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In this paper, we present a new data-aided carrier-recovery method for Continuous Phase Modulation (CPM) signals over frequency-selective channels. We first present a linear model of the received signal based on Mengali representation over selective channels and show how to use it to perform joint channel and carrier-frequency estimation. We also derive a low-complexity version of the estimator. Simulation results show that this method performs better than the optimal method suited to the Additive White Gaussian Noise (AWGN) channels.

INTRODUCTION

CPM signals are commonly known for their good spectral efficiency and for their constant envelope, useful with embedded amplifiers thanks to their robustness to non-linearities. They are considered for a wide range of applications as military communication, aeronautical communication by satellite or M2M applications. In last decade, several papers deals with equalization for the CPM in selective channels. [START_REF] Pancaldi | Equalization algorithms in the frequency domain for continuous phase modulations[END_REF] presents several equalization schemes in the frequency domain for CPM using the Laurent decomposition. [START_REF] Tan | Frequency-domain equalization for continuous phase modulation[END_REF] presents a frequency-domain Minimum Mean Squared Error (MMSE) equalizer using an orthogonal filter bank. Most of these works have been conducted under the assumption of perfect synchronization and perfect channel knowledge and surprisingly few works are related to synchronization or carrier-recovery for M-ary CPM signals in frequency selective channels. In [START_REF] Hosseini | Timing, carrier, and frame synchronization of burst-mode cpm[END_REF], a new optimal synchronization scheme has been developed for AWGN channels (including preamble design) has been proposed to achieve the Cramer Rao Bound. In its equalization scheme, [START_REF] Brown | Equalisation and iterative reception for spectrally efficient cpm in multipath environments[END_REF] uses a Thanks to Thales Alenia Space and the CNES agency (French Space Agency) for funding method suited to AWGN channel for carrier recovery [START_REF] Pugh | Preamble design and acquisition for cpm[END_REF]. In the context of equalization, channel estimation has been studied in [START_REF] Cheol | Frequency-domain channel estimation and equalization for continuous-phase modulations with superimposed pilot sequences[END_REF][START_REF] Brown | Channel estimation and equalisation for single carrier continuous phase modulation[END_REF]. [START_REF] Mengali | Synchronization Techniques for Digital Receivers[END_REF] presents several carrier-recovery methods for CPM but extensions to frequency selective channels are not discussed. [START_REF] An D'andrea | Frequency detectors for cpm signals[END_REF][START_REF] An D'andrea | Digital carrier frequency estimation for multilevel cpm signals[END_REF][START_REF] Huber | Data-aided synchronization of coherent cpm-receivers[END_REF] also present carrier frequency estimation for CPM over AGWN channel.

To our knowledge, joint carrier-frequency recovery and channel estimation for M-ary CPM signals has not been done for transmission over multi-path channels. Only, the case of binary CPM (Gaussian Minimum-Shift Keying GMSK) has been dealt with in [START_REF] Morelli | Carrier-frequency estimation for transmissions over selective channels[END_REF] as binary GMSK can be seen as a linear modulation. In this paper, we develop a linear system model of M-ary CPMs over frequency-selective channel in order to perform a joint data-aided Maximum Likelihood (ML) estimation similar to [START_REF] Morelli | Carrier-frequency estimation for transmissions over selective channels[END_REF]. It is organized as follows.The received signal model is presented in section 2. Section 3 describes the proposed algorithm which performs a joint ML channel and carrier-frequency estimation. Some simulation results are given in section 4. Conclusions and perspectives are reported in Section 6.

SYSTEM MODEL

We consider a sequence of N symbols taken from the M-ary alphabet {α n } 0≤n≤N -1 ∈ {±1, ±3, . . . , ±M -1} N . The complex envelope s b (t) associated with the transmitted CPM signal is written

s b (t) = 2E s T exp (jθ(t, α)) (1) 
where

θ(t, α) = πh N -1 i=0 α i q(t -iT )
and

q(t) = t 0 g(τ )dτ, t ≤ L cpm 1/2, t > L cpm
E s is the symbol energy, T is the symbol period, θ(t, α) is the information phase, g(t) is the pulse response, h = k/p is the modulation index where k and p are relatively prime integer and L cpm is the CPM memory. Let us consider a transmission over a frequency-selective channel. The complex envelope associated to the received signal is

r(t) = e j2πf d t (h c * s)(t) + w(t) (2) 
with

h c (t) Lc-1 l=0 A l δ(t -τ l ). (3) 
where f d is the carrier frequency offset, A l and τ l are respectively the complex channel coefficients and the delay of the l th path. L c is the number of paths and w represents a complex Gaussian noise with spectral density N 0 .

