changes over time, which makes the autocorrelation length and the standard deviation of surface 75 

height quite difficult to estimate accurately. Because of uncertainties in the estimation of roughness 76 
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parameters and thus in the modelling of soil roughness, discrepancies may remain between inverted and in 77 

situ SM. Regarding this point, Srivastava et al. (2009) proposed a practical methodology to decouple the 78 

effect of surface roughness in soil moisture estimation, without any assumption or prior knowledge of 79 

surface roughness distribution, exploiting multi-incidence-angle radar data. Note that the retrieval model 80 

parameters were calibrated using soil moisture truth measurements. 81 

Alternatively to microwave approaches, thermal remote sensing has also been extensively used to monitor 82 

SM (Friedl and Davis, 1994; Gillies and Carlson, 1995; Qin et al., 2013; Schmugge, 1978) and SM-related 83 

variables such as evapotranspiration (Choi et al., 2011; Desborough et al., 1996; Entekhabi et al., 1996; 84 

Verstraeten et al., 2008). The land surface temperature (LST) derived from the thermal domain, is coupled 85 

to SM via the energy balance equation when the incoming energy is not limiting. As demonstrated in Price 86 

(1990), Carlson (2007), Carlson et al. (1995), Moran et al. (1992), Smith and Choudhury (1991) and Gao 87 

et al. (2017), LST and vegetation index (VI) can provide SM information by interpreting the spatial 88 

distribution of data pixels spatial distribution in the LST-VI feature space delimited by a triangle or a 89 

trapezoid. This has been the basis for developing thermal-derived SM proxies. McVicar et al. (1992) 90 

developed the normalized difference temperature index (NDTI) using the upper and lower boundary 91 

conditions for LST, which were simulated by an energy balance model forced by atmospheric forcing data. 92 

The spatio-temporal variations in NDTI and SM ground measurements were found to be consistent. Other 93 

indexes  have been proposed which help to estimate SM using the trapezoid method (Zhang and Zhou, 94 

2016), such as the crop water stress index (CWSI, Jackson and Pinter, 1981), water deficit index (WDI, 95 

Moran et al., 1994) and temperature–vegetation dryness index (TVDI, Sandholt et al., 2002). Zhang et al. 96 

(2014) recently argued that TDVI is an ideal proxy to retrieve SM. Such thermal-derived SM proxies have 97 

also been extensively used to downscale global scale microwave-derived SM products (Molero et al., 2016; 98 

Peng et al., 2017). In addition, recent works about the synergy between microwave and optical data, have 99 

demonstrated the potential to retrieve surface SM including the effect of vegetation (Gao et al., 2017; Mattar 100 

et al., 2012; Santamaria-Artigas et al., 2016). However, both radar- and thermal-based SM retrieval 101 

approaches have inherent limitations. while, the radar backscatter is highly sensitive to surface roughness 102 

effects and to the structure of vegetation canopy, thermal data are unavailable under cloudy conditions and 103 

may be weakly linked to SM when the incoming energy is limiting (e.g. during the night and when the 104 

evaporative demand is low) or over densely vegetated surfaces. Hence the idea to combine radar- and 105 

thermal-based approaches is to benefit from the advantages of i) all-weather and day/night capabilities of 106 

microwave sensors, and ii) the physical basis of the LST-SM relationship that occurs via the surface energy 107 

budget under relatively large evaporative demand conditions.  108 
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In this context, the overall objective of the present paper is to develop a new methodology to retrieve SM 109 

from Sentinel-1 (S1) C-band microwave (MW) and Landsat-7/8 (L7/8) thermal data, by taking advantage 110 

of the high spatio-temporal resolution of S1 and by building on the synergy between radar and LST data. 111 

The approach was tested over bare agricultural fields in the semi-arid Tensift/Marrakech area during the 112 

2015-2016 agricultural season.  113 

2. Data and study area description 114 

2.1 Studied area  115 

The studied sites are located east of Marrakech in the semi-arid Tensift watershed (20 450 km2 of size) in 116 

central Morocco (Figure 1). Within this region, about 85% of available water is used for agriculture, where 117 

wheat crops are dominant (Duchemin et al., 2006; Er-Raki et al., 2007; Hadria et al., 2006; Kharrou et al., 118 

2013). Reference evapotranspiration (ET0) is about 1600 mm.year-1 while rainfall is about 250 mm.year-1, 119 

leading to irrigation and increasing concerns related to optimizing the management of water resources. In 120 

this context, numerous studies have been carried out since 2002 on this area (Amazirh et al., 2017; 121 

Chehbouni et al., 2008; Jarlan et al., 2015; Khabba et al., 2013).  122 

Three experimental fields were selected: a 1 ha rainfed wheat field (Sidi Rahal site, 31° 42′03′′ N, 7° 21′ 123 

08′′ E, 767 m), and two 3 ha wheat fields located in the irrigated zone named R3. All the three sites had 124 

remained under bare soil conditions during the 2015-2016 agricultural season. Based on soil analyses 125 

performed at the sites (Er-Raki et al., 2007), soil texture is sandy (18% clay) and clayey (47% clay) for Sidi 126 

Rahal and R3 fields, respectively.  127 
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 128 

Figure1: Location of the R3 and Sidi Rahal study sites (black circles). 129 

2.2 Remote sensing data 130 

Remote sensing data used in this study are acquired by two sensors: Landsat L7/L8 and Sentinel1 A/B. 131 

Table 1 summarises the characteristics of S1 radar and L7/L8 sensors for SM retrieval at high (100 m and 132 

finer) spatial resolution. 133 

Table 1: S1 radar and L7/8 optical sensors characteristics. 134 

Sensors/Mission 
Characteristics Advantages for SM retrieval Limitations for SM retrieval 

S1 A/B 
5.405 GHz (C-band), HH-HV 

and VV-VH polarizations, 4/8-

day repeat cycle (S1B has a 6-

day offset from S1A), overpass 

time at 06:30 AM (descending) 

and 06:30 PM (ascending) 

High spatial (20 m) and temporal 

(potentially 3 days) resolution 

All weather capabilities 

Highly influenced by surface 

roughness and speckle 

L7/8 
 

Multiband, 16-day repeat cycle 

(L8 has a 8-day offset from L7), 

overpass time at 11:30 AM 

High spatial resolution (60 m to 100 

m for thermal data) and multi-band 

data available in the shortwave 

domain;  

LST is related to SM through the 

physical energy balance equation 

Relatively low temporal (8 days) 

resolution; 

Highly sensitive to 

meteorological conditions 

(including night effects); 

Cloud masking 

2.2.1 Landsat data  135 



7 
 

We have collected data from two thermal infrared (TIR) missions: L7 that provides a single band in the 136 

TIR domain (band 6, 10.40-12.50 µm) with a spatial resolution of 60m, and L8 that provides two thermal 137 

bands (10.60-11.19 µm and 11.50-12.51 µm for bands 10 and 11) with a spatial resolution of 100 m. L7 138 

and L8 were launched by NASA in April 1999 and February 2013, respectively. The L8 satellite is equipped 139 

with multispectral sensors including: 1) Operational Land Imager (OLI) that acquires imagery in nine 140 

spectral bands ranging from visible to medium infrared with 7 bands already existing on L7 (two channels 141 

were added on L8 for cloud detection and atmospheric correction) and 2) Thermal Infrared Sensor (TIRS), 142 

which provides TIR bands at a 100 m spatial resolution (60 m for the L7 TIR band). The revisit time is 16 143 

days for both satellites and L8 has an 8-day offset from L7, so the combination of both platforms potentially 144 

provides TIR data (in clear sky conditions) every 8 days globally. 145 

In this study, Landsat data were downloaded from the USGS website (http://earthexlorar.com/), were 146 

resampled to 30 m resolution and were projected using the Universal Transverse Mercator (UTM), Zone 147 

