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High-Order Synchrosqueezing Transform for

Multicomponent Signals Analysis - With an

Application to Gravitational-Wave Signal
Duong-Hung Pham, and Sylvain Meignen.

Abstract

This study puts forward a generalization of the short-time Fourier-based Synchrosqueezing Transform

using a new local estimate of instantaneous frequency. Such a technique enables not only to achieve a

highly concentrated time-frequency representation for a wide variety of AM-FM multicomponent signals

but also to reconstruct their modes with a high accuracy. Numerical investigation on synthetic and

gravitational-wave signals shows the efficiency of this new approach.

Index Terms

Time-frequency, reassignment, synchrosqueezing, AM/FM, multicomponent signals.

I. INTRODUCTION

Many signals such as audio signals (music, speech), medical data (electrocardiogram, thoracic and

abdominal movement signals), can be modeled as a superposition of amplitude- and frequency-modulated

(AM-FM) modes [1]–[3], called multicomponent signals (MCS). Linear techniques as for instance contin-

uous wavelet transforms (CWT) and short-time Fourier transform (STFT) are often utilized to characterize

such signals in the time-frequency (TF) plane. However, they all share the same limitation, known as

the “uncertainty principle”, stipulating that one cannot localize a signal with arbitrary precision both

in time and frequency. Many efforts were made to cope with this issue and, in particular, a general

methodology to sharpen TF representation, called “reassignment” method (RM) was proposed. This was
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first introduced in [4], in a somehow restricted framework, and then further developed in [5], as a post-

processing technique. The main problem associated with RM is that the reassigned transform is no longer

invertible and does not allow for mode reconstruction.

In the context of audio signal analysis [6], Daubechies and Maes proposed another phase-based

technique, called “SynchroSqueezing Transform” (SST), whose theoretical analysis followed in [7]. Its

purpose is relatively similar to that of RM, i.e. to sharpen the time-scale (TS) representation given by CWT,

with the additional advantage of allowing for mode retrieval. Using the principle of wavelet-based SST

(WSST), Thakur and Wu proposed an extension of SST to the TF representation given by STFT (FSST)

[8], which was then proven to be robust to small bounded perturbations and noise [9]. Nevertheless, the

applicability of SST is somewhat hindered by the requirement of weak frequency modulation hypothesis

for the modes constituting the signal. In contrast, most real signals are made up of very strongly modulated

AM-FM modes, as for instance chirps involved in radar [10], speech processing [11], or gravitational

waves [12], [13]. In this regard, a recent adaptation of FSST to the context of strongly modulated modes

was introduced in [14], and further mathematically analyzed in [15]. Unfortunately, the aforementioned

technique was proven to only provide an ideal invertible TF representation for linear chirps with Gaussian

modulated amplitudes, which is still restrictive.

In this paper, we propose to improve existing STFT-based SSTs by computing more accurate estimates

of the instantaneous frequencies of the modes making up the signal, using higher order approximations

both for the amplitude and phase. This results in perfect concentration and reconstruction for a wider

variety of AM-FM modes than what was possible up to now with synchrosqueezing techniques.

This paper is structured as follows: we recall some fundamental notation and definitions on Fourier

Transform (FT), STFT and MCS in Section II-A, and introduce FSST with its extension, the second-order

FSST (FSST2) respectively in Sections II-B and II-C. We then present the proposed generalization, called

higher-order synchrosqueezing transform in Section III. Finally, the numerical simulations of Section IV

demonstrate the interest of our technique on both simulated signals and a gravitational-wave signal.

II. BACKGROUND TO FSST

Before going in detail into the principle of FSST, the following section presents several notation that

will be used in the sequel.

A. Basic Notation and Definitions

The Fourier transform (FT) of a given signal f ∈ L1(R) is defined as:

f̂(η) =

∫
R
f(t)e−i2πηtdt. (1)
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If f̂ is also integrable, f can be reconstructed through:

f(t) =

∫
R
f̂(η)ei2πηtdη. (2)

It is well known that time- or frequency-domain representation alone is not appropriate to describe

non-stationary signals whose frequencies have a temporal localization. The short-time Fourier transform

(STFT) was thus introduced for that purpose, and is defined as follows: given a signal f ∈ L1(R) and

a window g in the Schwartz class, the space of smooth functions with fast decaying derivatives of any

order, the (modified) STFT of f is defined by:

V g
f (t, η) =

∫
R
f(τ)g∗(τ − t)e−2iπη(τ−t)dτ, (3)

where g∗ is the complex conjugate of g, and then the spectrogram corresponds to |V g
f (t, η)|2. Furthermore,

the original signal f can be retrieved from its STFT through the following synthesis formula, on condition

that g does not vanish and is continuous at 0:

f(t) =
1

g∗(0)

∫
R
V g
f (t, η)dη. (4)

If f is analytic, i.e. η ≤ 0 then f̂(η) = 0, the integral in (4) only takes place on R+.

In the sequel, we will intensively study multicomponent signals (MCS) defined as a superposition of

AM-FM components or modes:

f(t) =

K∑
k=1

fk(t) with fk(t) = Ak(t)e
i2πφk(t), (5)

for some finite K ∈ N, Ak(t) and φk(t) are respectively instantaneous amplitude (IA) and phase (IP)

functions satisfying: Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for all t where φ′k(t) is referred to as

the instantaneous frequency (IF) of mode fk at time t. Such a signal is fully described by its ideal TF

(ITF) representation defined as:

TIf (t, ω) =

K∑
k=1

Ak(t)δ
(
ω − φ′k(t)

)
, (6)

where δ denotes the Dirac distribution.