Let us now consider the Pulse Amplitude Modulation (PAM) representation of the CPM signal introduced by [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF] for binary CPMs and extended by [START_REF] Mengali | Decomposition of m-ary cpm signals into pam waveforms[END_REF] for M-ary CPMs. The transmitted signal is a sum of linear PAM modulations of pseudosymbols a k,n

s(t) = N -1 n=0 K-1 k=0 a k,n g k (t -nT ) (4) 
where g k (t) are the components of this decomposition and K is the number of components. More details on those pseudosymbols and components can be found in [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF][START_REF] Mengali | Decomposition of m-ary cpm signals into pam waveforms[END_REF]. It is well-known that only a few PAMs concentrate most of the signal energy, and thus we can consider an approximated signal by only considering K ′ M -1 components.

Hence, by using Eq.( 4) in Eq.( 2), our received signal can now be written as

r(t) = e j2πf d t h c (t) * ( N -1 n=0 K ′ -1 k=0 a k,n g k (t -nT )) + w(t) (5) 
= e j2πf d t (

K ′ -1 k=0 N -1 n=0 a k,n (h c * g k )(t -nT )) h k (t) +w(t) (6) 
In this paper, perfect timing and frame synchronization is assumed. Consequently, the sampled received signal at t = mT is given by

r[m] = e j2πf d mT ( K ′ -1 k=0 N -1 n=0 a k,n h k ((m -n)T )) + w[m] (7) 
We can see from the previous equation that our received signal can be considered as the sum of linear modulations with some equivalent multi-path channels h k (t). Rewriting Eq.( 7) in vector notations we have

r = Γ(f d ) K ′ -1 k=0 A k h k + w (8) 
where

r = {r[0], r[1], ..., r[N -1]} T Γ(f d ) = diag(1, e j2πf d , ..., e j2πf d (N -1) ) h k = {h k (0), h k (T ), ..., h k ((L -1)T )} w = {w[0], ..., w[N -1]} and A k is a (N-L)*L matrix with entries [A k ] i,j = a k,i-j .
In this paper, we consider a Data-Aided algorithm so {A k } are known matrix. Using notations A = [A 0 , . . . , A K ′ -1 ] and h eq = [h 0 , . . . , h K ′

-1 ] T , our system becomes:

r = Γ(f d )Ah eq + w (9) 

JOINT ML FREQUENCY AND CHANNEL ESTIMATION

Similarly to [START_REF] Morelli | Carrier-frequency estimation for transmissions over selective channels[END_REF], for a fixed (f d , h), r is a Gaussian vector with mean Γ(f d )Ah eq and covariance matrix N 0 I, where I is the identity matrix. Hence, the likelihood function for the parameters (f d , h eq ) to maximize is

∆(r; h eq , f d ) = 1 (πσ 2 n ) N . exp -1 σ 2 n [r -Γ( f d )A h eq ][r -Γ( f d )A h eq ] H (10) 
where . H stands for the hermitian transposition. We choose to maximize ∆ over h eq and f d to obtain the joint ML estimates of h eq and f d . The estimate of h eq for a given

f d is h eq ( f d ) = (A H A) -1 A H Γ H ( f d )r. (11) 
Using this estimate in Eq.( 10), we obtain the following carrier-frequency estimator:

f d = arg max f d g( f d ) (12) 
where

g( f d ) = r H Γ( f d )BΓ H ( f d )r (13) 
and

B A(A H A) -1 A H (14) 
g( f d ) can be written as:

g( f d ) = -ρ(0) + 2ℜ N -1 m=0 ρ(m)e -j2πm f d (15) with ρ(m) = N -1 k=m [B] k-m,k r(k)r * (k -m) (16) 
ℜ(.) is the real part operator and [B] k-m,k is the entries (km, m) of the matrix B. This matrix can be pre-computed and the grid search of Eq.( 13) can be performed by the mean of a Fast Fourier Transform (FFT) followed by a parabolic interpolation.

