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A NOVEL THRESHOLDING TECHNIQUE FOR THE DENOISING OF MULTICOMPONENT
SIGNALS

Duong-Hung Pham and Sylvain Meignen

Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38401 Saint-Martin-d’Hères, France

ABSTRACT
This paper addresses the issues of the denoising and retrieval
of the components of multicomponent signals from their
short-time Fourier transform (STFT). After having recalled
the hard-thresholding technique, in the STFT context, we
develop a new thresholding technique by exploiting some
limitations of the former. Numerical experiments illustrating
the benefits of the proposed method to retrieve the modes of
noisy multicomponent signals conclude the paper.

Index Terms— Time-frequency, STFT, denoising, thresh-
olding, AM/FM multicomponent signals

1. INTRODUCTION

Linear time-frequency (TF) analysis provides a powerful tool
for characterizing and manipulating signals whose statis-
tics vary in time, but also multicomponent signals (MCSs),
defined as a superposition of amplitude-and frequency-
modulated (AM-FM) modes. Various methods are reported in
the literature for modeling and analyzing such signals, as for
instance those based on Hilbert-transform [1–3], empirical-
mode-decomposition (EMD) [4, 5], or on the short-time
Fourier transform (STFT), the latter being the simplest and
most popular [6]. Nevertheless, it suffers from a serious
limitation that the information it provides is spread over the
TF plane as a result of the uncertainty principle. Many ef-
forts have been made to cope with this issue, as for instance
reassignment methods [7] of which synchrosqueezing trans-
forms (SST) has received considerable attention in recent
years [8, 9]. Indeed, not only do these transforms enhance
the TF representation but also allow for mode reconstruction.
However, the reassignment operators are sensitive to noise,
and local frequency integration carried out directly on the
STFT rather than on the reassigned transform appeared to be
a good alternative to SST for mode reconstruction [10] [11].
In a more general context than that of MCSs, a widely used
noise removal technique, originally designed in the wavelet
context, is called hard-thresholding (HT) [12], which basi-
cally consists of thresholding the wavelet coefficients below
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a certain level before signal reconstruction. In the present pa-
per, we build on HT, adapted to the STFT context, to enable
a more efficient mode retrieval of the modes of noisy MCSs.

To do so, after having introduced some useful definitions
in Section 2, we introduce hard-thresholding (HT) denoising
technique and then how we adapt it to the context of MCSs,
in the following section. Then, we introduce, in Section 4,
our new denoising technique designed by handling some of
HT limitations. Finally, numerical simulations, carried out
on both simulated and real signals in Section 5, demonstrate
the improvements brought by the proposed technique with re-
spect to state-of-the-art signal denoising algorithms.

2. DEFINITIONS

In this section, we first recall some basic definitions which
will be useful in the sequel.

2.1. Discrete-Time STFT and Reconstruction Formula

Let us consider a discrete signal f ∈ l2(Z) of length L and
a filter g ∈ l2(Z) supported on {−M, · · · ,M} such that
2M + 1 < N , where N is the number of frequency bins,
the discrete-time short-time Fourier transform (STFT) can be
written by [13]:

V gf (m,
k

N
) =

∑
n∈Z

f [n]g[n−m]e−i2π
k(n−m)

N .

If ‖g‖2 = 1, one has the following reconstruction formula:

f [n] =

m=n+M∑
m=n−M

N−1∑
k=0

V gf (m,
k

N
)g[n−m]

ei2π
k(n−m)

N

N
, (1)

which requires to know
(
V gf (m, kN )

)
k

for −M ≤ m ≤ L−

1 +M . To recover f using only
(
V gf (m, kN )

)
k

for 0 ≤ m ≤
L−1, we assume f isL-periodic instead of finite, thus making
STFT also L-periodic, and leading to:

f [n] =

n+M∑
m=n−M

N−1∑
k=0

V gf (m mod L,
k

N
)g[n−m]

ei2π
k(n−m)

N

N
, (2)

where m mod L means mmodulo L.



2.2. Multicomponent Signals

In what follows, we are going to analyze so-called multicom-
ponent signals of the form,

f [n] =

K∑
l=1

fl[n], with fl[n] = Al[n]ei2πφl[n], 0 ≤ n ≤ L− 1

for some K, where Al[n] > 0, φ′l[n] > 0 for any n and l. In
the following, Al[n] is often called instantaneous amplitude
(IA) of mode l and φ′l[n] its instantaneous frequency (IF).
Also, we assume the fls, called modes or components, are
separated with resolution ∆, i.e. for all l ∈ {1, · · · ,K − 1}:

φ′l+1[n]− φ′l[n] > 2∆ for ∀n.

