A Comparison of Genetic Regulatory Network Dynamics and Encoding - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A Comparison of Genetic Regulatory Network Dynamics and Encoding

Résumé

Genetic Regulatory Networks (GRNs) implementations have a high degree of variability in their details. Parameters, encoding methods, and dynamics formulas all differ in the literature, and some GRN implementations have a high degree of model complexity. In this paper, we present a comparative study of different implementations of a GRN and introduce new variants for comparison. We use a modified Genetic Algorithm (GA) to evaluate GRN performance on a number of common benchmark tasks, with a focus on real-time control problems. We propose an encoding scheme and set of dynamics equations that simplifies implementation and evaluate the evolutionary fitness of this proposed method. Lastly, we use the comparative modifications study to demonstrate overall enhancements for GRN models.
Fichier principal
Vignette du fichier
disset_19093.pdf (438.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01912802 , version 1 (05-11-2018)

Identifiants

Citer

Jean Disset, Dennis Wilson, Sylvain Cussat-Blanc, Stephane Sanchez, Hervé Luga, et al.. A Comparison of Genetic Regulatory Network Dynamics and Encoding. Genetic and Evolutionary Computation COnference (GECCO 2017), Jul 2017, Berlin, Germany. pp.91-98, ⟨10.1145/3071178.3071322⟩. ⟨hal-01912802⟩
58 Consultations
85 Téléchargements

Altmetric

Partager

More