B. STFT-based SST (FSST)

The key idea of STFT-based SST (FSST) is to sharpen the “blurred” STFT representation of f by

using the following IF estimate at time t and frequency η:

ω̂f (t, η) =
1

2π
∂targ

{
V g
f (t, η)

}
= <

{
∂tV

g
f (t, η)

2iπV g
f (t, η)

}
, (7)
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where arg{Z} and <{Z} stand for the argument and real part of complex number Z, respectively, and

∂t is the partial derivative with respect to t.

Indeed, V g
f (t, η) is reassigned to a new position (t, ω̂f (t, η)) using the synchrosqueezing operator

defined as follows:

T g,γf (t, ω) =
1

g∗(0)

∫
{η,|V gf (t,η)|>γ}

V g
f (t, η)δ (ω − ω̂f (t, η)) dη, (8)

where γ is some threshold.

Since its coefficients are reassigned along the “frequency” axis, FSST preserves the causality property,

thus making the kth mode approximately reconstructed by integrating T g,γf (t, η) in the vicinity of the

corresponding ridge (t, φ′k(t)):

fk(t) ≈
∫
{ω,|ω−ϕk(t)|<d}

T g,γf (t, ω)dω, (9)

where ϕk(t) is an estimate of φ′k(t). Parameter d enables to compensate for both the inaccurate ap-

proximation ϕk(t) of φ′k(t) and the error made by estimating the IF by means of ω̂f (t, η). It is worth

noting here that the approximation ϕk(t) must be computed before retrieving mode fk. For that purpose,

a commonly used technique is based on ridge extraction assuming T g,γf and K are known [7], [16]. This

technique initially proposed by Carmona et al. [17] relies on the minimization of the following energy

functional:

Ef (ϕ) =

K∑
k=1

−
∫
R
|T g,γf (t, ϕk(t))|2dt+

∫
R
λϕ′k(t)

2 + βϕ′′k(t)
2dt, (10)

where λ and β are chosen regularization parameters such that the trade-off between smoothness of ϕk

and energy is maximized. In practice, this energy functional is hard to implement because of its non-

convexity, and so one should find tricks to avoid local minima as much as possible, as for example using

a simulated annealing algorithm proposed in [17]. A recent algorithm introduced in [9], and used in

this paper, determines the ridge associated with the corresponding mode thanks to a forward/backward

approach for different initializations. Furthermore, a detailed study on the influence of the regularization

parameters, introduced recently in [18], shows that they should not be used in (10) since they bring no

improvement in term of accuracy of ridge estimation.

Finally, a very important aspect of FSST is that it is developed in a solid mathematical framework.

Indeed, assume the modes of an MCS satisfy the following definition:

Definition II.1. Let ε > 0 and Bε,∆ be the class of MCS such that for all k, Ak ∈ C1(R)
⋂
L∞(R), φk ∈

C2(R), supptφ
′
k(t) <∞, and for ∀t, Ak(t) > 0, φ′k(t) > 0 satisfy two hypotheses:

• H1) fks have weak frequency modulation, i.e. ∃ε small s.t.: |A′k(t)| ≤ ε and |φ′′k(t)| ≤ ε for ∀t.
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• H2) all fks are well separated in frequency, i.e. |φ′k+1(t)− φ′k(t)| ≥ 2∆ for ∀t and ∀k ∈ {1, ...,K},

where ∆ is called the separation parameter.

Then, it was proven in [15] that the synchrosqueezing operator T g,γf is concentrated in narrow bands

around the curves (t, φ′k(t)) in the TF plane and the modes fks can be reconstructed from T g,γf (t, ω)

with a reasonably high accuracy.

C. Second Order STFT-based SST (FSST2)

Although FSST proves to be an efficient solution for enhancing TF representations, its application is

restricted to a class of MCS composed of slightly perturbed pure harmonic modes. To overcome this

limitation, a recent extension of FSST was introduced based on a more accurate IF estimate, which is

then used to define an improved synchrosqueezing operator T g,γ2,f (t, η), called second-order STFT-based

synchrosqueezing transform (FSST2) [14], [15].

More precisely, a second-order local modulation operator is first defined and then used to compute

the new IF estimate. This modulation operator corresponds to the ratio of the first-order derivatives, with

respect to t, of the reassignment operators, as explained in the following:

Proposition II.1. Given a signal f ∈ L2(R), the complex reassignment operators ω̃f (t, η) and τ̃f (t, η)

are respectively defined for any (t, η) s.t. V g
f (t, η) 6= 0 as:

ω̃f (t, η) =
∂tV

g
f (t, η)

2iπV g
f (t, η)

τ̃f (t, η) = t−
∂ηV

g
f (t, η)

2iπV g
f (t, η)

. (11)

Then, the second-order local complex modulation operator q̃t,f (t, η) is defined by:

q̃t,f (t, η) =
∂tω̃f (t, η)

∂tτ̃f (t, η)
whenever ∂tτ̃f (t, η) 6= 0. (12)

In that case, the definition of the improved IF estimate associated with the TF representation given by

STFT is derived as:

Definition II.2. Let f ∈ L2(R), the second-order local complex IF estimate of f is defined as:

ω̃
[2]
t,f (t, η) =


ω̃f (t, η) + q̃t,f (t, η)(t− τ̃f (t, η)) if ∂tτ̃f 6= 0

ω̃f (t, η) otherwise.