One of the goals of TF analysis is to recover fl from f .

3. SIGNAL DENOISING FROM STFT

3.1. Hard-Thresholding Denoising Technique

One of the most commonly used techniques for signal de-
noising is hard-thresholding (HT). It consists of computing
and then thresholding the STFT of a noisy signal before re-
constructing it [12, 13]. For instance, when f is a complex
signal contaminated by a complex white Gaussian noise Φ
with variance σ2, namely f̃ [n] = f [n] + Φ[n], V gΦ(m, kN ) is
also Gaussian with zero mean and satisfies:

Var
(
<{V gΦ(m,

k

N
)}
)

= Var
(
={V gΦ(m,

k

N
)}
)

= σ2‖g‖22,

where <{Z} (resp. ={Z}) is the real (resp. imaginary) part
of complex number Z. Assuming the variance of the noise σ2

is known, HT for STFT means to threshold coefficients as:

V
g

f̃
(m,

k

N
) =

{
V g
f̃
(m, k

N
), if |V g

f̃
(m, k

N
)| ≥ 3

√
2σ‖g‖2,m

0 otherwise,
(3)

where ‖g‖2,m is the l2 norm of the possibly truncated fil-
ter g (near the signal boundaries) used in the computation of
V g
f̃

(m, kN )k. Note that the normalization factor
√

2 is used
because one thresholds the modulus of STFT and not its real
or imaginary parts. Then, the reconstruction of the signal f is
performed by replacing V gf (m, kN ) by V

g

f̃ (m, kN ) in (2).

3.2. Hard-Thresholding in the Context of MCSs

In the context of MCSs, since one is interested not only in de-
noising the signal but also in recovering the modes, one first
proceeds with ridge extraction and then performs the denois-
ing as explained hereafter.

3.2.1. Ridge Extraction from Noisy STFT

To estimate the ridge (m,φ′l(m)) and assuming knowledge
of the number K of modes, we use the same algorithm as

in [7] or [8], originally proposed in [14]. The approximation
(ψl)1≤l≤K of (φ′l)1≤l≤K is found as a local minimum of the
functional:

K∑
l=1

L−1∑
m=0

−|V g
f̃

(m,ψl(m))|2 + λψ′l(m)2dt+ βψ′′l (m)2,

where λ and β are chosen regularization parameters. It was
shown in [15] through a numerical study, that to use regu-
larization terms resulted in less accurate ridge estimation, so
they will be set to zero in our simulations.

3.2.2. STFT Thresholding

Once an estimate of the ridges are found, we select the coef-
ficient above the threshold provided by HT in the vicinity of
the detected ridges, namely we define, for mode l:

η
[1]
l,m = argmax

k

{
k

N
< ψl(m), |V g

f̃
(m,

k

N
)| < 3

√
2σ‖g‖2,m

}
η

[2]
l,m = argmin

k

{
k

N
> ψl(m), |V g

f̃
(m,

k

N
)| < 3

√
2σ‖g‖2,m

}
,

and then set: Jl,m := [Nψl(m)− η[1]
l,m, Nψl(m) + η

[2]
l,m].

3.2.3. Mode Reconstruction

With this in mind the lth mode is reconstructed through:

fl[n] =

n+M∑
m=n−M

∑
k∈Jl,m

V gf (m mod L,
k

N
)g[n−m]

ei2π
k(n−m)

N

N
,

(4)

The HT process is illustrated on mono component signal in
Figure 1: the STFT of a noisy linear chirp computed with a
Gaussian window with variance σs = 0.15 is displayed in
Figure 1 (a), along with the modulus of the noise-free, noisy
and hard-thresholded STFTs at m = L/2, in Figure 1 (b).
The threshold used is also displayed on this latter figure.

This technique suffers from some serious drawbacks,
which can hardly be seen if one only studies the modulus of
STFT. Indeed, on a ridge associated with one mode the real
and imaginary parts of the STFT are oscillating, while its
modulus is almost constant. This has the consequence that
the effect of hard-thresholding is very different on the real
part and imaginary parts of the STFT: an illustration of this
is given in Figure 1 (c) and (d) where we display them still
at time m = L/2 (the reverse situation could be obtained by
selecting a different time). In fact, when the imaginary and
real parts of the STFT on the ridge have very different ampli-
tudes, the one with the lowest amplitude may be of the order
or below the noise level, even in the vicinity of the ridge (see
Figure 1 (d)). In these instances, the noise may shift the local
extremum of either the real or imaginary parts of the STFT,
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Fig. 1. Illustration of HT for signal denoising: (a): modulus of
the STFT of a noisy linear chirp (SNR = 0 dB); (b): modulus
of STFTs (noise-free, noisy and hard-thresholded) at m =
L/2 along with the noise threshold; (c): the real part of STFT
displayed in (b); (d): same as (c) but for the imaginary part.

