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Abstract Multi-view dynamic three-dimensional
reconstruction has typically required the use of custom
shutter-synchronized camera rigs in order to capture
scenes containing rapid movements or complex topology
changes. In this paper, we demonstrate that multiple
unsynchronized low-cost RGB-D cameras can be used
for the same purpose. To alleviate issues caused by
unsynchronized shutters, we propose a novel depth
frame interpolation technique that allows synchronized
data capture from highly dynamic 3D scenes. To
manage the resulting huge number of input depth
images, we also introduce an efficient moving least
squares-based volumetric reconstruction method that
generates triangle meshes of the scene. Our approach
does not store the reconstruction volume in memory,
making it memory-efficient and scalable to large scenes.
Our implementation is completely GPU based and
works in real time. The results shown herein, obtained
with real data, demonstrate the effectiveness of our
proposed method and its advantages compared to state-
of-the-art approaches.

Keywords 3D reconstruction; RGB-D cameras; motion
capture; GPU

1 Department of Information and Computer Science,
Keio University, Yokohama, Japan. E-mail: S. Meerits,
meerits@hvrl.ics.keio.ac.jp (�); H. Saito, saito@hvrl.
ics.keio.ac.jp.

2 Department of Advanced Information Technology,
Kyushu University, Fukuoka, Japan. E-mail: thomas@
ait.kyushu-u.ac.jp.

3 LIGM, UMR 8049, Université Paris-Est Marne-la-Vallée,
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1 Introduction

Three-dimensional reconstruction has found many
applications in various fields such as archaeology [1],
design [2], and architecture [3]. In the digitization
and preservation of cultural heritage, for example,
3D models of ancient artifacts can be built on-
site using existing automated tools such as RGB-D
SLAM that do not require experts. In contrast, for
applications in mixed reality in which real data can
be mixed with virtual content [4], it is still difficult
to reconstruct accurate 3D models in real time when
objects are moving rapidly or when the scene is
large.

As the multi-view reconstruction of static scenes
has matured, the research focus has shifted to multi-
view reconstruction of dynamic scenes containing
moving objects. Such 3D reconstruction remains
a challenging problem and well-studied topic in
the fields of computer vision, virtual reality, and
robotics. The advent of consumer-grade RGB-D
cameras that can capture both depth and color
information has motivated a wave of research on
dynamic 3D scene reconstruction in the last few years.
We may divide most existing techniques for dynamic
scene reconstruction using RGB-D devices into two
main categories: (a) fusion-based methods that track
the motions of objects in the scene, and accumulate
captured data into a canonical representation of the
scene, and (b) frame-based methods that reconstruct
a 3D model independently for each set of images
taken at the same time. Both strategies have several
advantages and limitations.

While fusion-based methods allow reconstruction of
visually appealing 3D models with smooth surfaces,
smooth motion, and high levels of detail, they
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generally fail to reconstruct fast-moving ¬ objects.
Indeed, tracking fast-moving objects is extremely
difficult, and the slightest error may corrupt the
canonical 3D representation of the scene. This
can initiate a vicious feedback circle of tracking
errors, eventually leading to completely inaccurate
model reconstruction. Furthermore, using deformable
models or object templates causes issues when
handling large and complex scene topology changes
[5–7]. Moreover, focusing only on either human
reconstruction [8] or foreground objects [6, 7, 9–11]
restricts applicability of reconstruction approaches.
Most fusion-based methods use truncated signed
distance field volumes for fusing depth data. This has
high memory consumption, limiting the size of the
scenes that can be reconstructed. Memory reduction
strategies [12] exist, but they tend to considerably
increase the algorithmic complexity of reconstruction.

Frame-based methods reconstruct a 3D model of
the scene from a set of RGB-D camera images taken
at a single moment in time; reconstruction is done
independently for each frame. In contrast to fusion-
based methods, as long as the input RGB-D images
are well synchronized in time, there is no need to
track the deformation of the constructed 3D model.
This also guarantees that rapid movements can be
correctly reconstructed. However, using only a single
frame of data is a drawback that generally results
in poorer 3D model details than from fusion-based
methods.

In this paper, we follow the frame-based strategy
and present a 3D reconstruction method designed
to be utilized with commodity RGB-D camera
hardware. Thus, in our approach, the whole 3D scene
is reconstructed from scratch on each frame. This
trades some loss of 3D model precision for increased
resistance to topological changes. Our method
does not require a template, can reconstruct scene
backgrounds, and has a small memory footprint. In
addition to providing real-time reconstruction, our
method allows very flexible playback of recorded data.
This includes synthetic 3D slow motion based on
interpolation between camera frames. The technical
contributions of this work are (1) a new robust
and accurate time calibration method for consumer
RGB-D cameras, (2) a fast depth map interpolation

¬ It is difficult to quantify fast movement, but empirically we consider
position change of 40 pixels or more per frame to be fast.

method to synthesize scene point clouds at arbitrary
time, and (3) a real-time moving least squares-
based volumetric reconstruction method with a small
memory footprint.

