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Didactical issues at the interface of mathematics
and computer science

Viviane Durand-Guerrier, Antoine Meyer, and Simon Modeste

Abstract This contribution takes place in the context of a research project1 on
the epistemological and didactical issues of interactions between mathematics and
computer science. We make the hypothesis that, with the introduction of digital tools
and computer science content in most curricula, significantly taking into account the
epistemology of mathematics, computer science and their interactions is essential in
order to tackle the challenges of mathematics and computer science education in
the digital era. In view of this, addressing the question of proof in mathematics and
computer science is a central didactical issue, which we examine in this contribu-
tion. We will elaborate on the links between the concepts of algorithm, proof, and
program, and will argue for their significance in a general reflection on didactical
issues in mathematics and computer science, in their teaching at high school and
undergraduate levels.

Introduction

The work supporting this chapter takes place in the context of the ongoing research
project DEMaIn (Didactics and Epistemology of interactions between Mathemat-
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ics and Informatics), funded by the French ANR (National Agency for Research).
This project addresses the epistemology and the didactics of the relations between
mathematics and computer science. Its aim is to gain a better understanding of the
relations between these two disciplines by studying the foundations, objects, meth-
ods, types of questions and modes of thinking which they may share, or which may
be specific to one of them. It also proposes to consider the questions that each field
asks the other, and the uses that they may find for each other (as a tool or as an
object of study).

The DEMaIn project has two main axes. The first deals with the scientific foun-
dations of mathematics and computer science, in particular regarding logic, algo-
rithms, language and proof. Indeed, thinking of the relationships between mathe-
matics and computer science from an educational perspective leads to taking into
consideration, among other questions, issues regarding proofs (seen as scientific
texts) and proving (the activity of producing such texts) in both domains, and to
identifying the role of logic as a possible lens through which to examine and hope-
fully better understand their interactions.

This chapter is structured as follows. In the first section, we provide some addi-
tional context and motivation. In the second section, we highlight a few key aspects
of the logical issues in mathematics and computer sciences. In the third section, we
analyze several ways in which algorithms and mathematical proof might interact in
an educational context.

1 Motivation and context

1.1 The necessity of epistemological insights for didactical work

According to Howson and Kahane (1986), the relationship between mathematics
and computer science – especially the influence of computer science in mathematics
and the role of mathematics in computer science – is an epistemological and didacti-
cal issue that transcends school systems and national contexts. The use of computer
tools in the teaching of mathematics and informatics, raises questions about the
nature of these tools. This can be connected to the particular role played by math-
ematics in computer science, the proximity of some aspects of both disciplines and
the common nature of some of their questions. For example, in a didactical per-
spective, is it reasonable to use a chart plotter without questioning the accuracy of
calculations or that of the display on the screen? Can we use dynamic geometry soft-
ware without asking how exactly an intersection or a symmetry are built? Can we
simulate random experiments without questioning how a machine can produce, or
at least imitate, randomness? Can we implement a numerical or formal calculation
without asking how a computer can interpret it or, on the contrary, why it rejects it?
Can we design a long program without asking how we can make sure it does not
contain errors?
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The relationships between Mathematics and Computer science are deep and com-
plex. According to Chabert (1999), they share objects, foundations and a part of their
history. Indeed, computer science finds much of its theoretical and practical under-
pinnings in mathematics and has partly built itself as a branch of applied mathemat-
ics and logic before emancipating. In this respect, logic plays an important role in
the interaction between mathematics and computer science. According to Sinaceur
(1991b), logic (in line with Tarski’s development) can be considered as an “effec-
tive epistemology” providing means for analysing mathematical practices and hence
for understanding mathematical activity (op. cit. p.341-342). She also stressed that
logic became, through computer science, an applied science, which echoes Aristo-
tle’s view of logic as an Organon. In Section 1, we will present the main logical
issues in mathematics and computer science that we identify as relevant for our
work.

Several authors consider that computer science raises new questions in math-
ematics, opens up new areas of research and enriches some traditional fields of
mathematics (Colton, 2007; Kahane, 2002). Main aspects concern the modes of
validation in mathematics through proofs such as those of the four-color theorem
or Kepler’s conjecture (e.g. Borwein, 2012), the value of the results by questioning
the place of constructive proofs and algorithms (e.g. Basu et al, 2006), and their
methods, in particular concerning the experimental dimension of mathematics (e.g.
Perrin, 2007; Borwein, 2012; Arzarello et al, 2012). New fields of mathematics such
as discrete mathematics and theoretical computer science are developing at the in-
terface between mathematics and computer science. This questions mathematicians
and didacticians about how these fields should be passed on to teaching (see Grenier
and Payan, 1998; Hart, 1998; Lovász, 2007; Ouvrier-Buffet, 2014).

Following Modeste (2016) who studied the introduction of algorithmic in high
school in France, we formulate the hypothesis that an introduction of numerical
tools or computer science elements in curricula without significant consideration of
the epistemology of computer science, mathematics and their links, neither allows
nor participates in an in-depth renewal of mathematics education, nor answers the
problems of mathematics and computer science mentioned above. The increasing
introduction of computer science elements in the teaching of mathematics in the
curricula of various countries and in mathematics themselves, supports the impor-
tance and urgency of an epistemological and didactic study of interactions between
mathematics and computer science.

1.2 Institutional context in France

We present here some specifics of the teaching of computer science, algorithms and
programming in French public schools. This section summarizes elements devel-
oped in Gueudet et al (2017).

In the 1980s, in line with an international dynamic (Howson and Kahane, 1986),
an optional teaching of computer science centered on algorithms and programming
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was introduced in upper secondary school in France. However there was at the time
no social consensus in the country on the purpose and importance of this teaching
(Baron and Bruillard, 2011), and computer science disappeared as a school disci-
pline in the 1990s. It was replaced in curricula by a somewhat informal initiation
to what is nowadays often referred to as digital literacy, namely the set of abilities
allowing one to use of computers and technology as tools for various purposes2.
These contents were referred to in France as transversal to underline the fact that
they were not perceived as forming a standalone topic, but their teaching was rather
spread amongts several disciplines (and assumed usually by non-specialised teach-
ers).