29N, World Geodetic System (WGS) 84 coordinate system. The images were acquired between 01 January 148 

2016 and 10 October 2016 for the Sidi Rahal site (23 cloud free images) and from 01 January to 18 May 149 

2016 for the R3 sites (11 cloud free images). 150 

To obtain the actual LST from Landsat thermal radiance, we followed the correction steps described in  151 

Tardy et al, (2016): i) Converting digital numbers (DN) to top-of-the-atmosphere (TOA) radiance values. 152 

ii) Correcting (TOA) radiance from atmospheric effects in the sun-target-sensor path using the spectral 153 

atmospheric transmission and the atmospheric downwelling and upwelling radiances. The atmospheric 154 

parameters are modelled using the MODTRAN atmospheric radiative transfer model (Berk et al., 2005). 155 

The atmospheric profile composition (vertical air temperature and water content) needed as input to the 156 

model is obtained from the ECMWF European Reanalysis (ERA) Interim product (Dee et al., 2011). iii) 157 

Estimating the surface emissivity using an empirical relationship (Tardy et al., 2016) based on the 158 

normalized difference vegetation index (NDVI). NDVI is calculated using the Landsat red and near-infrared 159 

bands. Emissivity varies between 0.95 (bare soil) and 0.99 (full vegetation). iv) Calculating LST using the 160 

simplified Plank’s law (Equation 1). The derived spectral atmospheric parameters and the surface 161 

emissivity permit the conversion of the at-sensor radiance into top of canopy radiance (TOC) exempt from 162 

atmospheric effects. 163 

                                                             LST =
K2

ln⁡(
K1

BTOC(T)
+1)

                                                                       (1) 164 

where K1, and K2 are the band-specific thermal conversion constants provided by the USGS and 165 

BTOC  the TOC spectral radiance of ground surface. 166 

http://earthexlorar.com/


8 
 

 167 

Figure 2: LST derived from Landsat-7 and -8 versus in situ measurements for Sidi Rahal site. 168 

In order to assess the reliability of LST remote sensing data derived from L7/8, the extracted Landsat LST 169 

is then aggregated at the field scale, and a comparison between the aggregated Landsat and in situ LST is 170 

presented in Figure 2 for Sidi Rahal site. A satisfying match is observed between in situ and satellite LST 171 

with a R2 (determination coefficient) of 0.98 and a RMSE (root mean square error) equal to 3 °C. The slight 172 

overestimation of Landsat LST could be attributed to the lack of spatial representativeness of in situ data at 173 

the L7/8 pixel scale, and this is consistence with the work of Amazirh et al., (2017) when comparing L7/8 174 

and in situ LST for drip and flood irrigated sites. Note that the soil emissivity is difficult to estimate without 175 

specific measurements, which were unavailable in this experiment. The soil emissivity was hence fixed to 176 

a typical value (0.95) for agricultural soils. A sensitivity analysis (results not shown) indicates that changing 177 

the soil emissivity from 0.95 to 0.98 slightly impacts the LST estimations (an error difference of 0.32 °C) 178 

and has no significant effect on the retrieved SM. Note that large LST values (up to 60 °C) were acquired 179 

during the summer over the bare soil (Sidi Rahal) site. 180 

2.2.2 Sentinel-1 data  181 

The S1 radar sensor operates at C-band (frequency 5.33 GHz, wavelength 5.6 cm). S1 A and B satellites 182 

were launched by the European Space Agency (ESA) in the frame of Europe’s Copernicus programme in 183 

2014 and 2016 respectively. Both satellites orbit the whole earth at an altitude of ~700 km sharing the same 184 

orbital plane with a 180° orbital phasing difference. 185 

Level 1 S1 products were downloaded from the Sentine-l Data Hub website (https://scihub.copernicus.eu/). 186 

45 S1 images were acquired for Sidi Rahal site and 23 images over the R3 area. The incidence angle (~40°) 187 

https://scihub.copernicus.eu/
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of S1 observations is about the same for both Sidi Rahal and R3 sites for ascending and descending 188 

overpasses. S1 operates at different modes acquiring images in different combinations of polarization 189 

depending on the transmitted and received signals and at different resolutions. Over land S1 operates in 190 

Interferometric Wide Swath mode providing data at the cross polarization VH (vertical-horizontal) and co-191 

polarization VV (vertical-vertical) mode at a spatial resolution of about 20m. 192 

Data processing of the level 1 data products consisted in: i) Removing thermal noise by subtracting the 193 

additive noise from the power-detected image. The disturbing additive thermal noise (mostly in the lower 194 

range of backscatter intensity values) was removed using the calibrated noise vectors provided by ESA. ii) 195 

Computing the backscatter coefficient by calibrating the physical backscatter using the sensor calibration 196 

parameters provided by ESA in the GRD (Ground range Detected) metadata. iii) Correcting the backscatter 197 

coefficient for terrain and geometric effects to reduce the effects of shadow, folding and contraction on the 198 

radar signal, also to convert the Ground Range Multi-Look Detected (GRD) products, which do not take 199 

into account terrain elevation. The 30 m resolution SRTM (Shuttle Radar Topography Mission) was used 200 

as a DEM (Digital Elevation Model). iv) Filtering speckle effects to reduce random uncertainties related to 201 

the coherence interference of the waves reflected from the many elementary scatters. Images were filtered 202 

using the 5x5 refined Lee speckle filter described in Lee et al, (1994) and Lee (1999). 203 

The mean backscatter radiation (linear units) is calculated from previously calibrated S1 images, and 204 

converted to decibel (dB) using the formula: 205 

                                                                     σ° (dB) = 10 log10 (σ◦)                                                         (2)  206 

Consistent with LST and in situ SM data, the backscatter coefficient was aggregated (average) in linear 207 

units before conversion to decibel at the crop field scale for each site.  208 

2.3 Ground data 209 

At the Sidi Rahal site an eddy covariance station has been monitoring the four components of the energy 210 

balance since 2013. The latent and sensible heat fluxes were estimated using a Hygrometer KH20 and an 211 

anemometer CSAT3. The net radiation was measured by CNR1, and ground conduction flux estimated 212 

using HFP01 plates buried at a 5-cm depth. SM is continuously measured using time domain reflectometer 213 

probes (CS616) installed at different depths (5, 10, 20, 30, 50, 70 cm). The radiometric LST was measured 214 

by an Apogee 8-14 µm thermal radiometer sensor looking at nadir, set up at a 2-m height.  215 