Then, its real part ω̂[2]
t,f (t, η) = <{ω̃[2]

t,f (t, η)} is the desired IF estimate.
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It was demonstrated in [14] that <{q̃t,f (t, η)} = φ′′(t) when f is a Gaussian modulated linear chirp,

i.e. f(t) = A(t)ei2πφ(t) where both log(A(t)) and φ(t) are quadratic. Also, <{ω̃[2]
t,f (t, η)} is an exact

estimate of φ′(t) for this kind of signals. For a more general mode with Gaussian amplitude, its IF can

be estimated by <{ω̃[2]
t,f (t, η)}, in which the estimation error only involves the derivatives of the phase

with orders larger than 3. Furthermore, ω̃f , τ̃f and q̃t,f can be computed by means of only five STFTs

as follows:

Proposition II.2. For a signal f ∈ L2(R), the expressions ω̃f , τ̃f and q̃t,f can be written as:

ω̃f = η − 1

i2π

V g′

f

V g
f

τ̃f = t+
V tg
f

V g
f

q̃t,f =
1

i2π

V g′′

f V g
f −

(
V g′

f

)2

V tg
f V g′

f − V
tg′

f V g
f

,

(13)

(14)

(15)

where V g
f denotes V g

f (t, η) and V g′

f , V
tg
f , V g′′

f , V tg′

f are respectively STFTs of f computed with windows

t 7→ g′(t), tg(t), g′′(t) and tg′(t).

The second-order FSST (FSST2) is then defined by simply replacing ω̂f (t, η) by ω̂[2]
t,f (t, η) in (8):

T g,γ2,f (t, ω) =
1

g∗(0)

∫
{η,|V gf (t,η)|>γ}

V g
f (t, η)δ

(
ω − ω̂[2]

t,f (t, η)
)
dη.

Mode fk is finally retrieved by replacing T g,γf (t, ω) by T g,γ2,f (t, ω) in (9). Note that the theoretical

foundation to support FSST2 has just been proposed in [15].

Remark. By using partial derivatives with respect to η instead of t, a new second-order local modulation

operator q̃η,f (t, η) showing the same properties as those of q̃t,f (t, η) can be obtained as follows:

Definition II.3. Given a signal f ∈ L2(R), the second-order local complex modulation operator q̃η,f is

defined by:

q̃η,f (t, η) =
∂ηω̃f (t, η)

∂η τ̃f (t, η)
whenever ∂η τ̃f (t, η) 6= 0, (16)

where ω̃f (t, η) and τ̃f (t, η) are respectively defined in (11).

The next proposition shows that this new operator also leads to a perfect estimate of the frequency

modulation for a Gaussian modulated linear chirp.

Proposition II.3. If f(t) = A(t)ei2πφ(t) is a Gaussian modulated linear chirp, then <{q̃η,f (t, η)} = φ′′(t).
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Proof: Let us consider a mode f(τ) = A(τ)ei2πφ(τ) where log(A(τ)) and φ(τ) are quadratic

functions described by:

log(A(τ)) =

2∑
k=0

αk
k!
τk and φ(τ) =

2∑
k=0

βk
k!
τk,

with αk, βk ∈ R. The STFT of this mode with any window g, at time t and frequency η, can be written

as:
V g
f (t, η) =

∫
R
f(τ + t)g(τ)e−i2πητdτ

=

∫
R

exp

(
2∑

k=0

1

k!
(αk + i2πβk) (τ + t)k

)
g(τ)e−i2πητdτ.

By taking the partial derivative of V g
f (t, η) with respect t, and then dividing by i2πV g

f (t, η), the local IF

estimate ω̃f (t, η) defined in (11) can be obtained for V g
f (t, η) 6= 0:

ω̃f (t, η) =

2∑
k=1

(
1

i2π
αk + βk

)
tk−1 +

(
1

i2π
α2 + β2

)
V tg
f (t, η)

V g
f (t, η)

. (17)

Then, taking the partial derivative of (17) with respect to η and recalling from Proposition II.2 that
V tg
f (t, η)

V g
f (t, η)

= τ̃f (t, η)− t, we get the following expression:

∂ηω̃f (t, η) =

(
1

i2π
α2 + β2

)
∂η τ̃f (t, η). (18)

Setting q̃η,f (t, η) =
∂ηω̃f (t, η)

∂η τ̃f (t, η)
assuming ∂η τ̃f (t, η) 6= 0 and noting that β2 = φ′′(t), ends the proof.

From (17) and (18), we also have the following result:

φ′(t) = β1 + β2t

= <
{
ω̃f (t, η)−

(
1

i2π
α2 + β2

)
(τ̃f (t, η)− t)

}
= <{ω̃f (t, η) + q̃η,f (t, η)(t− τ̃f (t, η))} . (19)

Putting ω̃
[2]
η,f (t, η) = ω̃f (t, η) + q̃η,f (t, η)(t − τ̃f (t, η)), it follows that φ′(t) = <

{
ω̃

[2]
η,f (t, η)

}
. Thus, a

new IF estimate having the same properties as ω̃[2]
t,f (t, η) is introduced as follows:

Definition II.4. Let f ∈ L2(R), the second-order local complex IF estimate of signal f is defined by:

ω̃
[2]
η,f (t, η) =


ω̃f (t, η) + q̃η,f (t, η)(t− τ̃f (t, η)) if ∂η τ̃f (t, η) 6= 0

ω̃f (t, η) otherwise.

Then, its real part ω̂[2]
η,f (t, η) = <{ω̃[2]

η,f (t, η)} is the desired IF estimate.

Note, finally, that:
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Proposition II.4. The second-order modulation operator q̃η,f (t, η) can be computed by:

q̃η,f =
1

i2π

(
V g
f

)2
+ V g

f V
tg′

f − V g′

f V
tg
f

V g
f V

t2g
f −

(
V tg
f

)2 , (20)

where V t2g
f is the STFT of the signal f computed with window t 7→ t2g(t).

Proof: By computing the partial derivatives of ω̃f (t, η) and τ̃f (t, η) with respect to η in the expres-

sions given in Proposition II.2, and then using formula ∂ηV
g
f (t, η) = −i2πV tg

f (t, η), the expression for

q̃η,f follows.

