A Comparison of Genetic Regulatory Network Dynamics and Encoding
Résumé
Genetic Regulatory Networks (GRNs) implementations have a high degree of variability in their details. Parameters, encoding methods, and dynamics formulas all differ in the literature, and some GRN implementations have a high degree of model complexity. In this paper, we present a comparative study of different implementations of a GRN and introduce new variants for comparison. We use a modified Genetic Algorithm (GA) to evaluate GRN performance on a number of common benchmark tasks, with a focus on real-time control problems. We propose an encoding scheme and set of dynamics equations that simplifies implementation and evaluate the evolutionary fitness of this proposed method. Lastly, we use the comparative modifications study to demonstrate overall enhancements for GRN models.
Origine | Fichiers produits par l'(les) auteur(s) |
---|