In the 2000s, the CREM3 (Kahane, 2002) advocated for the introduction of ele-
ments of computer science in mathematics school curricula and teachers’ education,
and defended the importance of interactions between mathematics and computer
science, relying on the following arguments:

• Algorithmic thinking, implicit in the teaching of mathematics, could be devel-
oped and enlightened with the instruments of Algorithmic ;

• Programming promotes formalized reasoning ;
• Questions about effectiveness of algorithms involve mathematics ;
• Data processing and digital computations are common in other disciplines ;
• Computer Science transforms Mathematics, bringing new points of view on ob-

jects, bringing new questions, creating new fields in mathematics that are ex-
panding rapidly, and changing the mathematician’s activity with new tools.

Just after this report was published, algorithmic content was introduced in mathe-
matics in grades 11 and 12, in literature series, and in optional mathematics courses
in the last year of the economy and sciences series.

Later, between 2009 and 2012 in new official programs, algorithms were intro-
duced as part of the mandatory mathematical content to be taught in all series of
the general curriculum (literature, economy, sciences) from grades 10 to 12. Finally,
in the 2010s, computer science reappeared as an autonomous discipline in upper
secondary school, together with algorithms as part of the contents in mathematics.
Since 2016, computer science is also taught in cycle 4 (grades 7 to 9), but divided
between two disciplines (mathematics and technology).

This renewal of the teaching of computer science in French curricula in mathe-
matics raises the need for reworking and developing research in didactics of math-
ematics and informatics and of their interactions, which was the motivation for
project DEMaIn. As a first step of the research, we led an epistemological study
on these interactions in a didactic perspective, with a main focus on proof and prov-
ing. This is developed in Section 2.

3 Commission de Réflexion sur l’Enseignement des Mathématiques, National Commission for Re-
flection on the Teaching of Mathematics.
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2 Logical issues in mathematics and computer science

Following Durand-Guerrier and Arsac (2005), we consider that the classical first-
order logic, namely the predicate calculus in the semantic perspective opened by
Frege, Wittgenstein or Tarski, is a relevant epistemological reference for analysing
proof and proving in mathematics education. Following authors such as Gribomont
et al (2000), we hypothesise that it is also the case for computer science. In this
section4, we give a brief overview of this topic.

It should be noted that, even though more specialized logics and techniques exist
in the research literature on programming language semantics and program veri-
fication, we do not focus here on the theories underlying automated or computer-
assisted proof systems, even though they might be of interest as teaching tools. Since
we are concerned here with the practice of proof in secondary or undergraduate ed-
ucation, we hypothesize that classical first-order logic is relevant for most of our
goals.

2.1 Semantic perspectives in logico-mathematical disciplines

In this text, semantics is considered in a logical perspective consistent with the def-
initions given by Morris (1938): semantics concerns "the relation of signs to the
objects which they may or do denote" (op. cit. p.21); syntax concerns the "relations
of signs to one another in abstraction from the relations of signs to objects and inter-
preters" (op. cit. p.13), and pragmatics refers to "the relation of signs to their users"
(op. cit. p.29). Morris claims that "Syntactics, Semantics and Pragmatics are com-
ponents of the single science of semiotic but mutually irreducible components" (op.
cit. p.54). We illustrate the relevance of this approach below.

For example, when considering the addition of natural numbers, the semantic
point of view refers to the definition of the sum as the cardinal of the union of two
relevant discrete collections; the result is independent of the nature of the involved
objects (provided that mixing these objects preserves their integrity). The syntac-
tic point of view arises when addition is defined as the iteration of the successor
operation; it does not require any reference to quantities; this provides algorithmic
rules in a given system of numeration. Finally the pragmatic aspect concerns the
articulation between syntax and semantics that is built by subjects in a back-and-
forth between calculation (syntax) and effective counting (semantics). According to
Da Costa (1997, p. 42), it is necessary to take in account all three of these aspects in
order to gain a proper understanding of logico-mathematical fields.

Regarding computer science, one may consider that syntax is at the very core
of the discipline, but there is evidence that semantic and pragmatic aspects are also
involved (see for instance Gribomont et al (2000)).

4 This was presented in an unpublished regular lecture given at ICME 11 (http://www.
icme11.org/).
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The semantic perspective in logic appears in Aristotle, and was developed in the
late nineteenth and early twentieth centuries, mainly by Frege (1882), Wittgenstein
(1921), Tarski (1933, 1943) and Quine (1950). In particular, Tarski (1933, 1943)
provides a semantic definition of truth which he describes as formally correct and
materially adequate, through the crucial notion of satisfaction of an open sentence
by an object, and developed a model-theoretic point of view, of which semantics is
at the very core.

2.1.1 The semantic conception of truth

The main concern of Tarski is to give a definition of truth materially adequate and
formally correct (Tarski, 1943). He claims his only intent in this work is to grasp the
intuitions formulated by the so-called “classical” theory of truth, i.e. the conception
that "truly" has the same meaning as “in agreement with reality” (contrary to a
conception that “true” means "useful in such or such regard" (Tarski, 1933).

In order to be formally correct, such a definition ought to be recursive, but recur-
sivity is usually difficult to grasp directly. Tarski’s idea was to introduce the notion
of satisfaction of a propositional function (in modern terms, a predicate) of a given
formal language in a "domain of reality" (a piece of discourse, a mathematical the-
ory etc.). In the field of algebra, this definition coincides exactly with that of solution
of an equation. Tarski argues that this definition of satisfaction is the key for a re-
cursive definition of the truth of a complex sentence.

First, there is an extension of logical connectors between propositions, as defined
by Wittgenstein, to connectors between propositional functions (predicates). For
example, given an interpretation, and P and Q two monadic predicates (with exactly
one free variable), and a an element of the discourse universe, a satisfies P(x)⇒
Q(x) if and only if a satisfies P(x) and Q(x), or a does not satisfy P(x).