III. HIGHER ORDER SYNCHROSQUEEZING TRANSFORM

Despite FSST2 definitely improves the concentration of TF representation, it is only demonstrated to

work well on perturbed linear chirps with Gaussian modulated amplitudes. To handle signals containing

more general types of AM-FM modes having non-negligible φ(n)
k (t) for n ≥ 3, we are going to define

new synchrosqueezing operators, based on approximation orders higher than three for both amplitude

and phase.

A. Nth-order IF Estimate

The new IF estimate we define here is based on high order Taylor expansions of the amplitude and

phase of a mode. For that purpose, let us first consider a mode defined as in the following:

Definition III.1. Given a mode f(τ) = A(τ)ei2πφ(τ) in L2(R) with A(τ) (resp. φ(τ)) equal to its

Lth-order (resp. N th-order) Taylor expansion for τ close to t:

log(A(τ)) =

L∑
k=0

[log(A)](k)(t)

k!
(τ − t)k

φ(τ) =

N∑
k=0

φ(k)(t)

k!
(τ − t)k

where Z(k)(t) denotes the kth derivative of Z evaluated at t.

A mode f defined as above, with L ≤ N , can be written as:

f(τ) = exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πφ(k)(t)

)
(τ − t)k

)
,

July 13, 2017 DRAFT
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since [log(A)](k)(t) = 0 if L+1 ≤ k ≤ N . Consequently, the STFT of this mode at time t and frequency

η can be written as:

V g
f (t, η) =

∫
R
f(τ + t)g(τ)e−i2πητdτ

=

∫
R

exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πφ(k)(t)

)
τk

)
g(τ)e−i2πητdτ.

By taking the partial derivative of V g
f (t, η) with respect to t and then dividing by i2πV g

f (t, η), the local

IF estimate ω̃f (t, η) defined in (11) can be written when V g
f (t, η) 6= 0 as:

ω̃f (t, η) =

N∑
k=1

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

=
1

i2π
[log(A)]′(t) + φ′(t) +

N∑
k=2

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

, (21)

where rk(t) are functions of t defined for k = 1, . . . , N as:

rk(t) =
1

(k − 1)!

(
1

i2π
[log(A)](k)(t) + φ(k)(t)

)
.

It is clear from (21) that, since A(t) and φ(t) are real expressions, <{ω̃f (t, η)} = φ′(t) does not hold

when the sum on the right hand side of (21) has a non-zero real part. As in the case of the Gaussian

modulated linear chirp introduced before, to get the exact IF estimate for the studied signal, one needs

to subtract <

{
N∑
k=2

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

}
to <{ω̃f (t, η)}, for which rk(t), for all k = 2, . . . , N , must be

estimated.

For that purpose, inspired by our study of the Gaussian modulated linear chirp, we derive a frequency

modulation operator q̃[k,N ]
η,f , equal to rk(t) when f satisfies Definition III.1, obtained by differentiating

different STFTs with respect to η, as explained hereafter. Note that we choose to differentiate with respect

to η rather than t because it leads to much simpler expressions, mainly as a result of the following

formulae:

∂tV
g
f (t, η) = i2πηV g

f (t, η)− V g′

f (t, η)

∂ηV
g
f (t, η) = −i2πV tg

f (t, η). (22)

The different modulation operators q̃[k,N ]
η,f for k = 2, . . . , N can then be derived recursively, as explained

in the next proposition:

July 13, 2017 DRAFT
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Proposition III.1. Given a mode f ∈ L2(R) that satisfies Definition III.1 with L ≤ N , the N − 1 local

modulation operators q̃[k,N ]
η,f such that <

{
q̃

[k,N ]
η,f (t, η)

}
=

φ(k)(t)

(k − 1)!
, k = 2, . . . , N , can be determined by:

q̃
[N,N ]
η,f (t, η) = yN (t, η) and

q̃
[j,N ]
η,f (t, η) = yj(t, η)−

N∑
k=j+1

xk,j(t, η)q̃
[k,N ]
η,f (t, η) for j = N − 1, N − 2, . . . , 2,

where yj(t, η) and xk,j(t, η) are defined as follows. For any (t, η) s.t. V g
f (t, η) 6= 0 and ∂ηxj,j−1(t, η) 6= 0,

we put:

for k = 1 . . . N, y1(t, η) = ω̃f (t, η) and xk,1(t, η) =
V tk−1g
f (t, η)

V g
f (t, η)

,

and then for j = 2 . . . N and k = j . . . N,

yj(t, η) =
∂ηyj−1(t, η)

∂ηxj,j−1(t, η)
and xk,j(t, η) =

∂ηxk,j−1(t, η)

∂ηxj,j−1(t, η)
.

The proof of Proposition III.1 is given in Appendix A. Then, the definition of the Nth-order IF estimate

follows:

Definition III.2. Let f ∈ L2(R), the N th-order local complex IF estimate ω̃[N ]
η,f at time t and frequency

η is defined by:

ω̃
[N ]
η,f (t, η) =



ω̃f (t, η) +
N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η)) , if V g

f (t, η) 6= 0

and ∂ηxj,j−1(t, η) 6= 0 for j = 2 . . . N.

ω̃f (t, η) otherwise.

Then, its real part ω̂[N ]
η,f (t, η) = <{ω̃[N ]

η,f (t, η)} is the desired IF estimate.

For this estimate, we have the following approximation result:

Proposition III.2. Given a mode f ∈ L2(R) that satisfies Definition III.1 with L ≤ N , then φ′(t) =

<
{
ω̃

[N ]
η,f (t, η)

}
.
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Proof: From (21), we have:

φ′(t) = <

{
ω̃f (t, η) +

N∑
k=2

rk(t)

(
−
V tk−1g
f (t, η)

V g
f (t, η)

)}

= <

{
ω̃f (t, η) +

N∑
k=2

rk(t) (−xk,1(t, η))

}

= <

{
ω̃f (t, η) +

N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η))

}
. (23)

Let us put ω̃[N ]
η,f (t, η) = ω̃f (t, η) +

N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η)), we obtain φ′(t) = <

{
ω̃

[N ]
η,f (t, η)

}
, which

ends the proof.

