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This paper discusses adaptive reconstruction of the
modes of multicomponent AM-FM signals by means
of their time-frequency (TF) representation derived
from their short time Fourier transform (STFT). The
STFT of an AM-FM component or mode spreads
the information relative to that mode in the TF
plane around curves commonly called ridges. An
alternative view, taken in this paper, is to consider
a mode as a particular TF domain termed a basin of
attraction. Here we discuss two new approaches to
mode reconstruction, the first determines the ridge
associated with a mode by considering location where
the direction of the reassignment vector sharply
changes; the technique used to determine the basin
of attraction being directly derived from the method
used for ridge extraction. A second uses the fact that
the STFT of a signal is fully characterized by its
zeros (and then the particular distribution of these
zeros for Gaussian noise) to deduce an algorithm
to compute the mode domains. For both techniques,
mode reconstruction is then carried out by simply
integrating the information inside these basins of
attraction.
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1. Introduction

In the signal processing community the meaning of frequency is well understood and over two
centuries we have developed a series of mathematical tools to enable us to analyse signals in
terms of the energy distribution in frequency. However, as with many obvious concepts, when we
deal with signals which contain multiple components and these components are time-varying life
becomes more difficult. The time-frequency (TF) analysis tools we have are often not appropriate
or the results are problematic to interpret. In this paper we focus on the adaptive reconstruction
of the modes of a multicomponent signal, consisting of AM-FM modes, by the use of the TF
representation from the short time Fourier transform (STFT) of the signal.

The last 40 years have seen numerous TF methods proposed, (see, e.g., [1], [2] or [3] for
surveys). In the methods for the analysis of AM-FM signals: the idealized scenario is that
these signals correspond to a perfectly localized trajectory associated with the instantaneous
frequency in the TF plane. Kodera, Gendrin and de Villedary pioneered an approach which
modified the STFT [4]. They pointed out that spreading the STFT magnitude can be compensated
for by taking into account the phase information usually discarded. Subsequently, Wigner-type
distributions, tailored to guarantee localization of signals with specific FM laws were developed,
though at the expense of cross-terms that were problematic in the multicomponent case. Auger
and Flandrin (who coined the term reassignment) showed that the explicit use of the STFT
phase can be efficiently replaced by a combination of STFTs with suitable windows [5]. Maes
and Daubechies then developed synchrosqueezing [6] a special case of reassignment, with the
additional advantage of enabling reconstruction. Such phase-based, data-driven methods have
recently gained a renewed interest (see, e.g., the review paper [7]), and it is from here that the
methods described in this paper begin.

The STFT of an AM-FM component or mode spreads the information relative to that mode
in the TF plane around curves commonly called ridges. Conventionally the focus of signal
reconstruction has been on dealing directly with these ridges. In this paper we develop an
alternative view by considering a mode as a particular TF domain which we term a basin of
attraction, (an early attempt in such a direction can be found in [8]). In this paper we focus on
two approaches, the first approach determines the ridge associated with a mode by considering
either the local maxima of the spectrogram in some predefined direction [9] or the zeros of the
ridge points, in relation to reassignment techniques [5] [10]; the technique used to determine the
basin of attraction is derived directly from the method for ridge extraction. The second exploits
the fact that the STFT of a signal is fully characterized by its zeros [11] and then exploits the
distribution of these zeros for Gaussian noise to deduce an algorithm which computes the basins
of attraction. Mode reconstruction is then carried out by simply integrating the information inside
these basins of attraction. Since, the zeros of STFT and the maxima of its modulus can both be
used for mode reconstruction, the goal of this paper is to draw parallels and to highlight the
differences between these two approaches and show their relevance in noisy situations and where
the number of modes varies with time. One final remark to note is that the proposed approaches
are expected to be beneficial for synchrosqueezing methods (see, e.g., [12] for recent advances),
because determining basins is a pre-requisite for reconstruction.

The paper is structured as follows, first of all we introduce the basic analysis tools used for TF
analysis such as the STFT and reassignment coupled with a discussion of the zeros of the STFT.
Then the two different techniques which are the core of this paper and which compute the basins
of attraction and mode domains are presented and discussed. We then present some numerical
experiments to validate these methods when applied to a variety of synthetic and natural signals.
Finally we draw some conclusions where we seek to highlight open issues worthy of further
exploration.
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2. Tools for time-frequency analysis

In this section, we briefly reprise the basics associated with TF analysis that are relevant to this
paper, specifically: the STFT, ridges and their relationship to the modes of multicomponent signals
and finally a brief description of the principles of reassignment. It then introduces by means of a
brief discussion the notion of the zeros of the STFT.