Second, the two quantifiers "for all" and "there exists at least one" are defined
in agreement with common sense. Then, once the logical structure of a sentence is
identified (atomic formulae, scope of connectors and quantifiers), it is possible to
establish the truth of the whole sentence as soon as one knows the truth-value of the
interpretation of each atomic formula.

2.1.2 A model-theoretic point of view

The model-theoretic point of view emerged in Tarski (1954, 1955), but the main
ideas were already present in previous papers. It relies on a simple and very fruitful
idea. At first, Tarski (1936, 1983) considers the notion of model of a formula. Given
a formalized language L, a syntax providing recursively well-formed statements
(formulae): F , G, H..., an interpretative structure (a domain of reality, a piece of
discourse, a mathematical theory, a computation model) is a model of a formula F
of L if and only if the interpretation of F in this structure is a true statement.
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Some formulae are true for every interpretation of their letters in every non-empty
domain. They are said to be universally valid (Quine, 1950). This is a generalisa-
tion of the notion of tautology in propositional calculus. A classical example is the
logical equivalence ∀x(P(x)⇒ Q(x))⇔ ∀x(¬Q(x)⇒¬P(x)) which describes the
equivalence between a universal implication and its contrapositive and gives a logi-
cal basis to proofs by contraposition.

From the concept of model of a formula, Tarski defines the key concept of logical
consequence in a semantic perspective: "The sentence X follows logically from the
sentences of the class K if and only if every model of the class K is a also a model
of the sentence X" (Tarski, 1983, p. 417). As was the case for propositional logic in
Wittgenstein (1921), logical consequences support classical modes of reasoning. For
example Q(y) is a logical consequence of P(y)∧∀x(P(x)⇒Q(x)). It corresponds to
the extension of the propositional inference rule named modus ponens to predicate
calculus.

2.1.3 The methodology of deductive sciences

In his famous book Introduction to logic (Tarski, 1941, 1995), Tarski introduced in
chapter VIII the methodology of deductive sciences. To a given miniature deductive
theory (he gave the example of the congruence of line segments), in which there are
primitive terms, defined terms, axioms and theorems, one may associate an axiom
system, with no reference to objects, which takes the form of a language and a
set of formulae that can be reinterpreted in the given miniature theory. He then
defines a model of the axiom system as any interpretation in which the formulae
corresponding to the axioms of the given theory are interpreted as true. Of course
the initial theory is a model of the obtained axiomatic formal system, but there may
also be other models.

This leads to an important result and a powerful method for proving. Tarski
proves, along with other logicians, the deduction theorem (in the meaning of Tarski),
namely:

Every theorem of a given deductive theory is satisfied by any model of the axiom system
of this theory; and moreover, to every theorem there corresponds a general statement which
can be formulated and proved within the framework of logic and which establishes the
fact that the theorem in question is satisfied by any such model. We have here a general
law from the domain of methodology of deductive sciences, which, when formulated in a
slightly more precise way, is known as the law of deduction (or the deduction theorem).
(Tarski, 1995, p. 127)

As a consequence, "All theorems proved on the basis of a given axiom system re-
main valid for any interpretation of the system" (op. cit. p. 128).

This observation leads to the idea of proof by interpretation: one way to prove
that a given statement is not a logical consequence of the axioms of a certain theory
is to provide a model of the theory that is not a model of the formula associated with
the statement in question. This can be seen as analogous to the use of a counterex-
ample to the possibility of a proof or to the validity of a proof of a true statement.
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Following Sinaceur (1991a), we consider that the model-theoretic point of view
offers powerful tools enabling us to take into account both form and content and to
distinguish between truth and validity, both crucial issues of the teaching and learn-
ing of mathematics. In a didactic perspective, Durand-Guerrier (2008) has shown
that this point of view offers fruitful paths to enrich a priori analyses and to analyse
students’ activity in mathematics. We will now attempt to provide evidence that this
is also the case in computer science education.

2.1.4 Example: tiling by dominos

This example is based on our experience with research situations for the classroom
(Gravier et al, 2008; Godot and Grenier, 2004). The problem is the following: given
a rectangular grid (with integral dimensions), is it possible to tile it with dominoes
(1×2 rectangles)?

Theorem 1. A rectangular grid can be tiled by dominoes iff its area is even.

A frequent (incorrect) proof of the above theorem given by students is the fol-
lowing. A grid can be tiled by dominos if and only if its area is 2k where k is the
number of dominos, which means that the area of the grid is even.

The stated theorem is correct but the proof is not. It is sometimes difficult to
invalidate an incorrect proof of a true statement. In order to do so, one can notice
that the fact that the grid is rectangular was not used in the proof. So, this proof can
be used for any shape consisting of an even number of squares. It is easy to see that
the shape can not be tiled by dominos but has an even area.

In other words, the set of grids of arbitrary shapes is a model of the theory used
in the proof above. But in this model, the theorem becomes false. Hence, the initial
proof is invalid (because otherwise it could be transported into the new model).

2.2 Logic and proof in computer science

In Hopcroft et al (2007, p. 5), the authors give the following remark:

In the USA of the 1990’s [sic] it became popular to teach proof as a matter of personal
feelings about the statement. While it is good to feel the truth of a statement you need
to use, important techniques of proof are no longer mastered in high school. Yet proof is
something that every computer scientist needs to understand.

In this section, we focus on the privileged role that logic and proof play in com-
puter science, in particular to reason about programs and algorithms. We start by
giving a few ideas on the interplay between syntax and semantics in the context
of programming, then on the issues underlying the translation of an ideal algorithm
into the rigid syntax of a programming language. We present a few classical types of
proofs required in the study of algorithms, provide an example of such a proof using
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an ad-hoc deduction system, and close this section by a very brief presentation of
the links between logic and well-known computation models called finite automata.

2.2.1 Syntax and semantics of programming

The distinction between syntax and semantics is somewhat more obvious in com-
puter science (in particular in programming) than in mathematics, due to the way
computers interpret programs. Indeed, for an algorithm to be executable by a ma-
chine, one first has to express it as a text amenable to automated treatment, from the
lowest possible description level (elementary machine instructions) to the highest
(modern programming languages). In this context, "syntax" refers to the rules of
composition of a valid text in the chosen language, and "semantics" to the expected
effect on the actual machine (or a model thereof) of each construct in that language
and of their combinations.