B. Efficient Computation of Modulation Operators

The local modulation operators q̃[k,N ]
η,f defined in Proposition III.1 should not be computed by ap-

proximating partial derivatives by means of discrete differentiation, since this would generate numerical

instability especially in the presence of noise. Therefore, to deal with this issue, we remark that these

modulation operators can instead be computed analytically as functions of different STFTs. This is

illustrated for N = 4 through the following proposition:

Proposition III.3. Let f ∈ L2(R), the modulation operators q̃[k,N ]
η,f for N = 4 and k = 2, 3, 4 can be

expressed as:

q̃
[4,4]
η,f = G4

(
V t0...6g
f , V t0...3g′

f

)
,

q̃
[3,4]
η,f = G3

(
V t0...4g
f , V t0...2g′

f

)
− q̃[4,4]

η,f G3,4

(
V t0...5g
f

)
,

q̃
[2,4]
η,f = G2

(
V t0...2g
f , V t0...1g′

f

)
− q̃[3,4]

η,f G2,3

(
V t0...3g
f

)
− q̃[4,4]

η,f G2,4

(
V t0...4g
f

)
,

where Gk
(
V t0...mg
f , V t0...ng′

f

)
is a function of V tlg

f for l = 0, . . . ,m and V tlg′

f for l = 0, . . . , n while

Gk,j

(
V t0...mg
f

)
is associated with coefficient q̃[j,N ]

η,f in the computation of q̃[k,N ]
η,f for k 6= j.

Also, we recall that the fourth order IF estimate can be written as:

ω̃
[4]
η,f (t, η) = ω̃f (t, η) + q̃

[2,4]
η,f (t, η) (−x2,1(t, η)) + q̃

[3,4]
η,f (t, η) (−x3,1(t, η)) + q̃

[4,4]
η,f (t, η) (−x4,1(t, η)) .

The proof of Proposition III.3 is available in Appendix B where explicit forms for Gk and Gk,j are

given.

Remark. We first note that when N = 2, i.e. by neglecting q̃
[3,4]
η,f and q̃

[4,4]
η,f corresponding to orders 3

and 4, the second-order IF estimate ω̃[2]
η,f (t, η) defined in Proposition II.4 is found again. Secondly, it is
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clear that the number of STFTs used to compute q̃[4,4]
η,f is 11, namely V tlg

f for l = 0, . . . , 6, and V tlg′

f for

l = 0, . . . , 3. Finally, generalizing the procedure detailed in the proof of Proposition III.3 to any N , one

obtains that q̃[N,N ]
η,f can be computed by means of 3N − 1 STFTs, namely V tlg

f for l = 0, . . . , 2N − 2,

and V tlg′

f for l = 0, . . . , N − 1.

C. Nth-order STFT-based SST (FSSTN)

As for FSST2, the N th-order FSST (FSSTN) is defined by replacing ω̂f (t, η) by ω̂[N ]
η,f (t, η) in (8):

Definition III.3. Given f ∈ L2(R) and a real number γ > 0, one defines the FSSTN operator with

threshold γ as:

T g,γN,f (t, ω) =
1

g∗(0)

∫
{η,|V gf (t,η)|>γ}

V g
f (t, η)δ

(
ω − ω̂[N ]

η,f (t, η)
)
dη.

Finally, the modes of the MCS can be reconstructed by replacing T g,γf (t, ω) by T g,γN,f (t, ω) in (9).

IV. NUMERICAL ANALYSIS OF THE BEHAVIOR OF STFT-BASED SST

This section presents numerical investigations to illustrate the improvements brought by our new

technique in comparison with the standard reassignment method (RM) or existing STFT-based SSTs

(FSST and FSST2) on both simulated and real signals. For that purpose, let us first consider a simulated

MCS composed of two AM-FM components:

f(t) = f1(t) + f2(t) = A1(t)ei2πφ1(t) +A2(t)ei2πφ2(t),

with Ak(t) and φk(t) defined on [0, 1], for k = 1, 2, by:

A1(t) = exp
(
2(1− t)3 + t4

)
, A2(t) = 1 + 5t2 + 7(1− t)6 and

φ1(t) = 50t+ 30t3 − 20(1− t)4, φ2(t) = 340t− 2 exp (−2(t− 0.2)) sin (14π(t− 0.2)) .

Note that f1 is a polynomial chirp that satisfies Definition III.1 with L = N = 4, while f2 is a

damped-sine function containing very strong nonlinear sinusoidal frequency modulations and high-order

polynomial amplitude modulations. In our simulations, f is sampled at a rate M = 1024 Hz on [0, 1].

In Figures 1(a) and (b), we display the real part of f1 and f2 along with their amplitudes, and, in Figure

1 (c), the real part of f .

The STFT of f is then computed with the L1−normalized Gaussian window g(t) = σ−1e−π
t2

σ2 ,

where σ is optimal in some sense as explained hereafter. One of the well-known issues regarding the

use of STFT to analyze signals is the choice of an appropriate Gaussian window length to allow for a

good trade-off between time and frequency localization. In the synchrosqueezing context, the choice of

analysis window for the STFT has a strong impact on the accuracy of mode reconstruction: to use an
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Fig. 1. (a) and (b): real part of f1 and f2 respectively with A1 and A2 superimposed; (c): real part of f .

inappropriate window may lead to the failure of ridge extraction and then of mode retrieval. To deal with

this issue, a widely used approach is to measure the concentration of STFT which then allows us to pick

the ‘optimal’ window length as the one associated with the most concentrated representation. For that

purpose, a relevant work is [19], in which the concentration of the STFT is measured by means of Rényi

entropy:

HR(σ) =
1

1− α
log2

(∫ ∫
R2 |V g

f (t, η)|αdηdt∫ ∫
R2 |V g

f (t, η)|dηdt

)
, (24)

with integer orders α > 2 being recommended. The larger the Rényi entropy, the less concentrated the

STFT. The optimal window length parameter is thus determined as: σopt = arg min
σ

(HR(σ)). In Figure

2, we display the evolution of Rényi entropy (α = 3) with respect to σ for the signal f introduced above

at different noise levels (noise-free, -5, 0, 5 dB), which leads to an optimal value in each case, relatively

stable with the noise level.