For both R3 fields, the near-surface (0-5 cm) SM was measured within ±2 h of the L7/8 and S1 satellites 216 

overpasses using a frequency domain sensor (Theta probe) at 5 locations on both sides of each field. For 217 

each sampling date and field, an average of the 10 measurements was computed to reduce uncertainties in 218 
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field-scale SM estimates. Soil samples over a 0 to 5 cm depth were also taken over both sites in order to 219 

calibrate Theta probe measurements using the gravimetric technique.  220 

S1 and L7/8 never overpass the study area on the same day. However, Table 2 lists the dates with quasi-221 

concurrent (one day offset) L7/8/S1 overpasses. In the R3 area in situ SM sampling were undertaken on 222 

those particular dates, either on S1 and L7/L8 overpass date, or on both successive dates. The SM sampling 223 

dates are also reported in Table 2. The consistency of the SM data collected on two successive dates was 224 

checked (results not showed). Both SM data sets were consistent with a root mean square difference of 0.02 225 

m3 m-3
, except when an irrigation or a rainfall event occurred between sampling dates. Those particular 226 

dates were removed from the data set. 227 

Table 2: Dates with quasi concurrent L7/8/S1 overpasses used in the analysis for both study sites. 228 

*: cloudy day 229 

**: the Landsat-7 images include data gaps due to scan line corrector failure on May 31, 2013, which on 230 

this date unfortunately covered our sites. 231 

Date 

(mm/dd-dd/yyyy) 

S1 overpass 

Time (UTC) 
Study Site Thermal sensor S1 orbit 

R3 SM 

sampling 

01/06-07/2016  06:30 am Sidi Rahal L8 Ascending  No* 

01/14-15/2016  06:30 pm Sidi Rahal /R3 L7 Descending  Yes  

01/30-31/2016  06:30 am Sidi Rahal /R3 L7 Ascending  Yes 

02/07-08/2016  06:30 pm Sidi Rahal /R3 L8 Descending  Yes 

02/23-24/2016  06:30 am -  L8 Ascending  No* 

03/02-03/2016  06:30 pm Sidi Rahal /R3 L7 Descending  Yes 

03/18-19/2016  06:30 am R3 L7 Ascending  Yes 

03/26-27/2016  06:30 pm R3 L8 Descending  Yes 

04/11-12/2016  06:30 am - L8 Ascending  No* 

04/19-20/2016  06:30 pm Gap fil** L7 Descending  Yes 

05/05-06/2016  06:30 am R3 L7 Ascending  Yes 

05/13-14/2016  06:30 pm - L8 Descending  No* 

05/29-30/2016  06:30 am Sidi Rahal  L8 Ascending  - 

06/06-07/2016  06:30 pm Sidi Rahal L7 Descending  - 

06/22-23/2016  06:30 am Sidi Rahal L7 Ascending  - 

06/30-07/01/2016  06:30 pm Sidi Rahal L8 Descending  - 

07/16-17/2016  06:30 am Sidi Rahal L8 Ascending  - 

07/24-25/2016  06:30 pm Sidi Rahal L7 Descending  - 

08/09-10/2016  06:30 am Sidi Rahal L7 Ascending  - 

08/17-18/2016  06:30 pm Sidi Rahal L8 Descending  - 

09/02-03/2016  06:30 am - L8 Ascending  - 

09/10-11/2016  06:30 pm Sidi Rahal L7 Descending  - 

09/26-27/2016  06:30 am - L7 Ascending  - 

10/04-05/2016  06:30 pm Sidi Rahal L8 Descending  - 
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Meteorological forcing was continuously monitored at the 30 min step in the R3 area using an automatic 232 

meteorological weather station set up over a grass cover: wind speed ua measured by CSAT3 sonic 233 

Anemometer, solar radiation Rg measured by pyranometer and air temperature Tair and relative humidity 234 

rha measured by a HMP155 probe at a reference height of 2 m. 235 

3. Soil moisture retrieval approaches  236 

Retrieving SM from radar data implies establishing a relationship between the volumetric SM and the 237 

backscatter coefficient (σ°) obtained from SAR data. Over bare soil surfaces, the VV and VH polarized 238 

backscatter signal depends of SM, surface roughness and the observation configuration mainly defined by 239 

the incidence angle and microwave frequency (Lievens and Verhoest, 2011). As a first approximation, a 240 

linear relationship can be established as following (Champion and Faivre, 1997; Dobson and Ulaby, 1986; 241 

Holah et al., 2005; Le Hégarat et al., 2002; Ulaby et al., 1979): 242 

                                                   SM = SMmin + (SMmax − SMmin) × SMP                                              (3) 243 

where SMP is a radar-based SM proxy (function of σ°) and SMmin and SMmax the minimum and maximum 244 

SM values depending mainly on the soil porosity (Brisson and Perrier, 1991; Cosby et al., 1984).  245 

As previously mentioned, we proposed a method to integrate the thermal data extracted from L7/L8 data 246 

into a S1-based retrieval approach. The performance of the radar/thermal combining approach was 247 

evaluated by comparing it to a benchmark approach based on radar only. The two (benchmark and 248 

combined radar/thermal) methods for estimating SMP and the SM endmembers of Equation (3) are 249 

presented in the schematic diagram of Figure 3 and are described below.  250 

3.1 Benchmark approach: Based only on radar data 251 

SMP of Equation (3) is expressed as in Fieuzal (2010)  and Wagner et al. (1999a): 252 

                                                                     ⁡SMP𝜎 = (
𝛔𝐩𝐩
𝟎 −𝛔𝐩𝐩,𝐦𝐢𝐧

𝟎

𝛔𝐩𝐩,𝐦𝐚𝐱
𝟎 −𝛔𝐩𝐩,𝐦𝐢𝐧

𝟎 )                                                       (4) 253 

with⁡σpp,max
0  and σpp,min

0 ⁡being the maximum and minimum backscatter coefficient, respectively and p=V 254 

(Vertical) or H (Horizontal). 255 

As in Omer et al. (2015) and Wagner et al. (1999b), the minimum SM value is set to the residual SM, which 256 

can be related to clay fraction (𝑓𝑐𝑙𝑎𝑦) by the formula (Brisson and Perrier, 1991):  257 

                                                                           SMmin = 0.15fclay                                                            (5) 258 
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and the maximum SM value is set to the SM at saturation, which can be estimated from sand fraction (fsand) 259 

as in Cosby et al. (1984).  260 

                                                                     SMmax = 0.489 − 0.126 × fsand                                           (6) 261 

3.2 New approach: Combined radar/thermal data 262 

SMP of Equation (3) is estimated using a piecewise linear relationship between SMPTs and σpp
0 : 263 

                                                                 1,       if SMPTs ≥ 1 264 

                                 SMPσ+Ts =             a⁡σpp
0 + b ,                if 0 < SMPTs < 1                                        (7) 265 

                   0,                  if SMPTs ≤ 0 266 

with a and b being two empirical parameters and SMPTs defined as: 267 

                                                                        SMPTs =⁡
Ts,dry−Ts

Ts,dry−Ts,wet
                                                          (8) 268 

with Ts being the observed soil temperature and⁡Ts,wet⁡and Ts,dry the soil temperature in fully wet and dry 269 

conditions, respectively.  Both a and b parameters were calibrated using L7/L8 thermal data by comparing 270 

SMPσ+Ts to SMPTS.  In this paper, Ts was derived from either in situ Apogee or satellite L7/8 thermal data. 271 