2 Related work

3D reconstruction research initially focused on off-
line reconstruction of static scenes. Gradually the
focus has shifted to dynamic scenes and achieving
real-time processing speeds. In this paper, we divide
related works into two main categories, fusion-based
methods and frame-based methods. A comprehensive
review of reconstruction algorithms can be found in
Ref. [13].

2.1 Fusion-based methods

Fusion-based methods track the motions of objects in
the scene over time and accumulate the captured data
into a canonical representation of the scene. Following
this strategy, parametric reconstruction methods
display impressive results by deforming models of
objects known a priori. Performance capture systems
track motion by deforming a model of a human [8, 14].
Zollhöfer et al. [5] presented a way to scan any 3D
object template, which can then be deformed in real
time. The obvious drawback of fixed templates and
parameterized models is their inability to deal with
unexpected scene topology changes or the appearance
of unknown objects in the scene. Wang et al. [15]
proposed a templateless reconstruction method that
can efficiently track non-rigid motions. However,
the method does not work in real time and complex
topology changes may not correctly be tracked.

Truncated signed distance function (TSDF)
volumes [16] have been at the forefront of non-rigid
3D reconstruction research. TSDF volumes allow
accumulation of scene details over multiple frames
to achieve high-quality reconstruction, but they also
require accurate tracking of object movements to
avoid corrupting geometry. Newcombe et al. [6]
introduced DynamicFusion, wherein depth data is
accumulated into a canonical model of a scene, which
is subsequently deformed using a warp field to match
scene changes in real time. Innmann et al. [7]
improved DynamicFusion by estimating a more dense
warping field, and Guo et al. [17] made use of albedo
information in motion tracking. Zhang and Xu [18]
added an option to reconstruct scene backgrounds
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by segmenting dynamic and static content. While
the reconstruction quality is high, these methods can
fail when scene topology changes considerably from
that of the initially estimated model. Moreover, these
methods were designed to be used with a single RGB-
D camera. Dou et al. [10] proposed resetting the
deformed model periodically to allow more extensive
scene topology changes. The method relies on
multiple custom-built capture devices. Follow-up
work [11] has improved the reconstruction and motion
estimation accuracy via machine learning techniques
but retains a similar hardware setup.

2.2 Frame-based methods

Frame-based methods reconstruct a 3D model
independently for each set of simultaneously-taken
images. Therefore they do not require tracking of
the motions of objects in the scene. Poisson surface
reconstruction, proposed by Kazhdan and Hoppe [19], is
a popular choice for generating high-quality 3D models
from point clouds. The method considers the full
structure of the scene to produce watertight meshes.
An adaptation of the method for dynamic scenes
together with a multi-camera capture setup was put
forward by Collet et al. [9]. While the reconstruction
has very impressive quality, the high computational
cost and custom camera setup requirement have
made the method far from real-time and hard to
use. Wang et al. [20] proposed another Poisson
reconstruction-based system that utilizes a much
simpler camera setup, but it fails under rapid motion.
Alexiadis et al. [21, 22] used Fourier transform-based
reconstruction together with an a priori human model.
The methods use consumer RGB-D devices and
generate high-quality models, but they are restricted
to capturing human movement.

Reconstruction methods based on moving least
squares (MLS) use local fitting of point clouds
to obtain a refined set of points on surfaces.
Kuster et al. [23] showed near-real-time multi-camera
reconstruction by rendering MLS-processed points
using point splatting. In applications, however,
triangle mesh models are preferred over points.
Meerits et al. [24] used a method inspired by
mesh zippering [25] to generate triangle meshes for
MLS surfaces. The drawback of this work is that
when using many cameras, mesh density becomes
unnecessarily high and the mesh joints can present
some ambiguities.

3 Proposed method

The major components of our proposed system are
outlined in Fig. 1. We use multiple consumer-grade
RGB-D devices (such as the Microsoft Kinect 2) to
capture the scene to be reconstructed. Cameras are
connected to small computers, termed clients. In
turn, the clients are connected over a network to a
single server machine. The server decompresses and
buffers the received data, which is later forwarded
to a GPU for reconstruction. The reconstruction
process is generally divided into two parts, (1) motion
estimation and (2) geometric surface estimation,
ending with a visualization of the results.

We use volumetric 3D reconstruction with a
hierarchical spatial structure: a volume of space to be
reconstructed consists of blocks that in turn consist of
voxels. This structure speeds up reconstruction as we
can quickly determine whether a block contains any
surfaces or not. The geometric surface is estimated
using an MLS approach that assigns a signed distance
function value to each voxel. A triangle mesh is
extracted from the volume using the marching cubes

Fig. 1 FusionMLS pipeline.