Having determined the optimal σ, we display, in the noise-free context, the STFT of f on the left

of Figure 3. Then, on the right of this figure, close-ups of the STFT itself are depicted, along with

reassigned versions of STFT either given by the reassignment method (RM) or FSST and variants, all
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Fig. 2. Evolution of Rényi entropies (HR) with respect to σ either in the noise-free, 5 dB, 0 dB or -5 dB cases.

mentioned in this paper. For the sake of consistency, we recall that RM corresponds to the reassignment

of the spectrogram through [5]:

RMg
f (t, ω) =

∫ ∫
R2

|V g
f (τ, η)|2δ (ω − ω̂f (τ, η)) δ (t− τ̂f (τ, η)) dηdτ.

It behaves well with frequency modulation, but does not allow for mode reconstruction.

Analyzing these close-ups, we remark that, as expected, FSST2 leads to a relatively sharp TF repre-

sentation for f1, very similar to the one given by RM and much better than that corresponding to FSST.

However, all these methods fail to reassign the STFT of f2 correctly, especially where the IF of that

mode has a non negligible curvature φ′′′2 (t). In contrast, the TF reassignment of the STFT of f2 provided

by FSST3 or FSST4 is much sharper at these locations. Looking at what happens for mode f1 also tells

us that, FSST3 and FSST4 seems to behave very similarly to FSST2 or RM in terms of the sharpness

of the representation. However, as we shall see later, the accuracy of the representation is improved by

using one of the former two methods. Finally, note that since f1 obeys Definition III.1, the IF estimate

used in FSST4 is exact for that mode which results in perfect reassignment of the STFT.

For a better understanding of the performance improvements brought by the use of FSST3 and FSST4

over other studied methods, the following section first introduces a quantitative comparison of all these

techniques from the angle of energy concentration of TF representations, and then a measure of their

accuracy by means of the Earth mover’s distance (EMD).
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Fig. 3. Right column panel, (a): modulus of the STFT of f . Middle column panel, (b): STFT of a small TF patch corresponding

to mode f1 (delimited by green segments) extracted from (a); (c) RM carried out on the STFT shown in (b); from (d) to (g),

same as (c) but using respectively FSST, FSST2, FSST3, FSST4. Left column panel, same as middle column panel but for f2.

A. Evaluation of TF Concentration

To evaluate the performance of the different techniques regarding TF concentration, we first use

a method introduced in [14]. The goal of this method is to measure the energy concentration by

considering the proportion of the latter contained in the first nonzero coefficients associated with the

highest amplitudes, which we call normalized energy in the sequel: the faster it increases towards 1

with the number of coefficients involved, the more concentrated the TF representation. In Figure 4 (a),

we depict the normalized energy corresponding to the reassignment of the STFT of f1 using different

techniques, with respect to the number of coefficients kept divided by the length of f1 (which corresponds

to the sampling rate M in our case). Since we consider only one mode, a good representation has to
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have its energy mostly contained in the first M coefficients, which correspond to abscissa 1 in the graph

of Figure 4 (a). From this study and from this signal, it is hard to figure out the benefits of using FFST3

or FSST4 rather than the other two methods. The only thing one can check is that the energy is perfectly

localized with FSST4 because f1 obeys Definition III.1. The results of the same computation carried out

for mode f2 are displayed in Figure 4 (b), showing that the normalized energy is much more concentrated

using FSST4 than the other methods, and that FSST3 also outperforms FSST2 and RM.
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Fig. 4. (a) Normalized energy as a function of the number of sorted associated coefficients for f1; (b): same as (a) but for f2.

To study the performance of the TF representations in the presence of noise, we consider a noisy

signal, where the noise level is measured by the Signal-to-Noise Ratio (SNR):

SNRintput[dB] = 20 log10

std(f)

std(ζ)
, where std is the standard deviation, (25)

and ζ(t) is the white Gaussian noise added. To compute the normalized energy as illustrated in Figure

4, though quite informative, does not deliver any insight into the accuracy of the reassigned transforms.

The latter can alternatively be quantified by measuring the dissimilarity between the resultant TF rep-

resentations and the ideal one by means of the Earth mover’s distance (EMD), a procedure already

used in the synchrosqueezing context in [20]. More precisely, this technique consists in computing

the 1D EMD between the resultant TF representations and the ideal one, for each individual time t,

and then take the average over all t to define the global EMD. A smaller EMD means a better TF

representation concentration to the ground truth and less noise fluctuations. In Figures 5 (a) and (b),

we display, respectively for f1 and f2, the evolution of EMD with respect to the noise level, for TF

representations given either by FSST2, FSST3, FSST4 or RM. This study tells us that, at low noise

level and for mode f1, FSST3 and FSST4 are more accurate than the other studied methods. Note that

this is something that could not be derived by the previous study on the normalized energy. The same
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investigations but for mode f2 confirms the interest of using FSST3 or FSST4 to reassign the STFT of

a mode with IF exhibiting strong curvature. Note that the benefits of using the proposed new methods

remain important even at high noise level.
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Fig. 5. (a): EMD corresponding to different TF representations of f1 either given by RM, FSST2, FSST3 or FSST4; (b): same

as (a) but for f2.