Important pieces of software called compilers and interpreters, which rely on
theoretical advances from the last decades of the 20th century, enable automatic
translations of higher-level programs into machine-level lists of instructions (see for
instance Aho et al, 1986). These tools proceed in several phases, the first of which
(lexical and syntactic analysis) aim at ensuring that the text of a program respects
the formal syntax of the chosen language. Further steps are mostly of a semantic
nature: checking for type errors, modifying parts of the program, translating it into
another, possibly lower-level language while preserving its meaning, or even run-
ning (interpreting) the program directly.

Contrary to low-level program descriptions such as assembly languages, mod-
ern languages are designed to be executable on several (possibly any) computer
architectures. This "abstraction" from material constraints is an essential aspect of
modern programming, in that it allows one to work at a level closer to general algo-
rithmic ideas rather than being distracted by technical issues. Enforcing the semantic
consistency of programs through each of these transformations regardless of the fi-
nal target architecture is thus an essential responsibility of programming language
designers and compiler implementers.

The study of programming language semantics is a wide and very active field of
research, with numerous links to deep mathematical theories. It is essential for the
design and understanding of whole paradigms of programming.

2.2.2 From algorithms to programs

Describing an algorithm as a machine-executable program is somehow similar to
translating an informal mathematical statement in some formal (for instance logical
or axiomatic) language, which can then be interpreted in the appropriate mathemat-
ical model. Indeed, algorithms are often described informally, using either natural
language, mathematical notations, pseudo-programs expressed in some semi-formal
language inspired by actual programming languages, or a mix of all three.
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When one wishes to actually produce an executable program realizing the tasks
described by such an informal algorithm (its implementation), one therefore has to
remove any possible ambiguity, and ensure that this translation process faithfully
renders the ideas and principles which allow the algorithm to solve the problem at
hand. In some sense, like a mathematician’s, a programmer’s activity therefore has
to do with pragmatics: it proceeds as a constant back-and-forth between syntax and
semantics, with the additional parameter of technical constraints. This pragmatic
work is very similar to the work of producing the formal proof of a mathematical
result using a proof assistant. In some sense, formalizing an algorithm into a pro-
gram is an activity of the same nature as producing a formal proof from a standard
mathematical proof.

However, as is the case in mathematics, ensuring that some formal statement
is syntactically correct is not enough to guarantee that it is "true", or in this case
that it actually performs the task it was meant to perform. Therefore, in order to
ascertain the actual correctness of a program (or even of the algorithm it is supposed
to implement), one usually has to resort to external arguments which are of a logical
or mathematical nature.

2.2.3 Reasoning about programs or algorithms

One of the most obvious questions one may ask about an algorithm or a piece of
program is "Does it work?". Trying to state this question more precisely leads to a
formal definition of computation problems, which one may summarize as: "math-
ematical relations between a set of instances and a set of results (or answers, or
solutions)". One further distinguishes decision problems, where possible answers
are simply truth values. In this case, a problem might equivalently be described as
its set of positive instances, instances which are mapped to the value true. Such
problems play an important role in the more theoretical aspects of computer sci-
ence, in particular in formal languages, automata and computation theories (see for
instance Hopcroft et al (2007)).

Correctness Let P denote an algorithmic problem. Seeing P as a map between
instances and outcomes, let us write P(x) the outcome associated with some admis-
sible instance x. To say that an algorithm or program A solves problem P means that
given any admissible instance x of P, A is able to provide (indeed compute), after a
finite sequence of elementary operations, a description of P(x). In view of this, the
question of knowing whether some algorithm A "works" (i.e. "proving" A) comes
down to establishing the following two properties, whose conjunction might be seen
as expressing the (full) correctness of A:

Termination: on any instance of P, A performs at most a finite number of
computation steps.
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Partial correctness: on any instance x of P, the value computed by A is P(x).

Complexity The above questions are sometimes complemented by questions re-
garding A’s efficiency, in terms of the number of computation steps it performs on
instances of a certain size (assuming some appropriate notion of size on instances).
One typical property of interest is:

Worst-case upper bound: Function f is a worst-case upper bound for the com-
plexity of A if there exists a positive constant c such that, on any instance of
size n of P, the number of computation steps performed by A is at most c · f (n)
for n large enough.

Similar questions can be asked of the amount of memory required by an algo-
rithm (space complexity). Such concerns form the well-established fields of com-
plexity theory and algorithm analysis, which strongly rely on tools and techniques
from algebra and combinatorics. In the above statement, one is concerned with
worst-case guarantees on the number of performed computation steps. Other nat-
ural questions concern the behaviour of A on typical cases, bringing into play the
question of probabilistic distributions on instances, and possibly involving powerful
techniques from probability theory and analysis (see for instance Arora and Barak
(2009) for an introduction to the field, or Sedgewick and Flajolet (2013) for more
in-depth material on average-case analysis).

Lower bounds and optimal algorithms Finally, interesting questions lie beyond
the analysis of a single algorithm solving a problem P, and study the intrinsic com-
plexity of P itself. For instance, in the so-called comparison tree model, in which
all executions of an algorithm are decided through a series of elementary, binary
comparisons between numbers, it can be shown that the well-known problem of
sorting a list of numbers cannot be solved using less than n logn comparisons, up to
a constant factor (for more details, see Cormen et al (2009)).

This impossibility result comes at the price of a rather involved argument, with
several "layers" of quantification: one has to consider the longest computation, on
any instance of some size n, of the (hypothetical) most efficient algorithm solving P.
This supports the claim that proficiency with logic and reasoning are a prerequisite
for a reasonably complete understanding of algorithmic concepts.