Both temperature endmembers were simulated by running a soil energy balance (EB) model forced by 272 

meteorological data and with a prescribed soil resistance to evaporation rss (Merlin et al., 2016; Stefan et 273 

al., 2015). In addition, a sensitivity analyses was performed using the contextual method to assess the 274 

impact of uncertainties in temperature endmembers on SM estimation. Equations of EB model are provided 275 

in Appendix A. In practice, rss was set to 0 and⁡∞ for Ts,wet and Ts,dry respectively.  276 

We considered that SMPTs is a good approximation of the soil evaporative efficiency (SEE) defined as:  277 

                                                                              SEE =
LEs

LEp
                                                                     (9) 278 

with LEs and LEp being the actual and potential soil evaporation, respectively. SEE is known to be strongly 279 

dependent on SM (e.g. Nishida et al., 2003) and its expression as a function of soil temperature (namely 280 

SMPTs in Equation 9) has been found to be valid in a large range of conditions (Merlin et al., 2016). This 281 

allows for simply relating SMPTs to SM using the piecewise linear SEE model (Budyko, 1956; Manabe, 282 

1969): 283 

                                                                              SEE =
SM

⁡SMc
                                                                   (10) 284 
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with the SMC being equal to ¾ of the soil moisture at field capacity SMfc (m
3 m-3). At this SM value, the 285 

SEE reaches its maximum, at which the evaporation process switches from moisture-limited to energy-286 

limited conditions. SMfc is estimated as in Mahfouf and Noilhan, (1996) by the formula:  287 

                                                                       SMfc = 0.089 × (fclay)
0.3496                                              (11) 288 

Calibration of a and b parameters of SMPσ+Ts (Equation 7) using independent SMPTs (Equation 8) estimates 289 

relies on the condition that SMPTs does not reach its saturation value (1), meaning that SM does not exceed 290 

SMC. A direct consequence is that the SM endmembers in Equation (3) are set to SMres and SMC for SMmin 291 

and SMmax, respectively. Unlike SMPTs, the radar signal does not reach a maximum threshold except for 292 

very moist soils (Bruckler et al., 1988; Chanzy, 1993; Dobson and Ulaby, 1981). Therefore, the SM 293 

retrieved from the combined thermal and radar data is calibrated for SM values between SMres and SMC 294 

(corresponding to SMPTs < 1), but it may exceed the SMC value for backscatter values larger than⁡⁡
𝑆𝑀𝐶−𝑏

𝑎
.    295 

 296 

Figure 3: Flowchart for the benchmark (radar only, on the left) and new (combined thermal and radar, on the 297 

right) SM retrieval approaches. 298 

To assess the SMPTs (SM) relationship, Figure 4 plots the SMPTs simulated by Equation (8) as a function 299 

of SM for in situ (at Landsat overpass time) and L7/8 data, separately. Although SMPTs generally ranges 300 



14 
 

from 0 to 1, some negative values were observed in the lower SM range. This is due to the fact that Ts,dry 301 

and Ts,wet were estimated by the EB model, independently from Ts measurements. A nonlinear behaviour 302 

of SMPTs was obtained when considering the full SM range. The piecewise linear SEE model was 303 

superimposed for the values of SM ranging from 0 to SMC and for SM values larger than SMC. SMPTs value 304 

were consistent with the simple SEE model of Budyko, (1956) and  Manabe (1969), for both in situ and 305 

satellite thermal data sets. However, note that most of the SMPTs values derived from Landsat data (blue 306 

colour) correspond to the driest period. This is due to both the relatively low temporal resolution of thermal 307 

data and also to the cloud coverage on several wet overpass dates. Nonetheless, Landsat-derived SMPTs 308 

estimates were strongly consistent with in situ-derived SMPTs estimates and still range between 0 and 1. 309 

  310 

 311 

Figure 4: The SMPTs derived from 1) in situ data collected at 11:00 am and 2) L7/L8-derived data is plotted as a 312 

function of in situ SM at Sidi Rahal site. 313 

4. Results and discussions  314 

4.1 Sensitivity of VV- and VH-polarized data to soil moisture 315 

The comparison between VV and VH polarization was undertaken over the Sidi Rahal site where the 316 

longest time series of S1 data was available. As shown in Figure 5, the VV polarization is significantly 317 

correlated with SM, whereas the VH polarization is poorly correlated (R2=0.47 and 0.28, respectively). 318 

Previous studies have shown the same results (Eweys et al., 2017; Gherboudj et al., 2011), and our findings 319 
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were consistent with the work of Baghdadi et al. (2006b), where they use a large database over ten years to 320 

study the sensitivity of the radar signal to SM over bare soils. VH polarization was found to be sensitive to 321 

roughness and to the vegetation volume, due to the depolarization effect by vegetation-volume-scattering, 322 

which mainly depends on the vegetation characteristics (Chauhan and Srivastava, 2016; Gao et al., 2017; 323 

Karjalainen et al., 2014). The change in polarization between the radar pulse and the echo (depolarization 324 

phenomena) is related to the physical structure of the scattering surface (rough surface). In contrast, SM is 325 

linked to dielectric soil constant using the dielectric mixing model (Dobson et al., 1985). 326 

The sensitivity of the radar backscatter to SM is estimated as 0.30 and 0.14 dB/m3 m-3 for VV and VH 327 

polarization, respectively. The same sensitivity of the VV-polarized data to SM was observed in Le Hégarat 328 

et al. (2002), Quesney et al. (2000) and Srivastava et al. (2003). The dispersion and the curvilinear shape 329 

of measurements points may be attributed to roughness effects (Holah et al., 2005; Le Morvan et al., 2008). 330 

Incorporating the roughness effect is proven to be necessary when monitoring large areas with different 331 

conditions (different soil texture and roughness). Different studies are thus attempted to incorporate the 332 

effect of surface roughness in the SM retrieval algorithm. Using data collected along multi-incidence angles 333 

requires a simultaneous availability of SAR data at lower and higher incidence angles (Srivastava, 2007). 334 

To overcome the (mostly general) unavailability of data at multi-incidence angles, several studies 335 

(Srivastava et al., 2008; Ulaby et al., 1986) have used multi-polarized SAR data. Both retrieval 336 

methodologies require ground truth measurements of soil moisture and/ or surface roughness for 337 

calibration. Contrariwise, the methodology developed in this paper relies on satellite data available world-338 

wide, and does not require ground measurements for calibration. Future studies could make use of both 339 

thermal and multi-polarized radar data as additional constraints on the roughness effects on radar-based SM 340 

retrievals.  341 
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 342 

 343 

Figure 5: Radar signal sensitivity to SM for VH (top) and VV (bottom) polarization over the Sidi Rahal site. 344 

The observation configuration has also an influence on the sensitivity of radar signal to SM, and hence on 345 

our capability to retrieve SM from radar data. Several studies showed that the low to medium incidence 346 

angles (20°-37°) are the most suitable for SM retrieval using C-band data (Holah et al., 2005; Le Hégarat 347 

et al., 2002; Quesney et al., 2000; Srivastava et al., 2003; Zribi et al., 2008). Baghdadi et al. (2008) and 348 

