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ABSTRACT

In this paper, we present a new data-aided carrier-recovery
method for Continuous Phase Modulation (CPM) signals
over frequency-selective channels. We first present a linear
model of the received signal based on Mengali representation
over selective channels and show how to use it to perform
joint channel and carrier-frequency estimation. We also de-
rive a low-complexity version of the estimator. Simulation
results show that this method performs better than the op-
timal method suited to the Additive White Gaussian Noise
(AWGN) channels.

Index Terms— Continuous Phase Modulation, carrier re-
covery, channel estimation, frequency-selective channel

1. INTRODUCTION

CPM signals are commonly known for their good spectral
efficiency and for their constant envelope, useful with embed-
ded amplifiers thanks to their robustness to non-linearities.
They are considered for a wide range of applications as mili-
tary communication, aeronautical communication by satellite
or M2M applications.

In last decade, several papers deals with equalization for the
CPM in selective channels. [1] presents several equalization
schemes in the frequency domain for CPM using the Laurent
decomposition. [2] presents a frequency-domain Minimum
Mean Squared Error (MMSE) equalizer using an orthogo-
nal filter bank. Most of these works have been conducted
under the assumption of perfect synchronization and perfect
channel knowledge and surprisingly few works are related to
synchronization or carrier-recovery for M-ary CPM signals
in frequency selective channels. In [3], a new optimal syn-
chronization scheme has been developed for AWGN channels
(including preamble design) has been proposed to achieve the
Cramer Rao Bound. In its equalization scheme, [4] uses a
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method suited to AWGN channel for carrier recovery [5].

In the context of equalization, channel estimation has been
studied in [6, 7].

[8] presents several carrier-recovery methods for CPM but
extensions to frequency selective channels are not discussed.
[9, 10, 11] also present carrier frequency estimation for CPM
over AGWN channel.

To our knowledge, joint carrier-frequency recovery and

channel estimation for M-ary CPM signals has not been done
for transmission over multi-path channels. Only, the case of
binary CPM (Gaussian Minimum-Shift Keying GMSK) has
been dealt with in [12] as binary GMSK can be seen as a
linear modulation.
In this paper, we develop a linear system model of M-ary
CPMs over frequency-selective channel in order to perform
a joint data-aided Maximum Likelihood (ML) estimation
similar to [12]. It is organized as follows.The received sig-
nal model is presented in section 2. Section 3 describes the
proposed algorithm which performs a joint ML channel and
carrier-frequency estimation. Some simulation results are
given in section 4. Conclusions and perspectives are reported
in Section 6.

2. SYSTEM MODEL

We consider a sequence of N symbols taken from the M-ary
alphabet {a, }o<pn<n—1 € {£1,£3,...,£M — 1}V, The
complex envelope s;(t) associated with the transmitted CPM
signal is written

i) = |22 e (761, ) m
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E; is the symbol energy, T is the symbol period, 0(¢, c) is
the information phase, ¢(t) is the pulse response, h = k/p
is the modulation index where k and p are relatively prime
integer and Lpy, is the CPM memory.

Let us consider a transmission over a frequency-selective

channel. The complex envelope associated to the received
signal is
r(t) = e?*™al (b, % 5)(t) + w(t) ()
with
Le—1
)2 At — 7). 3)
1=0

where fy is the carrier frequency offset, A; and 7; are respec-
tively the complex channel coefficients and the delay of the
I*" path. L. is the number of paths and w represents a com-
plex Gaussian noise with spectral density Nj.

Let us now consider the Pulse Amplitude Modulation (PAM)
representation of the CPM signal introduced by [13] for bi-
nary CPMs and extended by [14] for M-ary CPMs. The trans-
mitted signal is a sum of linear PAM modulations of pseudo-
symbols ay,

T
i

s(t) =

n
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where gy, (t) are the components of this decomposition and K
is the number of components. More details on those pseudo-
symbols and components can be found in [13, 14]. It is
well-known that only a few PAMs concentrate most of the
signal energy, and thus we can consider an approximated
signal by only considering K’ = M — 1 components.

Hence, by using Eq.(4) in Eq.(2), our received signal can
now be written as

r(t) = eﬂﬂf‘ith

N— _
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=0 k=0
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In this paper, perfect timing and frame synchronization is as-
sumed. Consequently, the sampled received signal at t = mT’
is given by

K' -1 N-1
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We can see from the previous equation that our received sig-
nal can be considered as the sum of linear modulations with
some equivalent multi-path channels A (t). Rewriting Eq.(7)
in vector notations we have

K'—1
=T(fa) Z Aphg +w )
k=0
where
v = {r{0], 1], e [N — 1}7
T'(f,) = diag(1,e/?™fa . e2mfa(N=1)y
hi = {hi(0), hi(T), ..., (L — 1)T)}
w = {w0], ..., w[N — 1]}

and Ay, is a (N-L)*L matrix with entries [Ag]; j = a;—;.
In this paper, we consider a Data-Aided algorithm so {Ag}

are known matrix. Using notations A = [Ag,..., Ag/_4]
and heq = [ho, ..., hgs_4]7, our system becomes:
r= F(fd)Aheq +w C)