Modeste (2012, 2013) showed that this theoretical view of algorithms, which
leads to adopting a definition of problem as a set of instances and a question about
any of the instances, can be used as a relevant didactic tool, in particular to help
develop an epistemological model for didactical purposes, to analyse curricula and
to design didactical situations (see Sec. 3). Meyer and Modeste (2018) give a ex-
ample of the didactical analysis of an algorithmic question (about the binary search
algorithm and the bisection method).
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2.2.4 An example: partial correctness using a deduction system

In Gribomont et al (2000), several key examples of particularly fruitful uses of logic
in a computer science setting are given. The first such example is that of Hoare logic
(Hoare, 1969), which may be used to show the partial correctness of a sequential
program.

The main bulding block of Hoare logic takes the form of triples {P}C{Q}, called
Hoare triples, where P and Q are assertions (usually written in classical predicate
logic) and C is a program statement. Such a triple expresses the fact that, whenever
P holds in some state of the machine (or model thereof) over which statement C
is executed, it must be the case that Q holds in the state which is reached after C
is performed. Hoare triples are manipulated using deduction rules, which are very
reminiscent of classical proof systems. One of the simplest rules describes the se-
mantics of sequential composition:

{P}C{Q} {Q}D{R}
{P}C;D{R}

This rule expresses the fact that if {P}C{Q} and {Q}D{R} are both valid Hoare
triples, then by performing statements C and D from a state verifying assertion P,
one may guarantee that assertion R holds. Combining several rules of this kind and
additional mathematical knowledge about manipulated values (for instance arith-
metic) allows one to formally prove that, if and when a program terminates, some
assertion holds at the end of its execution. See Gribomont et al (2000) for a more
detailed description and example, or Reynolds (1998) for a textbook covering this
topic among others.

The issue of termination is of a different nature and cannot be established using
this technique. It has to be proven separately, often relying on some kind of infinite-
descent argument. Other examples of how logico-mathematical formalisms may be
used in order to reason about other kinds of programs are given in Gribomont et al
(2000). One may cite in particular the cases of functional programs (where recursion
and more particularly structural induction play a central role), concurrent or parallel
programs, etc.

A word on structural induction To conclude this section, let us remark that the
correctness of the final assertions obtained by applying the above technique actu-
ally relies on a structural induction argument: indeed, the syntactic structure of a
program’s text can be described by its so-called abstract syntax tree, whose nodes
are program constructs and whose leaves are essentially identifiers and values. Suc-
cessively applying deduction rules such as the one described above for sequential
composition actually comes down to inductively labelling each node of this tree,
from the leaves to the root, with sets of assertions. Finally, assertions carried by the
root of the tree represent true facts about the whole program.

Other (simpler) examples of the usefulness of structural induction are provided in
Gribomont et al (2000), in the context of correctness proofs for functional programs
written in the language LISP or SCHEME.
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2.2.5 Modelling program behaviour through logic and automata

Another bridge between logic and computer science illustrated by Gribomont et al
(2000) concerns the study of a class of computation models called automata, which
stem from a long line of research originating in the 1960s and have known many
interesting developments. These results are collectively referred to as automata the-
ory (see for instance Hopcroft et al (2007) for a classical textbook, Straubing and
Weil (2012) or Thomas (1997) for a more logic-oriented exposition).

Finite-state automata A finite-state automaton is characterized by a finite directed
edge-labelled graph, whose vertices and edges are respectively called states and
transitions. Some states are marked as initial, others as terminal or accepting. The
labels of edges are called letters, they belong to a finite set called alphabet. A se-
quence of letters, or word, is said to be accepted by an automaton if its letters label
the successive transitions along a path from some initial state to some final state (or
in the case of infinite words, to some kind of accepting "repetition"). Each automa-
ton therefore accepts a language, which is the set of all words it accepts.

Finite automata have very good and well-understood algorithmic properties. For
instance, one can write algorithms to decide whether a given automaton accepts the
empty language or the set of all possible words, build an automaton whose lan-
guage is the union or intersection of the languages of two other automata or the
complement of the language of a given automaton. A particularly strong connection
between automata and logic, discovered in the 1960s and much developed since, is
that the languages of some classes of automata coincide with the languages defined
by some classes of logics (see Thomas, 1997). Furthermore, in several cases there
exist algorithms able to transform a logical formula into an equivalent automaton
and vice-versa.

Modelling and verifying programs A typical application of automata theory has
to do with automated program verification or model-checking. In this framework,
a program is modeled as a (potentially very large) finite-state automaton, say A,
in such a way that each execution of the real program corresponds to a (possibly
infinite) path in A, but A may exhibit additional behaviours. A property ϕ to be
verified on the program might then be expressed in a well chosen logical framework.
This formula is then negated, and translated into another finite automaton A¬ϕ .

Determining whether the abstract program satisfies the property stated by for-
mula ϕ then amounts to checking whether the languages of automata A and A¬ϕ

are disjoint, which can be done algorithmically. By construction of A, an erroneous
answer may occur only in the case where some behaviour of A which violates ϕ

is detected, but this behaviour does not exist in the original program (this is called
a false positive). Otherwise, if no such execution is found, it is guaranteed that all
executions of the actual program respect the property ϕ .

This verification procedure has shown great success despite the fact that it deals
with finite-state computation models. Extending it to more realistic models while
conserving good algorithmic properties is one of the challenges undertaken by the
research field of program verification (see for instance Bérard (2001)).
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2.3 First conclusion

Adopting a semantic point of view, and being situated at a meta-mathematical level,
a model-theoretic point of view provides on the one hand a frame to analyse a pri-
ori the situations under both mathematical and didactical aspects, and on the other
hand to analyse students’ activity, in particular by providing the researcher with a
methodology to identify and study the elaboration, the evolution and the eventual
overtaking of the local axiomatic all along the resolution and/or the proving process.

It seems clear that Tarski’s meta-mathematical project goes beyond mathematics
and echoes key questions in computer science education, such as the relationship
between deductive systems and models, including the issue of limits of validity of
these models, the relationships between proofs and programs, the notion of proof of
an algorithm.

It should also be noted that the pervasive use of logic and other mathematical
tools in computer science has provided and will most likely continue to provide new
ideas, questions and perspectives to the fields of logic and mathematics themselves.