B. Evaluation of Mode Reconstruction Performance

As discussed above, the variants of FSST proposed in this paper leading to significantly better TF

representations, this should translate into better performance in terms of mode reconstruction. Let us first

briefly recall the procedure to retrieve fk from the TF representation of f given by the FSST of order

N :

fk(t) ≈
∫
{ω,|ω−ϕk(t)|<d}

T g,γN,f (t, ω)dω. (26)

Note that ϕk(t) is the estimate of φ′k(t) given by the ridge detector (computed by minimizing energy

(10) in which T g,γf is replaced by T g,γN,f ), and d is an integer parameter (because the frequency resolution

is here associated with integer location) used to compensate for the inaccuracy of this estimation and

also for the errors caused by approximating the IF by ω̂
[N ]
η,f (t, η). We first analyze the performance of

the reconstruction procedure by considering the information on the ridge only, i.e. we take d = 0. For

that purpose, we measure the output SNR, defined by SNRoutput = 20 log10

‖f‖2
‖fr − f‖2

, where fr is the

reconstructed signal, and ‖.‖2 the l2 norm. In Table I, we display this output SNR for modes f1, f2 and

also for f , using either FSST2, FSST3 or FSST4 for mode reconstruction. The improvement brought by

using FSST3 and FSST4 is clear and coherent with the previous study of the accuracy of the proposed

new TF representations.
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TABLE I

PERFORMANCE OF MODE RECONSTRUCTION IN THE NOISE-FREE CASE

FSST2 FSST3 FSST4

Mode f1 17.8 25.7 28.8

Mode f2 1.73 3.62 6.87

MCS f 3.57 5.57 8.82

Parameter d also measures how well the TF representation is concentrated around the detected ridges:

if the former is well concentrated, even if one uses a small d, the reconstruction results should be

satisfactory. To measure this, we display in Figure 6, the output SNR corresponding to the reconstruction

of f when d varies, and when the TF representation used for mode reconstruction is either FSST2,

FSST3 and FSST4. From this Figure and for all tested methods, it is clear that a larger d means a more

accurate reconstruction of the signal. Nevertheless, the accuracy the reconstruction using FSST2 seems

to stagnate when some critical value for d is reached, which is not the case with the other two methods:

the parameter d can only partly compensate for the inaccuracy of IF estimation. For that very reason, it is

crucial to use the most accurate estimate as possible which again pleads in favor of FSST3 and FSST4.
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Fig. 6. Reconstruction accuracy measured in SNR with respect to d of the noise-free signal.

C. Application to Gravitational-wave Signal

In this section, we investigate the applicability of our new techniques for the analysis of a transient

gravitational-wave signal, which was generated by the coalescence of two stellar-mass black holes. This

event, called GW150914, was recently detected by the LIGO detector Hanford, Washington. Such a signal

closely matches with waveform Albert Einstein predicted almost 100 years ago in his general relativity
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theory for the inspiral, the merger of a pair of black holes and the ringdown of the resulting single black

hole [13]. The observed signal has a length of 3441 samples in 0.21 seconds, which we pad with zeros to

get a signal with 212 samples, and the Gaussian window used in our simulations corresponds to σ = 0.05.
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Fig. 7. Illustration of the TF representations of the gravitational-wave event GW150914, (a): observed Hanford signal; (b):

STFT; (c): FSST2; (d): FSST4.

We first display the gravitational-wave strain observed by the LIGO Hanford in Figure 7 (a), and

the STFT, the reassigned transforms corresponding to FSST2 and FSST4 in Figure 7 (b), (c) and (d),

respectively. The sharpened representations provided by FSST2 and FSST4 make the TF information

more easily interpretable: as a matter of fact, the gravitational-wave signal consists of only one mode

sweeping sharply upwards. However, the improvement brought by using high-order synchrosqueezing

transform is not obvious at this point. Moving on to mode reconstruction, we perform ridge detection on

each of the TF representations given by FSST2 and FSST4 and display the results in Figure 8 (a) and (b).

We remark that FSST4 enables a better ridge detection of the three stages of the collision of two black-

holes; especially the “ring down” one, which commences when the IF of the mode starts to decrease.

This is associated with a sudden variation of the curvature of its IF which is better taken into account

by FSST4. A consequence of this can be seen in Figure 8 (c) displaying the reconstructed mode using

either FSST2 or FSST4, the latter leading to a much better reconstruction, very similar to the numerical

relativity waveform obtained from an independent calculation [13]. This fact is finally reflected by Figure

8 (d) in which we display the residual errors (in l2 norm) between the mode predicted by the numerical

relativity and the one reconstructed from FSST2 or FSST4. This thus demonstrates the interest of the

proposed new technique in real applications.
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Fig. 8. (a): the ridge estimated from FSST2 displayed in Figure 7 (c); (b): same as (a) but on FSST4; (c): reconstructed signals

along with numerical relativity waveform for a system with parameters consistent with those recovered from GW150914 event

confirmed by an independent computation; (d): their corresponding residuals after subtracting the numerical relativity waveform.