(@) The short-time Fourier transform
Given a signal f € ! (R), the space of real integrable functions, we define its Fourier transform
by:
flw)= J f(t)e ™t dt. @2.1)
R

The Short-Time Fourier Transform (STFT) of signal f is then defined by

V.t = | flgu— e du, (2)

R

where g is assumed to be a real-valued window with L? norm equal to 1. The spectrogram is then
defined as |qu (w, )]?. In the following, we will make extensive use of the unit energy Gaussian
window defined as:

g(t) = a/4et/2, (2.3)

(b) Ridges and multicomponent signals

A multicomponent signal is a superposition of AM/FM waves of the form:

K
F&) =" fi(t), with fi (t) = ag(t)e' D, 2.4)
k=1

for some finite K, where ay(t) > 0 is a continuously differentiable function, ¢ is a two times
continuously differentiable function satisfying ¢7,(t) >0 and ¢}, (t) > ¢}, (t) for all ¢.

The general form for the STFT of a multicomponent signal admits the following first order
approximation assuming a}, () < ¢ and ¢, (t) <’ [13,14]:

K K
Viw )= Vi (wt) Y ap®)e ™ Dgw - ¢, (1)). (2.5)
k=1 k=1

We can further assume that the modes satisfy the following separation condition:

Prr1(t) — Op(t) > A, (2.6)

where A is called separation parameter. In this case, using equation (2.5) and assuming the essential
frequency support of the window g is [—A, A] the components occupy a distinct domain of
the TF plane, allowing for their separation. In the following, f;, will be referred to as an AM-
EM component. Going further [V (w, )| ~ S ap(®)|(w — ¢,(1))], so that each mode f, is
associated with a TF ridge corresponding roughly to the (¢, ¢},(t)) curve provided |g| attains its
maximum at 0. The detection of ridges and their use in mode reconstruction has been pioneered
in [13] and subsequently developed in a number of works (see, e.g., [14] or [15]).

(c) Reassignment basics

In this section, the principle underlying the reassignment method (RM) in the STFT context, which
we will use later for ridge extraction, is introduced. The aim of RM is to compensate for the TF
shifts induced by the 2D smoothing which defines the STFT. To do so, a meaningful TF location
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to which the local energy given by the spectrogram is assigned, is first determined [5]. This
corresponds to the centroid of the distribution, whose coordinates are defined by

ty(w,t) = %—6wargig(w,t); (2.7)
Gp(w,t) = §+atargvfg(w,t), (2.8)

at any point (w, t) such that Vfg (w,t) # 0. Both quantities, which locally define an instantaneous
frequency and a group delay, enable perfect localization of linear chirps [5]. An efficient procedure
computes them according to:

A _ gl en) ’o

tr(w,t) = t+ W ; (2.9)
V9 (w,t

Of(w,t) = w—s{‘%} (2.10)

where tg stands for the function ¢g(¢) and R {Z} (resp. S {Z}) is the real (resp. imaginary) part of
the complex number Z. The RM is naturally associated with a so-called reassignment vector (RV)
defined by:

Wp(w,t) —w

RV(w,t)—( bp(w,1) — ¢ ) 2.11)

Assuming the window g is the Gaussian window with unit variance defined in (2.3), then
V;g(n, 1) = —VJ? (n,t), and thus RV can be rewritten as:

Vi (w,t) V9wt 1\
/ & f
<%{ Vi (w.t) }J{ Vi(w,t) }) ’ 2.12)

which can, in turn, be expressed in terms of the modulus of the STFT as follows [16]:

RV (w,t) = Vlog [V{ (w,?)], (2.13)

This last expression suggests a relationship between RV and local extrema of the amplitude of the
STFT: RV (w, t) is the null vector if and only if \V]? (w, t)] admits a local extremum both along time
and frequency directions. Moreover, (2.13) indicates that RVs tend to point towards local maxima
that can be interpreted as attractors, whereas zeros act as repellers: this will be discussed and used
in the following.