3 Modes of interaction between mathematics and computer
science

The content of this section mainly originates from Modeste (2012). In a didactical
perpective and on the basis of an epistemological analysis, it proposes to distin-
guish three main modes of interaction between mathematical proof and algorithms,
and two kinds of problems in which algorithms appear. This allows one to better
understand and analyse the interactions between both fields, and give meaning to
several possible relationships with the concept of algorihm, that is, conceptions of
algorithm.

This work draws upon the model of conceptions as developed by Vergnaud and
enriched by Balacheff. The cKc model (conception, knowing, concept) was devel-
oped by Balacheff (2013) to build a bridge between mathematics education and
research in educational technology. It proposes a model of learners’ conceptions
inspired by the theory of didactical situations (Brousseau, 1997) and the theory of
conceptual fields (Vergnaud, 2009).

In this model, conceptions are defined as quadruples (P,R,L,Σ) in which P is a
set of problems, R a set of operators, L a representation system and Σ a control struc-
ture. P and L directly correspond with situations and representations in Vergnaud’s
model, R and Σ distinguish between operational invariants, those which allow one
to act on problems and those which allow one to control the actions. For this reason,
the cKc model is very relevant for emphasizing the dimension of proof.
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3.1 Proof paradigms

We first distinguish three frameworks in which our conceptions will be described,
which we call paradigms. They are the algorithmic proof (AP), the mathematical
algorithm (MA) and the computer algorithm (CA). These paradigms essentially
correspond to three possible habitats5 of the notion of algorithm in mathematical
and algorithmic activity.

• The AP paradigm corresponds to an activity of the form Problem – Theorem –
Proof, where the proof is of a finite, constructive nature and can thus be seen as
algorithmic in nature. Induction proofs in particular fall into this category.
In this paradigm, algorithms and proofs are not dissociable: algorithms are not
written directly but are implicit in the theorem’s proof. They may be made ex-
plicit outside or after the proof, as a corollary or consequence thereof, in a fashion
similar to the second paradigm (MA).

• The MA paradigm corresponds to an activity of the form Problem – Algorithm
– Proof. For a given problem, one describes an algorithm solving all admissible
instances, then provides a proof that this algorithm is indeed (totally) correct,
in other words a termination proof (the algorithm provides an answer in a finite
amount of steps on any instance) together with a partial correctness proof (when-
ever an answer is provided on an instance, it is the correct one). In this paradigm,
algorithm and proof are clearly dissociated.

• The CA paradigm corresponds to an activity of the form Problem – Program –
Validation. The algorithm solving the problem is expressed as a program which
is expected to be executed on a machine.
The term "validation" should be understood here in its ordinary meaning. It may
or may not be of a mathematical nature, and may include all relevant tools and
practices such as syntactic analysis and type-checking performed by the com-
piler, manual, semi-automatic, or automatic testing procedures, verification tech-
niques (for instance model-cheking tools as described in Section 2.2.5), etc. Note
that mathematical validation of the program or the underlying algorithm via proof
(as in paradigm MA) may also provide a form of validation in CA.

A single problem can be addressed in different paradigms. Its study may even
draw on several of them simultaneously or successively. What distinguishes the
three paradigms is therefore not the kind of problems which are addressed but rather
the way in which they are treated, the kind of solution obtained, and the kind of val-
idation which is provided. They also differ in the concrete form in which algorithms
are expressed. This encourages us in our choice to make use of the model of con-
ceptions in order to formalize these differences in terms of operators, representation
systems and control structures.

5 The term habitat was coined by Artaud (1998) in the context of the so-called ecological approach
to didactics.
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Representation systems for algorithms are an important criterion for distinguish-
ing the three paradigms, but are not the only one. We must however acknowledge
their impact on the way algorithms are expressed.

It remains to ask which kind of problems are the most appropriate for giving
meaning to the concept of algorithm in the classroom.

3.2 The tool–object dialectic

We propose to adapt here a definition which comes from the theory of algorithmic
complexity (see section 2.2.3). According to this definition, a problem (e.g. finding
the gcd) is given by a pair (I,Q), with:

• I a set of instances (e.g. N2, the set of all pairs of natural numbers) ;
• Q a question about these instances (e.g. what is the gcd of the 2 provided num-

bers?).

This definition of problems allows to formalize what an algorithm is. An algorithm
is a systematic method which must give an answer for all instances of the problem,
after a finite number of steps (e.g. Euclid’s algorithm solves the problem of gcd for
any pair of natural numbers).

Additionally, we say a problem is instantiated when one chooses a particular
instance i and tries to answer the question Q(i) for this particular case (e.g. what is
the gcd of 3654 and 76?). To grasp the concept of algorithm in its full generality, it
is important not to address only instantiated questions but to study a problem in all
of its instances.

It is also important to distinguish two kinds of problems giving sense to the con-
cept of algorithm:

• The set Pa of problems that may be solved using an algorithm (e.g. the problem
of finding the gcd);

• The set PA of problems that concern algorithms (which includes the problem of
determining if a given problem is in Pa, the problem of determining the complex-
ity of an algorithm, etc.).

In the first case, the algorithm is seen as a tool, and in a teaching context it is im-
portant that at least some of the chosen exercises and problems are general, and
not instantiated (in some high school textbooks, several exercises in the same chap-
ter turn out to be instantiated versions of the same problem). In the second case,
the algorithm is seen as an object, and a problem can be instantiated (on a specific
algorithm for instance).

We argue that the tool–object dialectic (Douady, 1986) can be useful to think
about the interaction between mathematics and computer science, in particular to
deal with proof issues.

Computer Science can be seen as a tool for mathematics (simulating experiences,
or testing small cases) or an object (probabilities for analysing the complexity of an
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algorithm). Conversely, mathematics can be seen as an object or a tool for computer
science, according to whether one is studying the mathematical or computer science
aspects of a situation (as presented above).

3.3 Six conceptions to analyse algorithmic activity

We now revisit the three paradigms defined above in the light of the tool–object di-
alectic. We saw how the distinction between problems in Pa, where the algorithm
is a tool, and PA, where it is the object of study, on one hand, and between in-
stantiated and non-instantiated problems on the other hand, provide insights on the
tool–object dialectic.