depending on their relative amplitudes, and may create sym-
metry distortion. These phenomena are however not taken
into account by hard-thresholding techniques. Furthermore,
the STFT of f is regular with respect to the frequency, as
a result of the properties of the convolution, and the hard-
thresholded transform is always irregular along the frequency
axis. After having explained how we compute in practice the
noise threshold in the next subsection, we will explain why
the real and the imaginary parts of STFT should attain a local
extremum along the frequency axis at the instantaneous fre-
quency corresponding to a mode, while being symmetric with
respect to that point. This will be crucial in the description of
the new denoising algorithm that follows.

3.3. Threshold Estimation

In real-life applications, HT level γ := σ‖g‖2 needs to be
estimated. To handle this, we use, in this paper, the robust
estimator proposed in [12]:

γ̂p =

median
0≤k≤N−1

∣∣∣<(V g
f̃

(m mod L, kN )
)
m

∣∣∣
0.6745

,

where median represents the median of the coefficients.

4. A NEW METHOD FOR THE DENOISING OF THE
STFT OF MCSS

In this section, we introduce a new denoising technique,
called Shifted-Symmetrized-Regularized Hard-Thresholding
(SSR-HT), which aims at compensating for the three above

mentioned flaws of HT: potential shift of the thresholded
transform, lack of symmetry and regularity. To explain why
the transform need to be symmetric with respect to the instan-
taneous frequency of a mode along the frequency axis, we
use the local linear chirp approximation already exploited in
[6] and then detail the novel algorithm for STFT denoising.

4.1. Local Linear Chirp Approximation

Let us consider the second-order approximation close to the
lth ridge, of the STFT defined as [6]:

V gf (m,
k

N
) ≈ fl[m]ĝct(

k

N
− φ′l(m)), (5)

where fl[m] = Al[m]ei2πφl(m) and ct(τ) = eiπφ
′′
l (m)τ2

.

When g is the Gaussian window σ
− 1

2
s e

−π x2
σ2s , this approxi-

mation leads to [6]:

V gf (m,
k

N
) ≈

∣∣∣∣V gfl(m, kN )

∣∣∣∣ ei2πΨl(m,
k
N ), (6)

where Ψl(m,
k
N ) = − φ′′l (m)

2r(m)2

(
k
N − φ

′
l(m)

)2 − θ(m)
4π +

φl(m) with θ(m) = arctan(−φ′′(m)σ2
s) and r(m) =

σ−2
s

(
1 + φ′′(m)2σ4

s

) 1
2 , and where∣∣∣∣V gfl(m, kN )

∣∣∣∣ = Al(m)σ
− 1

2
s r(m)−

1
2 e
−π(ω−φ′l(m))2

σ2sr(m)2 .

We thus remark that in the noise-free case, and for a fixed
time m,

∣∣∣V gf (m, kN )
∣∣∣, <(V gf (m, kN ))

)
and =

(
V gf (m, kN ))

)
are even functions in the vicinity of the lth ridge, and all reach
an extremum at k

N = φ′l(t). However, these properties disap-
pear for noisy signal, see Figure 1. In the designing of the de-
noising algorithm that follows, we are going to exploit these
properties of the STFT.

4.2. Novel Algorithm for MCS Denoising

The key idea of SSR-HT is to improve the representation of
the real and imaginary parts of the hard-thresholded noisy
STFT, at each time instant. It is important to first explain
that we deal with the modes one at a time, that is we im-
prove the STFT of one mode and then proceed with its re-
construction. More precisely, to deal with the shifts induced
by noise on the STFT of mode l (see Figure 1 (d)), we pro-
pose, at each time m, to reallocate the closest extremum to
ψl(m) of both the imaginary and real parts of STFT to ψl(m).
Having shifted the real and imaginary parts, we symmetrize
them by replacing their values along the frequency axis and
on each side of ψl(m), more precisely in the interval Ĵl,m =