(d) On the zeros of the short time Fourier Transform

Rather than considering time and frequency independently, it can be interesting to consider them
as the real and imaginary parts of a complex-valued variable, thus identifying the TF plane with
the complex plane. Doing so by the introduction of z =w + it, allows a direct calculation to
show that, when evaluated with the Gaussian window ¢(t) defined in (2.3), the STFT (2.2) can
be rewritten as:

Viw,t)=e 15V (2), (2.14)
where,
Vf(z):J A(z, s)f(s)ds, (2.15)
R
with the kernel
—1 12 jsaq L2
A(z,8):=7 %e 2 ERN (2.16)

This corresponds to the Bargmann factorization of the STFT, with (2.15) the Bargmann transform
of f [17], that happens to be an entire function of order 2. As a consequence, the Weierstrass-
Hadamard theorem [18] guarantees that V¢(z) is completely characterized by the distribution of

10000000 V 008 "H "SUBLL lud B10'BulysgndAlaioosiesol-els)



its zeros, according to a factorization whose most general form reads

2 o 2z 1 z 2
Vi(z) = ZMeCotCrz+Caz H (1 — i) e T2 (Z) , (2.17)
n=1
where Cy, C71 and C are normalization, translation/rotation and squeezing factors respectively,
and m is the possible multiplicity of a zero at the origin of the plane [19]. Since the zeros z, of
V¢(z) also correspond to the zeros of the STFT, the latter is fully characterized by its zeros.

3. Time-frequency segmentation for mode separation

In this section, we investigate two different techniques to compute the basin of attraction
associated with one mode and then base our mode reconstruction on this approach. The first
technique to compute the basins of attraction involves the use of the direction of RV to define the
ridges and then the properties of the RV in the vicinity of the detected ridges, while the second is
based on a study of the zeros of the STFT.

(a) Determination of basins of attraction based on ridges and
reassignment vectors

There exist many different ways of computing the ridges associated with the TF representation
given by the STFT [14,15]. The ridge detector proposed here is based on the properties of RV, in
our context ridge points (RPs) are associated with a sharp variation in the direction of the RV. These
can be computed by considering the projection of the RV onto a predefined direction associated
with the angle 5 4 v [9] and then the zeros of the projected vector, i.e.:

tg
S{Vf (w,t)

VI D) eiv} =(RV(w,1),vz4,) =0, (3.1)
Ay

where v), is the unit vector in the direction A. The RPs thus correspond to points where the inner
product of the RV with unit vector in the direction 5 + + changes sign.

Because RV =V log |qu | (see 2.13), (RV (w, t), vz 1) can be viewed as the directional gradient
in the direction 7 4 +. Since in (3.1) the direction v is fixed a priori, the method is not adaptive.
To improve the adaptability of the method a variant was proposed in [10] which consisted of
modifying the definition of RPs as follows:

<RV(W7t)7'U9(w,t)mod x) =0. (3.2)

with RV (w, t) = r(w, t)e’?“@?) and where 8 mod = belongs to [0, 7[. It is worth noting here that
when RV belongs to [0, 7| (resp. | — 7, 0]), (RV (w, %), g(w,¢) mod =) €quals 1 (resp. —1).

The underlying rationale for this construction is that on each side of a ridge, the RV points
in opposite directions. The behaviour of RV in the vicinity of a ridge associated with TF
representation of Figure 1 A is displayed on Figure 1 C. So from one perspective, the ridge can
be viewed as an attractor for the reassignment vector field. The RPs defined in (3.2) are not only
associated with ridges but form more general structures in the TF plane which we call contours.
These contours do not branch, but terminate on the borders of the TF axes, or form closed loops
as discussed in [9]. In addition, the phase along a contour varies smoothly until it passes through
a singularity in the zeros of the STFT. The method then segments the contours whenever they
cross the zeros of the STFT. This raises the question, why do contours necessarily pass through
zeros of the STFT? The RV as stated in expression (2.13) is oriented, in the vicinity of the zeros of
the spectrogram of a bat signal (displayed in Figure 1 A), as shown in Figure 1 B. Note that this
behaviour for RV in the vicinity of the zeros of the spectrogram is independent of the the signal
studied. Consequently, the zeros can be viewed as reppellers for the reassignment vector field.
Then, due to the "mod 7" term in the definition (3.2), (RV (w, t), V(e t) mod =) 18 Positive above a
zero and negative otherwise. Thus, the contour is horizontal in the vicinity of these points. Note
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frequency
frequency
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Figure 1. A: Signal spectrogram of a bat signal with the zeros and the ridges superimposed; B: RV close to a zero of the
spectrogram (in red), white arrows represent the RV and the nearby contour is plotted in black; C: RV close to a ridge of
the spectrogram, blue arrows represent the RV and the ridge is plotted in black.
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Figure 2. left: Delaunay triangulation based on the zeros of the spectrogram for a noise signal; right: Delaunay
triangulation based on the zeros of the spectrogram of a mode superimposed to the noise of the left diagram.

that, due to TF discretization, zeros of the spectrogram cannot be exactly determined, therefore a
contour actually passes in the vicinity of the discrete minimum but not necessarily onto it.