V. CONCLUSION

In this paper, we introduced a generalization of the short-time Fourier-based synchrosqueezing trans-

form by defining new synchrosqueezing operators based on high order amplitude and phase approx-

imations. Such a generalization allows us to better handle a wide variety of multicomponent signals

containing very strongly modulated AM-FM modes. The interest of the proposed new technique was also

demonstrated through numerical experiments both for simulated and real signals. Indeed, it successfully

produces a TF picture more concentrated than other methods based on synchrosqueezing or reassignment,

while allowing for a better invertibility of the TF representation. Future work should now be devoted to

the theoretical analysis of the behavior of the proposed representations when applied to noisy signals,

as was done in [9], [21] for the original FSST. In this regard, it would also be of interest to study the

behavior of the transform when the type of noise is non Gaussian.
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APPENDIX A

THE PROOF OF PROPOSITION III.1

Proof: First of all, we rewrite the expression (21) under matrix form:

ω̃f (t, η) = XN (t, η) ·RN (t)T

where ZT is the transpose of matrix Z and the two row vectors X,R defined as:

XN (t, η) = [1 x2,1(t, η) ... xN,1(t, η)]

RN (t) = [r1(t) r2(t) ... rN (t)]

Let us denote y1 = XN ·RT
N , we may thus write:

y1 =
[
x1,1 x2,1 x3,1 . . . xN,1

]
RT
N . (27)

It is noteworthy that <{r1(t)} = φ′(t). To get rk, we build up a system of N equations with variables

rk for k = 1, . . . , N from (27) using the following procedure. By computing the partial derivatives of

(27) with respect to η and using notation y2 =
∂ηy1

∂ηx2,1
and xk,2 =

∂ηxk,1
∂ηx2,1

, the second equation can be

obtained:

y2 =
[
0 1 x3,2 . . . xN,2

]
RT
N .

Doing the same thing iteratively, we can get the jth equation:

yj =
[
0 0 . . . 1 . . . xN,j

]
RT
N .

Combining all these equations, the desired system of equations can be deduced:

y1

y2

...

yN−1

yN


=



1 x2,1 x3,1 . . . xN,1

0 1 x3,2 . . . xN,2
...

...
. . .

...
...

0 0 0 . . . xN,N−1

0 0 0 . . . 1





r1

r2

...

rN−1

rN


or [

YN

]
=
[
MX

] [
RN

]T
. (28)

Since MX is a upper triangular matrix with nonzero diagonal coefficients, we use back-substitution

algorithm to get rk for k = 1, . . . , N as follows:

rN (t) = yN (t, η) and

rj(t) = yj(t, η)−
N∑

k=j+1

xk,j(t, η)rk(t) for j = N − 1, N − 2, . . . , 1.
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As a result, q̃[k,N ]
η,f (t, η) = rk(t) for k = 2, . . . , N . From (21), we clearly have: <

{
q̃

[k,N ]
η,f (t, η)

}
=

φ(k)(t)

(k − 1)!
for k = 2, . . . , N , which finishes the proof.

APPENDIX B

PROOF OF THE PROPOSITION III.3

Proof: By using ∂ηV
tk−1g
f = −i2πV tkg

f for k ∈ N and defining Xk,j = V g
f V

tkg
f − V tj−1g

f V tk−j+1g
f ,

we get the following formula:

∂ηXk,j = Xk+1,j +Xk+1,j −Xk+1,2.

Thus, the upper triangular part of matrix MX defined in (28) with N = 4 can be obtained as follows:

xk,1 =
V tk−1g
f

V g
f

for k = 1 . . . 4,

xk,2 =
∂ηxk,1
∂ηx2,1

=
V g
f V

tkg
f − V tg

f V tk−1g
f

V g
f V

t2g
f −

(
V tg
f

)2 =
Xk,2

X2,2
for k = 2 . . . 4,

xk,3 =
∂ηxk,2
∂ηx3,2

=
Xk+1,3X2,2 −Xk,2X3,3

X4,3X2,2 −X3,2X3,3
for k = 3 . . . 4,

xk,4 = 1 for k = 4

Also, the elements of vector Y are obtained by:

y1 = ω̃f = η − 1

i2π

V g′

f

V g
f

,

y2 =
∂ηy1

∂ηx2,1

=
1

i2π

(
V g
f

)2
+ V g

f V
tg′

f − V tg
f V g′

f

V g
f V

t2g
f −

(
V tg
f

)2 =
W2

X2,2
, with W2 =

1

i2π

[(
V g
f

)2
+ V g

f V
tg′

f − V tg
f V g′

f

]
.

y3 =
∂ηy2

∂ηx3,2
=

W3X2,2 −W2X3,3

X4,3X2,2 −X3,2X3,3
, with W3 = ∂ηW2.

y4 =
∂ηy3

∂ηx4,4
=

(X4,3X2,2 −X3,2X3,3)W4

− (W3X2,2 −W2X3,3) (X5,4 +X5,3 −X5,2)

+ (W3X3,2 −W2X4,3) (X4,4 +X4,3 −X4,2)

(X4,3X2,2 −X3,2X3,3) (X6,4 +X6,3 −X6,2)

− (X5,3X2,2 −X4,2X3,3) (X5,4 +X5,3 −X5,2)

+ (X5,3X3,2 −X4,2X4,3) (X4,4 +X4,3 −X4,2)

, with W4 = ∂ηW3.
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With the help of back-substitution algorithm, the modulation operators read:

q̃
[4,4]
η,f =

(X4,3X2,2 −X3,2X3,3)W4

− (W3X2,2 −W2X3,3) (X5,4 +X5,3 −X5,2)

+ (W3X3,2 −W2X4,3) (X4,4 +X4,3 −X4,2)

(X4,3X2,2 −X3,2X3,3) (X6,4 +X6,3 −X6,2)

− (X5,3X2,2 −X4,2X3,3) (X5,4 +X5,3 −X5,2)

+ (X5,3X3,2 −X4,2X4,3) (X4,4 +X4,3 −X4,2)

q̃
[3,4]
η,f =

W3X2,2 −W2X3,3

X4,3X2,2 −X3,2X3,3
− q̃[4,4]

η,f

X5,3X2,2 −X4,2X3,3

X4,3X2,2 −X3,2X3,3

q̃
[2,4]
η,f =

W2

X2,2
− q̃[3,4]

η,f

X3,2

X2,2
− q̃[4,4]

η,f

X4,2

X2,2
.

Finally, we complete the proof of this proposition by using notation Gk and Gj,k to rewrite the above

expressions.
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