[ψl(m) − η
N , ψl(m) + η

N ] with η = max(η
[1]
l,m, η

[2]
l,m), by the

average of its value and of that at the symmetric point with
respect to ψl(m). This enables to remove the symmetry dis-
tortion induced by noise on the STFT. Finally, to deal with



the lack of regularity generated by the hard-thresholding pro-
cess, we use piecewise cubic Hermite interpolation to smooth
the resulting real and imaginary parts of STFT. From now
on, we call this process SSR-HT for “Shifted-Symmetrized-
Regularized Hard-Thresholding”. After having computed the
denoised STFT V̂ g

f̃
via SSR-HT, the reconstructed mode l is

obtained by replacing V g
f̃

by V̂ g
f̃

and Jl,m by Ĵl,m in (4).
The details of the novel denoising algorithm are given in

Algorithm 1, for the extraction of the lth mode. As an illus-
tration, the result of SSR-HT on the real and imaginary parts
of STFT displayed in Figure 1 (c) and (d) is shown in Fig-
ure 2. In this figure, one notices a clear improvement of the
denoised STFT brought by SSR-HT compared with that re-
sulting from the application of HT. We are going to quantify
this in the following section.

Algorithm 1 SSR-HT Algorithm
1: for all time m do
2: Input: η[1]

l,m, η[2]
l,m, V g

f̃
(tm, ω), ψl(m)

3: η = max(η
[1]
l,m, η

[2]
l,m),

4: Ĵl,m = [ψl(m)− η
N , ψl(m) + η

N ]
5: Shift operation:
6: if Ĵl,m ∈ [0, 1] then
7: SR(m) = ψl(m)− argmax

ω∈Ĵl,m

∣∣∣<(V g
f̃

(m,ω))
∣∣∣

8: SI(m) = ψl(m)− argmax
ω∈Ĵl,m

∣∣∣=(V g
f̃

(m,ω))
∣∣∣

9:
10: Shift <(V g

f̃
(m, .)) by SR(m)

11: Shift =(V g
f̃

(m, .)) by SI(m)

12: Symmetrization: for ν ∈ [0, η] compute:

13:

(
V g
f̃

(m,ψl(m)+ ν
N )+V g

f̃
(m,ψl(m)− ν

N )
)

2 → X
14: X → V g

f̃
(m,ψl(m)± ν

N )

15: Smoothing step:
16: smooth real and imaginary parts with piecewise cubic
17: Hermite interpolation.
18: Output: V̂ g

f̃
(m,ω)
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Fig. 2. Illustration of SSR-HT on the real and imaginary parts
of the STFT displayed in Fig.1 (c) and (d).

5. NUMERICAL EXPERIMENTS

This section investigates the performance of the new denois-
ing technique by comparing it, on both a simulated MCS
and a set of real signals, with hard-thresholding (HT) and
Block-Thresholding [16], denoted by BT hereafter. The Mat-
lab code implementing the method and the scripts generat-
ing all the figures of this paper can be found github.com/
phamduonghung/ICASSP2018.

Let us first consider a simulated MCS composed of two
cosine chirps containing high frequency modulations. We
first display the modulus of the STFT of the signal in Fig-
ure 3 (a). This signal is then contaminated by some additive
white Gaussian noises such that input Signal-to-Noise Ratio
(SNR) range is from−5 to 30 dB. Denoising results, depicted
in Figure 3 (b), display the output SNR associated with the re-
construction of the two modes with respect to input SNR, and
show that SSR-HT clearly outperforms the other denoising
techniques: the gain is 2dB on average compared with HT.
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Fig. 3. Denoising performance of three techniques: a): STFT
of the simulated MCS; (b): on the signal displayed in (a); (c)
on real noisy PCG signals (using boxplot [17]).

Finally, we study the performance of the proposed tech-
nique on noisy phonocardiogram (PCG) signals associated
with the database used in the sixth Signal Separation Evalua-
tion Campaign (SiSEC 2016) [18]. This database contains 16
noisy and noise-free signals, and we thus measure the qual-
ity of reconstruction in terms of SNR gain (i.e. output SNR-
input SNR). The denoising results correspond to the boxplots
in Figure 3 (c): while the SNR gain with SSR-HT is nearly 6,
it equals 4 and 2 with HT and BT respectively, which confirms
the potential interest of our new technique for real signals de-
noising.

6. CONCLUSION

We introduced in this paper a novel technique to denoise the
short-time Fourier transform of multicomponent signals, in-
spired by the flaws of hard-thresholding. We have then used
the denoised transform to perform mode reconstruction by lo-
cal integration taking into account local frequency modulation
and noise level. Numerical experiments demonstrated the ef-
fectiveness of the approach on multicomponent signals with
cosine phases and a database of real PCG signals.

github.com/phamduonghung/ICASSP2018
github.com/phamduonghung/ICASSP2018
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