Another interesting aspect of the proposed method lies in the fact that the contour does not
necessarily last for the whole time span of the signal: if the energy becomes locally too small the
ridge ends on the nearby zeros of the STFT. This last point is very important since it indicates
that a mode dies when it connects with a zero. Usually, the presence or otherwise of a mode is
assessed in terms of the statistics of the spectrogram of the noise. The basic idea being that in order
to qualify as a mode the points should not obey this statistic, and an ad hoc machinery is required
to connect such points [20]. In our framework, it is not necessary to perform any statistical analysis
to characterize the birth and death of a mode since our study is based on the locations of the zeros.
An illustration of this phenomenon is given in Figure 1 A, where the contours and the zeros are
superimposed on the spectrogram of a noisy bat signal.

Finally, to build the basin of attraction knowing the location of a contour, we consider the most
frequent contour in the vicinity of (¢7(w,t),&f(w,t)). Each point (w, t) is then given the index of
the ridge it is attached to, and the set of points attached to ridge ¢ is denoted by ;. Note here that
the notion of basin of attraction is one way to recover the information associated with one mode
and there exist several other ways of gathering this information as will be discussed later.
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(b) Determination of mode domains based on Delaunay triangulation
upon zeros

The second approach to determining a TF domain attached to a given mode arises from noting
that the zeros of the STFT completely characterize it. Consequently it is natural to consider these
as a 2D point process in the TF plane, with properties which are associated with the nature
of the analyzed signal. So initially we consider a simplified, geometrical description of the TF
structure of a signal by considering the diagrams connecting STFT zeros, i.e. the so-called stellar
representation used in Quantum Mechanics [19,21] (see also [22] for a related TF perspective). The
simplest approach is to use Delaunay triangulation [23]. When these diagrams are considered
for white Gaussian noise using the Delaunay triangulation approach, a homogeneous 2D random
field defined by the STFT zeros results and the distribution of the zeros is itself homogeneous over
the plane. It is expected that this will be no longer the case for a signal with a coherent TF structure,
e.g. frequency modulation superimposed. Figure 2 illustrates that this is exactly what happens:
when an AM-FM chirp is added to the noise of the left diagram, the noise-only regions remain
unaffected whereas the signal domain is characterized not only by large spectrogram values but
also by Delaunay triangles with longer edges than in noise-only regions. Note that the addition
of coherent signal structure to incoherent noise does not change the total number of zeros in the
plane, but simply modifies their distribution so that they tend to align along the border of mode
domains that tend to identify to the previously defined basins of attraction.

Theoretical considerations and the evidence displayed in Figure 2 suggest that signal domains
could be identified by considering Delaunay triangles that depart from the expected behaviour
associated with noise. In [11] it was shown that the distribution of edge lengths of Delaunay
triangles constructed using STFT zeros for the case of white Gaussian noise is essentially bounded
above by a maximum value Lmax ~ 2.2 (in the system of normalized units corresponding to the
window (2.3)), with a very low probability of exceeding 2 (referring as |emn | the distance between
any two zeros z,, and zp, in a Delaunay triangle, a numerical evaluation evidenced that P{|e/mn| >
2} ~ 1073). Selecting Delaunay triangles on the basis of thresholding their maximum edge length
is therefore a simple way of identifying elementary local domains whose concatenation defines
global mode domains B; via supports delineated by zeros.

(c) Mode reconstruction

Whatever the method (ridges or zeros), having computed the different basins B; corresponding
to the different modes of the signal, the reconstruction of the mode associated with basin ¢ is then
performed by means of the classical inversion formula:

fi(t) = “R2 Vi(w, t)1g, (@, 0)g(r — )"~/ dtdw /2m, (3.3)

where 1 x is the indicator function of X.