Holah et al. (2005) found that the radar sensitivity decreases with increasing incidence angle. Moreover, 349 

the azimuthal angle changes with the ascending or descending passes. However, in our case, the study site 350 
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is flat and the incidence angle is relatively constant (40°) so we observed no significant difference in terms 351 

of SM sensitivity between the data collected on ascending and descending overpasses. Hence, the sensitivity 352 

of radar data to the azimuthal angle seemed to be negligible in this study. 353 

As a best option among the two different available polarizations to retrieve top SM, the VV polarization is 354 

used throughout the rest of the manuscript. 355 

4.2 Relationship between thermal-derived SMPTs and radar signal 356 

Figure 6 plots SMPTs against S1 σvv
0  for the L7/8 thermal data over the Sidi Rahal and the R3 study site, 357 

separately.  For the full range of SMPTs [0-1], we observed a nonlinear behaviour between the Landsat-358 

SMPTs and the⁡σvv
0 . So as an attempt to approach linearly SMPTs (σvv

0 )⁡and in order to define the calibration 359 

coefficient of the piecewise linear model defined in Equation 7, the SMPTs full range is split into 2 distinct 360 

classes separated by the mid-value (0.5). The SMPTs and σvv
0  values falling into each class (< and > to 0.5) 361 

provide a centroid point per class. The crossing over between the linear segment passing through the two 362 

centroid points and the line SMP = 0 and SMP = 1 allows to define the calibration parameters over each 363 

study site separately. From a physical point of view, the 0.5 was taking as a mid-value at which the 364 

evaporation process switches from mostly moisture-limited to mostly energy-limited conditions (Merlin et 365 

al., 2016). Results of the calibration using Landsat data lead to values of 0.25 dB-1 and 3.89 (unitless) for a 366 

and b over Sidi Rahal site and (0.26 dB-1 and 4.16 for R3 sites), respectively. 367 

In order to detect the impact of the median value to the calibration parameters (a and b), and to the retrieved 368 

SM, we performed a sensitivity analysis for different mid-values [0.40, 0.45, 0.50, 0.55, and 0.60]. Results 369 

are presented in Table 3.  370 

Table 3: Sensitivity analysis of the calibration results to the mid-value. 371 

 
Sidi Rahal R3 

Mid-

value 

Calibration 

parameters 

a / b 

SM (m3 m -3) Calibration 

parameters 

a / b 

SM (m3 m -3) 

R2 RMSE MBE Slope/intercept R2 RMSE MBE Slope/intercept 

0.40 0.20 / 3.25 0.64 0.03 0.01 1.00/0.01 0.25 / 4.03 0.59 0.04 0.01 1.01/0.01 

0.45 0.20 / 3.25 0.64 0.03 0.01 1.00/0.01 0.25 / 4.03 0.59 0.04 0.01 1.01/0.01 

0.50 0.25/ 3.89 0.62 0.03 0.01 1.06/0.01 0.26 / 4.16 0.59 0.04 0.0 1.03 / -0.0 

0.55 0.48 / 7.44 0.51 0.06 0.02 1.37/0.00 0.25 / 4.13 0.59 0.04 0.01 1.02/0.00 

0.60 0.48 / 7.44 0.51 0.06 0.02 1.37/0.00 0.25 / 4.03 0.58 0.04 0.01 0.99 /0.01 

To help interpret these results shown in Table 3, a standard deviation (SD) has been calculated between the 372 

values of the a parameter for the different mid-values for each site separately. We found that SD is much 373 
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larger for Sidi Rahal (0.14) than for R3 (0.004) sites due to the lack of wet conditions encountered in the 374 

SEE time series at Sidi Rahal site. As it seen in Table 3, the sensitivity analysis shows that the method is 375 

not sensitive to the median value for the R3 sites, where the parameters slightly vary from one to another 376 

case, thus reveals very stable results in terms of SM retrievals. In contrast, the influence of the median value 377 

appears significantly over the Sidi Rahal site, which affects a lot the SM estimates. Such a sensitivity 378 

analysis indicates that the mid-value should be set appropriately, by keeping a sufficient number data points 379 

in each of both SEE classes, especially for time series containing mainly dry or mainly wet conditions. 380 

 381 

 382 

Figure 6: SMPTs – 𝜎𝑣𝑣
0 ⁡relationship using Ts derived from Landsat data over Sidi Rahal (top plot) and R3 (bottom 383 

plot) site. The solid line represents the assumed piecewise linear model. 384 
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4.3 SM retrievals 385 

The classical and new approaches were tested and examined by comparing the retrieved SM with in situ 386 

measurements. The calibration and validation of the new approach was performed separately at each site 387 

(on a pixel basis), having two different soil textures: Sidi Rahal site has a sandy soil while the two other 388 

sites in the R3 perimeter are characterised by a clayey soil. Figure 7 compares SM retrievals with in situ 389 

measurements for the benchmark and new approach for the studied sites, and a validation of the new 390 

approach using in situ Ts has been also presented over Sidi Rahal site when in situ Ts data are available. 391 

Results of this comparison, in terms of determination coefficient (R2), slope and intercept of the linear 392 

regression, mean bias error (MBE) and root mean square error (RMSE) are presented in Table 4. 393 

  394 

  395 
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 396 

Figure 7: Estimated versus measured SM using the benchmark approach (a), new approach (b) and in situ 397 

validation (c) over Sidi Rahal (left plots) and R3 (right plots) site.  398 

 399 

Table 4: R2, RMSE, MBE (simulated – observed), and the slope/intercept for the linear regression between 400 

simulated and observed SM for the classical and the new approach for Sidi Rahal and R3 sites. 401 

Sites  Approach R2 RMSE (m3 m-3) MBE (m3 m-3) Slope/intercept 

  (-)   / (m3 m-3) 

S
id

i 
R

a
h

a
l 

 Classic 0.47 0.16 0.14 1.71 / 0.09 

New 

all dates 0.64 0.03 0.01 1.12 / 0.002 

dates when L7/8 & S1 data 

available (not shown here) 
0.79 0.03 0.00 1.2 / -0.007 

In situ validation 0.64 0.03 0.01 1.12 / 0.002 

R
3

 Classic  0.56 0.05 0.04 0.84 / 0.07 

New 0.59 0.04 0.00 1.03 / -0.002 

The benchmark method shows a systematic overestimation, and a kind of curvilinear relationship especially 402 

in the Sidi Rahal site whereas the new methodology offers a good consistency with ground-truth 403 

measurements. The linear scaling between σvv
0  and SM can explains the overestimation observed using the 404 

classical approach, since the two coefficients of the linear relationship are derived from extreme values of 405 

SM and⁡σvv
0 . Note that this effect is all the more visible as extreme (wet) SM values have not been reached 406 

at the time of S1 overpasses, despite the high temporal resolution of S1 and the relatively long time period. 407 

We argue that the main advantage of the proposed method is to provide robust reference points for 408 

calibrating the σvv
0 ⁡(SM) relationship, even for time series that do not contain extreme SM conditions. In 409 

addition, the calibration of the Equation (7) allows for taking into account possible nonlinear behaviours of 410 

the σvv
0 ⁡(SM) relationship, especially in dry to very dry conditions. The radar signal can be only calibrated 411 
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using thermal data when both satellites are concurrent or are quasi concurrent. It is reminded that over the 412 

study area both Ts and backscatter coefficients were available at approximately (one day difference) the 413 

same time. A sensitivity analysis was undertaken to assess the impact of a systematic error in LST on SM 414 

retrieval results. Based in the finding (results not shown), an error in LST estimations (±3 °C) would have 415 

a relatively small effect (maximum additional error of 0.02 m3 m-3) in the SM estimations. Note that a bias 416 

in Landsat LST would have no effect on SM retrievals in the case of using contextual methods, instead of 417 

using an energy balance model to determine Ts,dry and Ts,wet. When L7/8 and the S1 data were available in 418 