3. JOINT ML FREQUENCY AND CHANNEL
ESTIMATION

Similarly to [12], for a fixed (f4, k), r is a Gaussian vector
with mean I'(f;) Aheq and covariance matrix NoI, where I
is the identity matrix. Hence, the likelihood function for the
parameters ( fq, heq) to maximize is

1
A7 heq, fa) = W'
FNAR 1H
exp{ fd)Aheq][T —T'(fa)Aheg] }
(10)
where . stands for the hermitian transposition.

We choose to maximize A over heq and f4 to obtain the joint
ML estimates of heq and f4. The estimate of h.q for a given

fd is
heg(fa) = (A" A) P AT (f))r. (11)

Using this estimate in Eq.(10), we obtain the following
carrier-frequency estimator:

fa = arg max g(f4) (12)
fa



where
9(fa) = r"T(f0) BT (fa)r (13)
and
B2 A(A7A)T1AH (14)

g(ﬁ) can be written as:
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$(.) is the real part operator and [B]j_yy 1, is the entries (k —
m,m) of the matrix B. This matrix can be pre-computed
and the grid search of Eq.(13) can be performed by the mean
of a Fast Fourier Transform (FFT) followed by a parabolic
interpolation.

Thus, the following procedure can be applied at the re-
ceiver:

e Compute fd using Eq.(13)
e Conter-rotate the received signal r according to fd

e Compute lAzeq using the LS estimate

It can be shown that our frequency estimator is unbiased
with an analysis similar to the one made in [12].

4. SIMULATION RESULTS

4.1. Simulation Parameters

We first consider a preamble of 64 symbols modulated by a
GMSK with M = 4, h = 1/4, Leym = 3 and BT = 0.3.
We consider a random preamble taken in the M-ary alphabet
defined in section 2. .

The true normalized frequency offset f—f, where R, is the
symbol rate, is taken as an uniformly random variable be-
tween —0.5 and 0.5. The SNR is defined as the average re-
ceived energy per transmitted symbols over the noise vari-
ance.

We consider the following frequency-selective channel:

5
he(t) = Aid(t —m) (17)
=0

The normalized delays {7;/T"} are {0,0.054,0.135,0.432,
0.621,1.351}.

The attenuation { A, } are complex random gaussian variables
with zero mean and variances (in decibel (dB)) {—3,0, —2,
—6,—8,—10}. For those simulations, we consider that all
equivalent discrete channel have a length L = 8.

Variance of the frequency estimation

Variance ofthe frequency estimation

Fig. 2. Comparaison with the method suited to the AWGN
channel

4.2. Performance of the carrier-frequency recovery

Fig.1. illustrates the influence of the size of the preamble
for carrier-frequency recovery. We choose three training se-
quences of size N=32, N=64 and N=128. In this case, the se-
lected FFT sizes are respectively 512, 1024 and 2048. We can
see that when the size of the preamble increases, the threshold
gets lower and lower. For our estimator, the thresholds are re-
spectively around 12dB, 2dB and -2dB for N=32, N=64 and
N=128.

Fig.2. compares the estimation developed in this article
with the method suited to the AWGN channel presented in
[3]. We can see that after the estimator threshold (around 2
dB), our estimator outperforms the other one, which is logical
as it does not take into account the channel.

Fig.3. shows the value of the variance for frequency re-



Variance of the frequency estimation

Fig. 3. Performance of the carrier recovery with perfect chan-
nel knowledge

MSE ofthe channel estimation

Fig. 4. MSE of the channel estimate

covery in the case of a perfect channel estimation for N =
128.

4.3. Performance of the channel estimation

Fig.4. shows the variance of the estimation of the discrete
equivalent channel hg for the same set of parameters. The
curve for N = 32 shows poor accuracy as we estimate three
discrete channels of length L = 8, with only 32 observations.

In Fig.5. we plot the ideal Mean Square Error (MSE)
value for channel estimation in case of perfect frequency re-
covery for N = 128. We can see that the loss is due to the
frequency estimation is less than 1dB. Hence, the overall per-
formance of those estimates are mainly due to the channel
estimation residual error. This subject is a perspective of re-

-] —=—with frequency estimation
—8—with perfect frequency recovery

MSE ofthe channel estimation

Fig. 5. MSE of the channel estimate with perfect carrier re-
covery

search in the area.

5. RELATIONS TO PRIOR WORK

The method presented here is based on a linear representa-
tion of M-ary CPM signals, thanks to the PAM decomposi-
tion of CPM in [13, 14]. The PAM representation has been
already used for estimation of timing [15], channel estima-
tion [16, 17]. To our knowledge, previous works on carrier-
recovery have focused on transmission over the AWGN chan-
nel expect for specific CPM signal like the binary GMSK
[18, 19]. The transmission over frequency-selective channels
was not considered in these previous studies.

6. CONCLUSION

In this paper, we have presented a new joint channel and car-
rier frequency estimation scheme suited to M-ary CPM mod-
ulation over multi-path channels. This scheme is based on a
linear representation of CPM signals over frequency-selective
channels. The performance is significantly improved com-
pared to the optimal method suited to the AWGN channel.
Future studies may focus on channel estimation, on Cramer
Rao bounds computation for CPM over selective channel and
also on the preamble design.
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