(d) Comparison of the ridge and zeros based method for the computation
of basins of attraction

We now compare the techniques based on the computation of the basins of attraction using
ridge location and RV direction to that based on the mode domains resulting from the Delaunay
triangulation of the zeros of the spectrogram. To illustrate the different behaviours we first
consider a synthetic noisy three mode signal, each mode having sinusoidal phase. We display
in Figure 3-A the spectrogram of the signal along with the ridges and basins of attraction
corresponding to each mode on Figure 3-B and finally the mode domains based on Delaunay
triangulation for the same noisy signal on Figure 3-C. We notice that as expected the TF domains
associated with the three modes are correctly estimated allowing a good separation of the modes
even when the noise level is relatively high (10 dB in this example).
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Ridges, basins and zeros
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Figure 3. A: Spectrogram of synthetic three mode signal with additive Gaussian noise (SNR = 10 dB); B: Ridges and
basins of attraction computed as explained in section 3(a); C: Mode domains computed using Delaunay triangulation as
explained in section 3(b)

smooth attack sharp attack

“o 500 1000 1500 2000 2500 3000 3500 4000 ~o 500 1000 1500 2000 2500 3000 3500 4000
A B

Figure 4. Damped tone with a smooth attack (raised cosine, left column) and a sharp attack (step function, right column).

4. Numerical validation

In this section, we investigate the properties of the proposed techniques for mode identification
and reconstruction for signal denoising as well as illustrating a sound processing application [24].
We have selected two types of signals as examples for their intrinsic TF properties that fit the
AM/FM multi-component model well, cf. Eq. (2.4 ) but also for their ability to cover a large class
of musical sounds [25] (and more generally the class of signals produced by vibrating structures
[26]). These are: the damped sinusoid (with a smooth or a sharp attack) related to percussive
signals, i.e. the impulse response of a resonant structure, and an excerpt of a cello sound, a typical
case of a sustained harmonic signal [27].

(a) Denoising of a damped tone

We first study the denoising performance of the proposed algorithms based on determining the
basins of attraction and mode domains for reconstruction, on a damped tone, a simple and widely
used model in audio. [28]. Two cases are considered, with either a smooth attack (raised cosine)
or a sharp one (step function), see respectively Figures 4 A and 4 B.

In the first case, we display the spectrogram of such a signal contaminated by additive white
Gaussian noise on Figure 5 A, the basins of attraction with respect to the energy of the STFT
computed on their associated ridges on Figure 5 B and the Delaunay domains on Figure 5 C.
Finally, Figure 5-D presents the denoising performance for both methods. The output SNR is
computed by comparing the original signal to the mode reconstructed using the 3 most energetic
basins of attraction for the method based on RV or Delaunay triangulation. For the Delaunay
triangulation method, the choice of considering the 3 most energetic basins of attraction is based
on the numerical observation: most of the energy is contained in the first three basins of attraction.
In this example, both methods behave in a very similar fashion.
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Figure 5. A: Spectrogram of a noisy damped tone with a smooth attack (SNR = 0 dB); B: Main ridges and basins of
attraction derived from the RV; C: Mode domains derived from Delaunay triangulation; D: Denoising performance of the
mode reconstruction.

A similar analysis is provided for the case of the sharp attack, see Figure 6. The damped tone
with a sharp attack exhibits a TF representation made of a horizontal and a vertical part, the
latter corresponding to the attack. What is interesting about this signal is that it no longer satisfies
(2.4) because the amplitude of the mode is no longer differentiable. The behaviour of the two
methods on this type of signal are significantly different. While the method based on the Delaunay
triangulation manages to capture the horizontal and the vertical parts of the mode, the method
based on RV never acquires the attack (even at low noise levels). This results in an output SNR
which is much worse for the latter compared with the former method. Note that the vertical TF
structure could be detected using the method based on RV by changing 6(w, t) mod = in (3.2) into
f(w,t) + 5 mod m — 7, but then two different analyses are required to properly analyze such
a signal. An alternative method, connected with the RV, which will be investigated in the near
future, would be based on the analysis on bidimensional ridge detection [29].