Sidi Rahal site, the results reveal a high R2 of 0.79 with an RMSE of 0.03 m3 m-3 which decrease the bias. 419 

As seen in Table 4, the radar/thermal combining approach provides a slightly higher R2 value and a lower 420 

RMSE compared to the classical (radar only) approach. This improvement result is in an almost negligible 421 

mean difference between the estimated and in situ SM. The statistical outputs parameters confirm that the 422 

new approach estimates SM accurately, regardless of the soil composition. Results in terms of SM accuracy 423 

indicate that the loss of spatial resolution (from the aggregation of radar data from 20 m resolution to crop 424 

field scale) has a lower impact than the roughness effects that need to be taken into account at the crop field 425 

scale. A slope correction is observed (close to 1) using the new approach with an almost null intercept using 426 

satellite data whereas the conventional approach provides a higher value of both slope and intercept. Note 427 

that the one-day difference between Sentinel-1 radar and Landsat LST data, which may be representative 428 

of different SM levels (difference estimated as 0.02 m3 m-3 over the experimental site), explains part of the 429 

uncertainty (estimated as 0.03 m3 m-3) in the retrieved SM. We can explain the previous statement by the 430 

non-appropriate estimation of σvv,min
0   and σvv,max

0  for the classical approach, which is based on two 431 

assumptions:  1) minimum and maximum SM values are observed at the time of S1 overpasses and 2) the 432 

relationship between backscatter coefficient and SM is linear. Note that such a relationship tends to be non-433 

linear (Zribi et al., 2011), with a saturation appearing in the radar signal in the higher range of SM values 434 

(Bruckler et al., 1988).  435 

In Figure 7 (Sidi Rahal site), a significant phenomenon was observed for the low SM values, which 436 

correspond to low backscatter values. In this range, in situ SM do not change with radar backscatter.  This 437 

observed phenomena can be explained by the deeper penetration of the radar when the soil surface gets 438 

drier. In addition, the radar signal tends to be more sensitive to roughness variations in very dry conditions 439 

(Boisvert et al., 1997). We did not observe this effect over R3 sites because of the wetter conditions 440 

encountered over the irrigated perimeter. In addition, the SM in the top 5 cm may differ between the two 441 

sites, depending on the soil water retention properties and infiltration rates, resulting in variations in the S1 442 

signal (Aubert et al., 2011).  443 

4.4 Sensitivity to temperature endmembers 444 
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In this study, SEE was derived from the temperature endmembers simulated by an EB model. Therefore, 445 

meteorological forcing data are needed as input to the calibration scheme of the radar-based SM retrieval 446 

approach. The point is that meteorological data may not be available everywhere with sufficient accuracy. 447 

For this reason, remote sensing-based temperature endmembers could be used to fill the gap. In particular, 448 

the contextual method has been successfully used to monitor evapotranspiration over large areas, by relying 449 

mainly on the distance between the observed LST and the hypothetical LST values in fully dry and wet 450 

conditions. Especially, the image-based nature of the contextual method makes it easily applicable to 451 

different areas (i.e. the method is self-calibrated). The contextual information contained in remotely sensed 452 

LST and vegetation index (such as NDVI) can be extracted by interpreting the LST-NDVI feature space 453 

(in the shape of a triangle or trapezoid). This method was firstly proposed by Goward et al. (1985) and has 454 

been widely used to monitor soil water content (Kim and Hogue, 2012; Merlin et al., 2008; Sandholt et al., 455 

2002; Sobrino et al., 2012),  evaporative fraction (Batra et al., 2006; Wang et al., 2006), evapotranspiration 456 

(Merlin, 2013; Stefan et al., 2015), drought (Wan et al., 2004), surface resistance (Nemani and Running, 457 

1989), land use and land cover change (Julien and Sobrino, 2009). There are various popular models based 458 

on the contextual method such as: surface energy balance algorithm for land (SEBAL) (Bastiaanssen et al., 459 

1998), mapping evapotranspiration at high resolution with internalized calibration (METRIC) (Allen et al., 460 

2007) and simplified surface energy balance index (S-SEBI) (Roerink et al., 2000).  461 

In this study, the contextual method is used to derive the soil temperature endmembers over a 8 by 8 km2 462 

area covering the experimental sites. Once the polygon identified, the Ts,dry and Ts,wet correspond to fully 463 

dry and wet conditions over bare soil, which are characterised by the largest and smallest LST in the lower 464 

NDVI range (< 0.2), respectively. A visual representation of the LST-NDVI polygon and the dry and wet 465 

conditions over bare soil is proposed in Figure 8. 466 
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 467 

Figure 8: Density scatter plot of the relationship between LST and NDVI for all (30m × 30m) cells in R3 area. The 468 

black dots represent the fully dry and wet condition over bare soil.  469 

As a first assessment of the performance of the space-based approach, the Ts,dry and Ts,wet estimated by the 470 

contextual method using Landsat data are compared against the ones modelled by EB model. The analysis 471 

is performed at the Landsat overpass time over the Sidi Rahal and R3 areas separately. Figure 9 plots the T 472 

endmembers derived from EB model versus the space-based ones for the studied areas separately. A 473 

comparison between air temperature (Tair) and the Ts,wet simulated by EB model is also presented. The 474 

statistical results in terms of R2 and RMSE are shown in Figure 9.  475 
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 476 

 477 

Figure 9: EB-simulated versus space-based soil temperature endmembers (Ts,wet and Ts,dry) for R3 (top plots) and  478 

Sidi rahal (bottom plots) sites separatly.  479 

A strong consistency is noticed between EB-derived and image-based extreme temperatures, especially for 480 

Ts,dry. Statistical results in terms of R2 and RMSE between modelled and remotely-sensed Ts endmembers 481 

indicate similar results for both sites. Results tend to be more evenly scattered along the regression line.  482 

However, the image-derived Ts,wet clearly overestimates EB-simulated Ts,wet in the higher range (hot days). 483 

Such an overestimation especially occurs in summer (June 01st to September 25th, 2016) when wet 484 

conditions are poorly represented.  485 

The idea behind using the contextual method to derive temperature endmembers is to analyse the sensitivity 486 

of the SM estimation to uncertainties in Ts,dry and Ts,wet estimates. The extreme Ts are used as an input in 487 

Equation 8 in order to assess the potential of the contextual method against the EB method. The retrieved 488 

SM using the Ts endmembers extracted from LST-NDVI polygons is evaluated against in situ 489 

measurements over the study areas. At Sidi Rahal, the use of image-based Ts endmembers leads to small 490 

values of SMPTs (< 0.3), which makes our approach inapplicable in this case as wet reference points are 491 

lacking to build the calibration equation. This is due to the overestimation of Ts,wet by the contextual method. 492 

In addition, the Sidi Rahal (8 × 8 km2) area experienced the highest observed temperature (very close to 493 
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Ts,dry) leading to a small SEE values. The contextual method was also tested over the R3 area. In order to 494 

investigate the influence of Ts,wet estimation, the new approach is also tested by using Tair instead of Ts,wet  495 