We therefore further refine the three paradigms presented above, by distinguish-
ing in each case a tool-conception and an object-conception. This yields a total of
six conceptions which we will not describe in detail.

Tables 1, 2 and 3 describe the different components (P: problems, R: operators,
L: representation structures and Σ : control structures) of each of these conceptions.
Each emphasized term in the description of a conception is explained below.

• The AP-tool conception (Table 1a) concerns inherent, implicit algorithms in the
description of certain constructive mathematical proofs, whose object is not an
algorithm or algorithmic fact itself. One may relate this to the notion of construc-
tive mathematical proof.
In the table, by mathematical language we mean the language commonly used
in mathematical writings. By mathematical variables we refer to the different
kinds of variables used in mathematics. By mathematical logic, we mean the set
of implicit reasoning rules used in mathematical activity (in contrast with formal
logic).
Example : A proof of the characterization of Eulerian graphs (graphs which pos-
sess a cycle traversing each edge exactly once) as graphs whose vertices all have
even degree, written in usual mathematical terms, where each step is constructive
and the structure of reasoning attests to this constructiveness, might fall into this
conception.

• The AP-object conception (Table 1b) deals with mathematical proofs about al-
gorithmic objects or facts. Here, an algorithm or algorithmic problem may be
provided as part of the question.
Examples: A proof on the intrinsic complexity of some algorithmic problem
might fall in this category: for instance proofs of the fact that any comparison-
based sorting algorithm must perform at least O(n logn) comparisons in the worst
case, or that the knapsack problem is NP-complete.

• The MA-tool conception (Table 2a) has to do with proofs explicitly providing
an algorithm solving the mathematical problem (whose object is not itself ex-
plicitly algorithmic), and possibly providing some justification that the proposed
algorithm is correct.
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(a) The AP-tool conception.
P: Problems in Pa.
R: Operators are those of proof restricted to "constructive" modes of reasoning (recurrence, in-

duction, infinite descent, existence of lower or upper bounds of finite sets...), excluding in
particular proofs by contradiction or using the law of excluded middle.

L: The representation system is that of mathematical language. The involved objects are mathe-
matical object. In this conception, one manipulates information. At all times, all information
provided by the instance, and all deduced information is usable. The only variables which are
used are mathematical variables.

Σ : The control structure is that of mathematical logic, together with known properties of occur-
ring objects.

(b) The AP-object conception.
P: Problems in PA.
R: Operators are those of mathematical proof and operations on theoretical computation models

(algorithmic reductions, simulations, etc.).
L: The representation system is that of mathematical language together with theoretical compu-

tation models (automata, Turing machines, recursive functions, decision trees...).
Σ : The control structure is that of mathematical logic, together with properties of occurring ob-

jects.

Table 1 Conceptions in paradigm AP.

In the table, the notion of abstract data type refers to the description of a specific
data domain (for instance finite lists and maps, stacks or queues, graphs) through
a set of allowed operations, without any a priori knowledge on implementation
details. These operations are assumed to be constructive, or effective (in the sense
that they can be performed algorithmically). Describing such algorithmic data
types is an important part of the field of algorithm design.
We call computer variables, for lack of a better term, entities that play the role of
a temporary assignment between a name and a value, which is subject to change
over time (for instance across multiple iterations of a loop). When a new assign-
ment to a certain name is performed, the value previously assigned to it, if any, is
lost. This is a simplified model of the memory of an actual computer during the
execution of a program, designed to hide irrelevant technological details.
Examples: A proof of the existence of the greatest common divisor of two in-
tegers, presented first by writing down Euclid’s algorithm, then by proving its
correctness, falls in this category. Other examples might include the description
of list-sorting or list-searching algorithms.

• The MA-object conception (Table 2b) is similar to the AP-object conception in
that it concerns problems about algorithms and their proofs. One possible differ-
ence in this case is that actual algorithms are manipulated explicitly, instead of
potential or hypothetic algorithms.
In this conception the description of the algorithm itself is considered part of the
problem at hand; algorithmic description operators and representation systems
are therefore not included in the table.
Example: The analysis of the computational complexity (in terms of time or
space) of a particular algorithm might fall into this category. The study of other
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The MA-tool conception
P: Problems in Pa
R: Operators are explicit algorithmic constructs (conditions, iterations, recursion) and effective,

constructive operations on numbers, sets or other combinatorial or mathematical objects.
L: The representation system might be some type of pseudo programming language, mixing

mathematical language and vocabulary inspired by programming practices. Manipulated ob-
jects are mathematical objects, sometimes belonging to the culture of computer science (for
instance abstract data types), each admitting a known set of effective operations. Variables
can be mathematical variables or computer variables.

Σ : The control structure is that of algorithm proof (correctness and termination) using all ap-
propriate concepts and formalisms (logical proof systems, inductive proofs, infinite descent,
invariants...).

The MA-object conception
P: Problems in PA
R: Operators are those of mathematical proof: algorithm proof, properties of algorithms, invari-

ants, computational complexity...
L: The representation system is that of mathematical language.
Σ : The control structure is that of mathematical logic, reasoning rules and properties of occurring

objects.

Table 2 Conceptions in paradigm MA.

properties may appear as well, for instance the stability of a given sorting algo-
rithm.

• The CA-tool conception (Table 3a) refers to the activity of directly providing
a computer program expected to solve a given problem, either numerically or
symbolically, perhaps even in an approximate manner.
Particular care might be taken in the validation and control of the proposed solu-
tion, which is considered good programming practice. The least required effort
usually consists only in clear code documentation and sufficient testing, but other
compelling arguments may be provided by other tools and procedures, such as
syntactic analysis, type checking, certifiable code annotation, program verifica-
tion, automated testing, etc.
Example: Computing the gcd of two integers using an implementation of Eu-
clid’s algorithm written in C or some other programming language falls into this
conception.