Thus, the following procedure can be applied at the receiver:

• Compute f d using Eq.( 13)

• Conter-rotate the received signal r according to f d • Compute h eq using the LS estimate It can be shown that our frequency estimator is unbiased with an analysis similar to the one made in [START_REF] Morelli | Carrier-frequency estimation for transmissions over selective channels[END_REF].

SIMULATION RESULTS

Simulation Parameters

We first consider a preamble of 64 symbols modulated by a GMSK with M = 4, h = 1/4, L cpm = 3 and BT = 0.3. We consider a random preamble taken in the M-ary alphabet defined in section 2. The true normalized frequency offset f d Rs , where R s is the symbol rate, is taken as an uniformly random variable between -0.5 and 0.5. The SNR is defined as the average received energy per transmitted symbols over the noise variance.

We consider the following frequency-selective channel:

h c (t) = 5 l=0 A l δ(t -τ l ) (17) 
The normalized delays {τ l /T } are {0, 0.054, 0.135, 0.432, 0.621, 1.351}. The attenuation {A l } are complex random gaussian variables with zero mean and variances (in decibel (dB)) {-3, 0, -2, -6, -8, -10}. For those simulations, we consider that all equivalent discrete channel have a length L = 8. We can see that when the size of the preamble increases, the threshold gets lower and lower. For our estimator, the thresholds are respectively around 12dB, 2dB and -2dB for N=32, N=64 and N=128. Fig. 2. compares the estimation developed in this article with the method suited to the AWGN channel presented in [START_REF] Hosseini | Timing, carrier, and frame synchronization of burst-mode cpm[END_REF]. We can see that after the estimator threshold (around 2 dB), our estimator outperforms the other one, which is logical as it does not take into account the channel. Fig. 3. shows the value of the variance for frequency re- 

Performance of the channel estimation

Fig. 4. shows the variance of the estimation of the discrete equivalent channel h 0 for the same set of parameters. The curve for N = 32 shows poor accuracy as we estimate three discrete channels of length L = 8, with only 32 observations. In Fig. 5. we plot the ideal Mean Square Error (MSE) value for channel estimation in case of perfect frequency recovery for N = 128. We can see that the loss is due to the frequency estimation is less than 1dB. Hence, the overall performance of those estimates are mainly due to the channel estimation residual error. This subject is a perspective of re-Fig. 5. MSE of the channel estimate with perfect carrier recovery search in the area.

RELATIONS TO PRIOR WORK

The method presented here is based on a linear representation of M-ary CPM signals, thanks to the PAM decomposition of CPM in [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF][START_REF] Mengali | Decomposition of m-ary cpm signals into pam waveforms[END_REF]. The PAM representation has been already used for estimation of timing [START_REF] Perrins | Timing recovery based on the pam representation of cpm[END_REF], channel estimation [START_REF] Shawn | Blind simo channel estimation for cpm using the laurent approximation[END_REF][START_REF] Chen | Joint synchronization, channel length estimation, and channel estimation for the maximum likelihood sequence estimator for high speed wireless communications[END_REF]. To our knowledge, previous works on carrierrecovery have focused on transmission over the AWGN channel expect for specific CPM signal like the binary GMSK [START_REF] Pragadeeshwaran | Single pulse approximation of laurent amp representation of gmsk for map motivated carrier recovery[END_REF][START_REF] Magana | Non-dataaided parametric-and nonparametric-based carrier frequency estimators for burst gmsk communication systems[END_REF]. The transmission over frequency-selective channels was not considered in these previous studies.

CONCLUSION

In this paper, we have presented a new joint channel and carrier frequency estimation scheme suited to M-ary CPM modulation over multi-path channels. This scheme is based on a linear representation of CPM signals over frequency-selective channels. The performance is significantly improved compared to the optimal method suited to the AWGN channel. Future studies may focus on channel estimation, on Cramer Rao bounds computation for CPM over selective channel and also on the preamble design.
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