(in addition to contextual Ts,dry). 496 

Figure 10 shows the estimated SM using the image-based Ts endmembers against ground measurements 497 

acquired from the R3 study site. The statistical values such as the slope of the linear regression, R2, RMSE 498 

and MBE between retrieved and in situ SM are reported in Table 5. 499 

Table 5: R2, RMSE, MBE and slope/intercept of the linear regression between retrieved and observed SM for the 500 

classical and the new approach for R3 sites using contextual Ts endmembers. 501 

Temperature endmembers R2 (-) RMSE (m3 m-3) MBE (m3 m-3) Slope / intercept 

(-) / (m3 m-3) 

Classic  0.56 0.05 0.04 0.84 / 0.07 

New 

Contextual Ts,wet 

and Ts,dry 

0.56 0.04 0.03 0.52 / 0.11 

Tair and contextual 

Ts,dry 

0.50 0.04 0.01 0.99 / 0.01 

 502 

Figure 10: Retrieved versus measured SM using the new approach over R3 sites using: a) contextual Ts 503 

endmembers and b) contextual Ts,dry and Tair instead of Ts,wet.  504 

After using the Ts endmembers extracted from contextual information, the new method shows an 505 

improvement in terms of RMSE (0.04 m3 m-3 compared to 0.05 m3 m-3 for the classical approach). In 506 

contrast, the classical approach offers a better slope (close to 1) compared to the new approach (Figure 10 507 

a). The poor slope obtained using the new approach is probably due to the overestimation of Ts,wet by using 508 

the contextual method especially during summer, when wet conditions were not met over the study area. 509 

To discriminate the effect of image-based Ts,wet on SM estimation, Tair was used as a better proxy of Ts,wet 510 

at the satellite overpass time. Results (Figure 10 b) listed in table 6, revealed a slightly poorer R2 (0.50) in 511 

contrast with the classical approach  (0.56), except that the new approach offers a slope equal to 1 with a 512 

null intercept in addition to smaller bias (0.01 versus 0.04 m3 m-3) compared to the classical approach. As a 513 
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brief summary of this sensitivity analysis, it is found that EB temperature endmembers are generally more 514 

robust than image-based temperature endmembers. Nevertheless, in certain conditions (e.g. semi-arid 515 

irrigated areas containing quasi continuously wet and dry conditions), the contextual method could offer an 516 

efficient alternative to calibrate the radar-based SM retrieval approach, especially in the regions where 517 

meteorological data are not available with sufficient accuracy.     518 

An additional sensitivity analysis was performed in order to assess the impact of the surface roughness on 519 

radar and LST data, as well as on the energy balance model (represented by Z0h and Z0m the roughness 520 

length for heat and momentum) on the modelled extreme temperatures and the retrieved SM (via simulated 521 

Ts,dry and Ts,wet). It is found (results not shown) that the modelled LST remains rather stable when changing 522 

the roughness parameters by 1 order of magnitude. Note that the stability of LST with respect to soil 523 

roughness is fully consistent with all contextual methods that rely on this assumption as well (ex. by setting 524 

the maximum observed LST to Ts,dry ). 525 

4.5 Soil evaporation estimation  526 

The tight coupling between soil evaporation and SM in semi-arid areas is used to calibrate the radar-SM 527 

relationship using thermal-derived SEE estimates. As a step further in the assessment of the proposed 528 

methodology, the soil evaporation was estimated from either the radar-based SM, the thermal-derived SEE, 529 

or the thermal-calibrated radar-based SM. Note that soil evaporation represents an important component of 530 

the water budget over semi-arid regions. Although various evaporation formulations exist as a function of 531 

SM (Chanzy, 1991; Chanzy and Bruckler, 1993; Mahfouf J.-F. and Noilhan, 1991), the uncertainty in 532 

evaporation models remains relatively large especially when applied to a range of surface conditions 533 

(Merlin et al., 2016). Even though remote sensing data have strong potential for better constraining the 534 

evaporation process (Chanzy and Bruckler, 1993; Merlin et al., 2017), the characterisation of model 535 

parameters using available remotely sensed land surface temperature and SM observations is still not well 536 

identified. 537 

As a complementary assessment of the synergy between radar- and thermal-based techniques for SM 538 

retrieval, both approaches were thus inter-compared in terms of soil evaporation estimates over the Sidi 539 

Rahal site, when eddy covariance measurements are available. In this sub-section, LEs was estimated using 540 

Equation 9, and the potential evaporation estimated using the same energy balance model (described in the 541 

Appendix) as that used to estimate temperature endmembers. The SEE used as input to Equation 9 was 542 

derived either from L7/8 Thermal data (Equation 8) or S1 backscatter (Equation 4).       543 

Regarding the SM-based SEE model, two different parameterizations are suggested by setting the parameter 544 

to SMC (Equation 10) or SMsat: 545 



27 
 

           SEE =
SMσ+Ts

SMsat
                           (12) 546 

with SMσ+Ts (m
3 m-3) being the SM estimated using the synergistic approach between Landsat and S1 data. 547 

Figure 11 and Table 6 presents the results of the soil evaporation estimation using the above four models.    548 

Table 6: Error statistics between simulated and observed evaporation over Sidi Rahal site. 549 

Input data R2 RMSE (W m-2) MBE (W m-2) 

Thermal data only 0.36 64.2 -14.5 

Radar data only 0.41 166 130 

Combined  radar 

and thermal data 

Equation (10) 0.63 103 77 

Equation (12) 0.63 26.5 -0.14 

 550 

 551 

Figure 11: Comparison at the Sidi Rahal site between simulated and observed soil evaporation for an SEE model 552 

driven by a) LST data, b) radar data, and combined radar and Landsat data using c) SMC and c’) SMsat parameter. 553 

Table 7 shows that the combination between radar and thermal data (Figure 11 c and c’) provides better 554 

evaporation results than using each satellite separately (Figure 11 a and b). The evaporation estimates 555 
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derived from thermal data only are greatly uncertain. This could be due to the loss of sensitivity of land 556 

surface temperature to the 0-5 cm SM in very hot and dry conditions. The use of radar data only provides 557 

a much better correlation between simulated and observed soil evaporation, but estimates values are 558 

systematically larger than those observed by eddy covariance. This effect is also visible with the 559 

thermal/radar combined approach with SMC parameter. When setting the SM-based SEE parameter to 560 

SMsat, the systematic overestimation disappears with a determination coefficient and bias between 561 

simulated and observed evaporation of 0.63 and 0.14 W m-2. Better results obtained by changing the SM-562 

based SEE parameter from SMC to SMsat could be attributed to soil profile heterogeneities, which are very 563 

strong in semi-arid regions. In fact, the microwave-derived SM generally corresponds to the first cm of soil 564 

whereas the radiometric soil temperature is representative of a soil layer that is much thinner (approximately 565 

1 mm). The discrepancy between the sensing depth of microwave and thermal data partly explains the 566 

difference in thermal-based and SM-based SEE models in this case (Merlin et al., 2017) .   567 