• The CA-object conception (Table 3b) concerns questions asked about the prop-
erties of a given, explicit computer program.
Examples: Writing manual or computer-assisted proofs about the termination or
safety of programs relates to this conception.
Another interesting and rather extreme example is the development of auto-
mated code analysis, interpretation or transformation tools themselves, for in-
stance compilers, interpreters, profilers or debuggers for a given programming
language, or automatic or semi-automatic verification software. In this case, the
adopted representation system must be able to handle code reification: namely,
the representation and manipulation of programs themselves.
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The CA-tool conception
P: Problems in Pa
R: Operators are those provided by a given programming language, possibly including instruc-

tions, conditional structures, loops, functions, and various predefined operations on data.
L: The representation system is a programming language. Manipulated objects are data values

which encode (or model) objects from the original problem using data structures which allow
certain operations.

Σ : The control structures are provided by various computer programming tools and practices,
either manual or automatic, formal or informal.

The CA-object conception
P: Problems in PA.
R: Operators are those of formal program verification.
L: The representation system is that of mathematical language, together with the vocabulary and

notations of appropriate analysis techniques and tools, possibly including ad-hoc proof sys-
tems or formal logic frameworks.

Σ : The control structure is provided by various relevant theories, including programming lan-
guage theory, language semantics, computation models, and formal logic.

Table 3 Conceptions in paradigm CA.

3.4 Relationships between conceptions

3.4.1 The tool–object continuum

Let us first review the relationship between the tool-conception and object-conception
of the same paradigm. We wish to make it clear that the boundary between these con-
ceptions is not as clear-cut as our taxonomy might seem to indicate. Indeed, there
is no wide gap between the two conceptions associated with a given paradigm, but
rather a continuity according to the tool–object dialectic, or rather a transition from
tool to object. This transition is accompanied by a move from specific, instantiated
problems towards generic ones. However, there may in practice exist several inter-
mediate problems which occur as one progressively extends and widens the set of
instances of the problem at hand. One should also note that the control structure
of the tool-conception plays a particular role in this transition from tool to object:
the more it is present in a given activity, the closer one gets to the corresponding
object-conception. The question of determining whether a given problem admits an
algorithmic solution also plays a central role in this articulation.

Moreover, it should be remarked that when we mention the existence of this shift
from tool to object, we do not mean to imply that algorithmic activity is necessar-
ily linear or one-way. In fact, there are clearly numerous alternations, just like in
mathematics, between tool and object. But it appears to us that this shift is globally
directed from tool to object, in the sense that the use of any tool may naturally bring
questions that make it a potential object of study. One can also see this as a move-
ment which, in terms of the conceptions model, tends to change the status of control
structures into operators in the context of new problems.
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3.4.2 A continuum between mathematics and computer science

Similarly, we have to point out that the distinction between paradigms AP, MA and
CA is not absolute, but rather witnesses a fine gradation of conceptions and con-
cerns between mathematics and computer science. This arbitrary split into three
paradigms seems to offer a reasonable granularity for use as an analysis tool, to
allow a sufficiently accurate representation of the various conceptions found in sci-
entific literature and to support reflections about the production of this knowledge.
Therefore, in addition to the tool–object continuity, there exists another continuity
along the AP–CA axis, and it might be the case that certain activities found either
in literature or in teaching may fall between two of our conceptions.

Still, let us remark that one may find some kind of "chronological" hierarchy
(which one should absolutely not see in terms of value) between AP, MA and CA.
For a given problem in Pa, scientific study rather follows a chronological shift
from AP to CA, via MA. One may decribe this as a transition from constructivity
concerns (AP) to effectivity concerns (MA) and finally to implementation concerns
(CA), accompanied by an increasing level of detail in the specification of algorithms.

This process obviously has exceptions, for instance in the case where no exact
proof of a certain phenomenon exists but empirical observation through program-
ming may still offer insights as to its validity. One should also be aware that many
(indeed most) questions about algorithms and programs are of course undecidable
in general. It is therefore useless to expect a single computer program to check ex-
actly, given the text of any other program, whether its executions always terminate.
Nevertheless, in some cases automated tools may be able to provide exact infor-
mation about elementary properties of programs, or approximate answers to more
difficult questions.

The continuity along the AP–CA axis is also accompanied by an increasingly
clear separation of the aspects related to proof, syntax and semantics. Indeed, in
the AP paradigm, all three concerns are intermixed. In MA, the solution is given as
a "construction" or algorithm. It carries in some sense both syntax and semantics
and is separated from its validation. Finally in CA, a strong accent is put on syntax
(indeed, a computer executing a program only performs purely symbolic manipula-
tions), while concerns of semantics and proof are left to the designer of the program
(possibly with the help of computer-assisted tools). This interplay between valida-
tion, meaning and representation of algorithms, which varies between paradigms,
is, for us, a central point to understand the role and place of proof in mathemat-
ics and computer science. We make the hypothesis that it has a strong potential for
studying didactical issues about proof in mathematics, computer science and their
interactions.
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4 Perspectives

In this chapter, we have tried to provide evidence of the necessity and the rele-
vance of studying the interactions between mathematics and computer science, with
a particular focus on proof and taking into account the interplay between syntax, se-
mantics and pragmatics. This opens up new avenues of research by helping identify
issues in logic, mathematics and computer science that may be overlooked or remain
implicit in the classroom. An example we are currently exploring is the representa-
tion and manipulation of polynomials. This topic illustrates several of the issues we
discussed in this chapter:

• representation issues — polynomials represented as lists of coefficients or as
arbitrary expressions via their syntax trees;

• algorithmic issues — computations in both representations (naive evaluation or
using Horner’s scheme, arithmetic operations on polynomials, formal derivation
or integration, canonical forms, equivalence...);

• complexity analysis — comparison between representations;
• interplay between syntax and semantics — work on the structure of algebraic

expressions;
• possible context for the introduction of inductive constructions and reasoning;
• classical classroom mathematical content — operator priorities and other alge-

braic rules, decomposition of algebraic formulae into calculation programs.

Due to the role of polynomials in calculus and analysis, we consider that developing
didactical situations aiming to deal with these aspects will improve the knowledge
of polynomials as objects, and as a consequence will foster students’ skills in rec-
ognizing and using them as tools in relevant contexts.
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