(b) Analysis of a cello sound

We now apply the techniques proposed in this paper to the problem of identification and
extraction of the harmonic structure of the first part of a cello note, a G5 (a frequency of 776 H z).
The temporal structure of the example (sampled at 11025 Hz and lasting for 0.7 seconds) is
relatively complex and shows a fast attack followed by some AM-FM modulations (cf. Figure 7-
A). Its spectrograms is easier to decipher as it clearly exhibits the first six partials that lie within the
available frequency range [0, 55012.5] Hz (Figure 8-A). Note the vibrato effect, which appears as a
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Figure 6. A: Spectrogram of a noisy damped tone with a sharp attack (SNR = 0 dB); B: Main ridges and basins of
attraction derived from the RV; C: Mode domains derived from Delaunay triangulation; D: Denoising performance of the
mode reconstruction methods

pseudo-sinusoidal modulation of the fundamental frequency and results in a frequency deviation
that increases proportionally to the harmonic rank. Also note the presence of noise during the note
attack around 0.05s; this is produced by the bow rubbing the string while the oscillatory motion
takes place [27].

For the RV-based analysis (Figure 8-B), we verify once again that the basins of attraction
are easily determined for high amplitude modes; this is indeed the case for the first (i.e., the
fundamental) and the fourth. For the other modes, spurious zeros in the spectrogram might cause
the splitting of the basin associated with a single mode into several smaller basins. Note that while
the algorithm detects the modes, reconstructing them based on their basins of attraction would
require some post-processing steps in order to group them in some relevant way.

In the case of the mode domain extraction based on the Delaunay triangulation, each of
the six harmonic partials are clearly identified by corresponding domains that track frequency
modulations well (Figure 8-C). The highest amplitude partial is entirely represented by only one
domain, while each of the others is represented by a few sub-domains, usually due to a missing
triangle that breaks the continuity of the whole. As in the case of the RV-based method, a post-
processing step would help merging sub-domains to reconstitute the domain that represents a
whole partial. In addition, the Delaunay-based method confirms its ability to detect and render
transients. Indeed, note the vertical structure centred around the attack time (0.05s, Figure 8-C).
Finally, an experiment was performed to reconstruct the harmonic and attack structure of the cello
sound from selected Delaunay domains applied as masks through reconstruction technique (3.3).
One can see the temporal representation of the reconstructed signal in Figure 7-B which looks
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very similar to the original excerpt (cf. Figure 7-A). An auditory comparison confirms how close
the two signals are.

In terms of post-processing, for both of the RV and Delaunay-based methods, notice that
when the modes are harmonically related, one can benefit from the fact that the instantaneous
frequencies of harmonic components are multiples of the fundamental frequency to gather
together basins of attraction/mode domains associated with a given mode. Notice also that
this pertains to the problem of reconstructing trajectories of partials in the context of additive
synthesis [30]. This is a topic which we will seek to address in the near future. A fruitful
application for this harmonic identification/extraction is the separation of the noisy part from
the pseudo-periodic part of any given sound. This is a key step in preserving the perceptual
naturalness and in achieving high quality results in advanced audio processing techniques such
as time-scaling, transposition or sound morphing [31]. Indeed, one has to process differently the
pseudo-deterministic part from the noisy part (e.g., for time-scaling and transposing sounds, the
noisy attack part has to remain unchanged).

Cello - Original signal Cello_1 - Reconstructed signal

T T 1 T T

Amplitude
Amplitude

Time (s)

A B

Figure 7. A: Cello sound - original signal; B: Cello Sound - reconstructed signal after mode domain extraction derived
from Delaunay triangulation.

Ridges and basins

Cello_1- Selected Delaunay domains

frequency
frequency
frequency (Hz)

fime fime 01 02 03 04 05 06

A B C

Figure 8. A: Spectrogram of a cello sound; B: Main ridges and basins of attraction derived from the RV; C: Mode domains
derived from Delaunay triangulation.
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5. Conclusion

In this paper we have presented two different STFT-based mode decompositions: the first
estimates the ridges, then computes the basins associated with the modes by making use of the
reassignment vector. The second is more novel, since it only uses the location of the STFT’s zeros
to build these domains. Both methods provide a segmentation of the TF-plane into meaningful
components, and a reconstruction of these modes in a fully adaptive way. The experiments
presented here show that both methods can decompose multicomponent signals with high
accuracy, even when the signals are contaminated by noise. The comparisons also show that
the ridge-based reconstruction can be more precise, whereas the Delaunay-based segmentation
allows for more complex modes (e.g. containing sharp attacks, or impulses). To conclude, we
note that such TF adaptive decompositions can be easily applied to time-scale representations
(e.g., continuous wavelet transform), which is more appropriate for some particular modulations
and inter-mode separation. Similarly, it should be possible to adapt such decompositions to non-
harmonic signals. This will be the subject of further study, which will also focus on real-life
applications e.g. in automatic music signal analysis.
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