5. Conclusion  568 

This paper proposes a new approach to retrieve the near-surface (5 cm) soil moisture (SM) over bare soils 569 

by combining Sentinel-1 C-band radar and Landsat-7/Landsat-8 thermal data. The methodology is based 570 

on the thermal-derived soil evaporation efficiency (SEE) to calibrate the radar backscatter-SM relationship 571 

on a (100 m resolution) pixel basis. In practice, the observed relationship between the pp (VV or VH) 572 

polarized backscatter coefficient σpp
0  and thermal-derived SEE was modelled by a piecewise linear 573 

regression model. Calibration of the piecewise model was performed by 1) computing the two centroids of 574 

the (σpp
0 , SEE) points with SEE>0.5 and SEE<=0.5, 2) plotting the line passing through both centroids and 575 

3) estimating the two crossing points of that line with the lines defined by SEE=0 and SEE=1. The retrieval 576 

approach was evaluated by comparing the remotely sensed SM to in situ measurements at two contrasted 577 

soil texture experimental sites (Sidi Rahal has sandy soil while R3 perimeter has clayey soil). The 578 

radar/thermal synergistic method was also compared to a classical (based on radar only) method. 579 

When comparing Sentinel-1 VV- and VH-polarized data, we found that the VV backscatter coefficient is 580 

more sensitive than the VH backscatter coefficient to the SM variation, even with the relatively high 581 

incidence angle (approximately 40°) of Sentinel-1 observations over the studied sites. Consequently, the 582 

radar/thermal synergistic SM retrieval approach was tested with the VV-polarized data. The determination 583 

coefficient between remotely sensed and in situ SM is 0.64 and 0.59 with the new approach, compared to 584 

0.47 and 0.56 for the classical approach over Sidi Rahal and R3 site, respectively. Moreover, the bias 585 

between remotely sensed and in situ SM is very significantly reduced when including thermal data, from 586 

0.14 to 0.01 m3 m-3 and from 0.04 to 0.00 m3 m-3 over Sidi Rahal and R3 site, respectively. As step further, 587 
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the radar-thermal combining approach is also assessed in terms of soil evaporation estimates. A RMSE of 588 

26 W m-2 was obtained between simulated and observed evaporation, compared to 64 and 166 W m-2 when 589 

using the thermal data only and the radar data only, respectively. The synergy between radar and thermal 590 

data could thus be used to both improve the SM retrieval at high-spatial resolution and foster the spatial 591 

representation of the soil energy-water coupled budget. 592 

Those results are very encouraging as they open the path for more synergies between (radar and optical) 593 

space missions and (SM and water-energy budget) applications. However, the proposed methodology was 594 

only assessed over bare soils. Further research must be undertaken to test the applicability of the calibration 595 

method to soils partially and/or fully covered by vegetation canopy, notably by integrating the VH data that 596 

are more sensitive to vegetation effects than VV data. Another potential limitation (Table 7) is the temporal 597 

frequency of thermal observations. The robustness of the calibration approach mainly relies on the 598 

availability of thermal data, at the same time as radar acquisitions. Unfortunately, the thermal data available 599 

at high-spatial resolution (100 m with Landsat) currently have a maximum temporal resolution of 8 days 600 

(Lagouarde et al., 2014). When the scene will be cloudy, the temporal resolution will be necessarily less. 601 

Consequently, the applicability of the proposed thermal/radar synergy over cropped fields will require 602 

sufficient thermal images during bare soil periods that is from the sowing date until emergence and during 603 

the intercropping periods. It will also require significant SM variations associated with irrigation or rainfall 604 

events during those periods. Last but not least, the temperature endmembers used to derive the SEE from 605 

thermal data are estimated from an energy balance model forced by meteorological forcing data. The point 606 

is that meteorological data may not be available everywhere with sufficient accuracy. Thus, alternative 607 

solutions could be imagined, such as the derivation of temperature endmembers from contextual methods 608 

relying on remote sensing data solely. Contextual methods are especially well adapted over semi-arid 609 

irrigated regions where extremely dry and wet conditions are present within the thermal scene (Stefan et 610 

al., 2015). 611 

Table 7: Summarize of the advantages and the drawbacks of the methods used in this paper (radar-only, thermal-612 

only and combined radar+thermal). 613 

Radar-only Thermal-only Combined thermal/radar  

Advantages: 

-Directly linked to SM. 

- Radar data available at high 

spatio-temporal resolution. 

Drawbacks:  

- Highly sensitive to surface 

roughness effects, which 

often involves calibration 

using in situ data. 

Advantages: 

- Coupled to SM in moisture-

limited conditions via the 

energy balance equation  

- Less sensitive to surface 

roughness 

Drawbacks:  

Advantages: 

- Relies on radar data available 

at high spatio-temporal 

resolution. 

- Robust reference points for 

calibrating the 𝜎𝑣𝑣
0 ⁡(SM) 

relationship. 

-Taking into account possible 

nonlinear behaviours of the 
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- No saturation issues except 

for very moist soils. 

 

- Weakly linked to SM when 

the incoming energy is 

limiting 

- Unavailable under cloudy 

conditions and at night 

- Low temporal resolution of  

high-spatial-resolution 

thermal data 

 

 𝜎𝑣𝑣
0 (SM) relationship. 

 

Drawbacks:  

- Requires simultaneous 

thermal/radar observations. 
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Appendix  644 

 Soil energy balance Model 645 

Surface energy balance model equation based on the partition of available energy on the surface (Rn-G) 646 

into sensible and latent heat flux (H and LE): 647 

                                                                         Rn − G = LE + H                                                              (A.1) 648 

with Rn is the surface net radiation is expressed as: 649 

                                                                              Rn = (1 − α)⁡Rg + ε(Ratm − σTs
4)                                              (A.2) 650 

with α (-) being the surface albedo (set to 0.15), Rg (W m-2) the global radiation, ε (-) is the surface 651 

emissivity (set to 0.95), Ratm the atmospheric longwave radiation (W m-2) and σ=5.67×10-8 the Stephan-652 

Boltzmann constant (W m-2 K-4). The downward atmospheric radiation at surface level is expressed as: 653 

                                                               ⁡Ratm = εa × σTair
4                                                                    (A.3) 654 

where ɛa is the atmospheric emissivity estimated as in (Brutsaert, 1975): 655 

                                                                                                   εa = 1.24 × (
ea

Tair
)

1

7
                                                               (A.4) 656 

with                                                          ea = es(Tair) ×
rha

100
                                                                 (A.5) 657 

rha (%) being the air relative humidity and es the saturated water vapour pressure (kPa) given by: 658 

                                                            es = 0.611 × e
(
17.27×Tair
Tair+273.3

)
                                                         (A.6) 659 

The ground flux G is estimated as a fraction of net radiation at the surface Rn: 660 
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                                                                       G = cg. Rn                                                                         (A.7) 661 

with cg being a fractional empirical coefficient set to 0.2. 662 

The sensible heat flux is given by: 663 

                                                                     H = ρcp
Ts−Tair

ra,h
                                                                   (A.8) 664 

The latent heat flux is estimated as: 665 

          LE =
ρcp

γ
⁡
es−ea

ra,h+rc
⁡                                                                (A.9) 666 

Finally, for running the energy balance model, we set LST=Tair and look for the value of LST that minimizes 667 

the following cost function F (LST): 668 

                                                                F(Ts) = (Rn − G − H − LE)2                                               (A.10)      669 
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