4 S. Meerits, D. Thomas, V. Nozick, et al.

algorithm. Finally, the reconstructed 3D model is
rendered.

For accurate 3D reconstruction, the input images
must be temporally consistent. This means that
the depth maps should appear as if they were
captured at exactly the same time from all cameras.
Consumer RGB-D devices, however, typically lack
shutter synchronization, so the captured frames
are temporally inconsistent. To tackle this issue,
we developed a depth interpolation scheme that
generates a new temporally consistent set of images
from raw RGB-D camera data. This works by (1)
calibrating the clocks of all cameras so that accurate
timestamps can be assigned to all captured frames, (2)
estimating scene flow between each pair of consecutive
depth maps for each camera separately, and (3)
warping depth maps to the desired point in time
using scene flow vectors. Scene flow is computed
by estimating the non-rigid transformation between
depth maps.

4 System setup

4.1 Hardware topology

The RGB-D devices can be placed in various con-
figurations. When capturing small scale activity, the
cameras are usually placed around objects as shown
in Fig. 2 to maximize view coverage.

All recent consumer-level RGB-D devices are USB
connected, which imposes strict limits on cable length.
By attaching a small client computer to each RGB-D

Fig. 2 Example camera setup. Four RGB-D cameras, shown with
infrared images, capture a point cloud of a sample scene. The colors
of the points indicate capture by different cameras.

camera, every client can be connected over a much
more flexible Ethernet network to a server machine,
thus avoiding the constraint of RGB-D camera cable
length.

The clients compress all depth maps, infrared
images, and color images received from the RGB-
D cameras and send the data over a custom network
protocol to the server. The server decompresses
and buffers the images for reconstruction. Network
transfers and image compression and decompression
can incur variable latency. We therefore perform
reconstruction at a defined point in time 500 ms after
the actual time. In other words, 3D reconstruction
is delayed half a second to accommodate pipeline
latency.

The data received from the clients can also
be recorded for later playback. When using off-
line reconstruction, the user is free to specify any
playback speed. Because our proposed method can
interpolate between frames, we can simulate slow
motion playback of the scene.

All scene reconstruction takes place on the GPU
to achieve highly parallel processing. At the start
of reconstruction, the necessary image frames are
buffered and uploaded to the GPU memory. Because
the reconstruction process requires at least two
consecutive camera frames from each camera, we can
achieve further speedup by buffering pairs of frames
on the GPU for each camera.

4.2 Time calibration

Consumer-level RGB-D cameras have timing-related
drawbacks that must be addressed, including the
fact that the shutters of multiple cameras cannot be
synchronized and that devices lack time calibration
functionality. Because we are unable to force
synchronization of image capture by the RGB-D
cameras, we must compensate for object movement
depending on image capture time. Such motion
compensation requires precise timestamps for all
captured frames. This brings us to the second RGB-
D camera drawback: the camera clocks must be
calibrated despite difficulties.

Alexiadis et al. [22] proposed solving the clock
synchronization issue by recording audio using the
camera’s built-in microphone. The audio can then be
used to align the video streams of different cameras in
post-processing. We follow another route and propose
an online method with high calibration accuracy that
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works with any RGB-D camera by assigning accurate
timestamps to image frames. In the following, the
reported results and constants are for the Microsoft
Kinect 2 device that was used in our experiments.

The time calibration starts by setting the clocks of
all computers using Network Time Protocol (NTP).
As is typical for hierarchical networks, the server
first obtains the time from a nearby stratum 2 clock
and the clients in turn calibrate their clocks by
querying the time from the server. Because the
network adapters of all machines support hardware
timestamping, we can achieve sub-microsecond
clock accuracy within the local network. The
time synchronization software consistently reported
measured offsets below 1 µs with respect to the local
timeserver.

Next, we calibrate the client computer clocks with
the connected RGB-D cameras. Each camera is
assumed to have a precise internal clock that starts
during device initialization. Unfortunately, there is
no straightforward way to synchronize this clock to
computer time. The time is exposed in the data
packets sent from the camera to client. These packets
include a timestamp with a precision of 125 µs. On
the client, we record the arrival time of each USB
packet from the camera. Although the USB protocol
has variable speed and latency, we can correlate
the device and computer clocks over a large enough
sample of timestamps.

Let tc and td be the computer and the camera
device time, respectively. We model the relation
between these timers as

tc = (1 + sd)td + od + cdc (1)
where sd is the clock skew, od is the offset between
the timers, and cdc is the average time between image
capture and delivery of the image to the computer.
We can recover sd and od using a linear least squares
regression analysis. The constant cdc, however, is
dependent on the hardware and software being used.
Because our capture setup consists of homogeneous
hardware, we assume that this time delay is constant
across devices. Hence, the relative timestamps of any
captured frames remain valid.

From a sample of 3000 timestamps captured over
100 seconds, we found a significant time skew sd of
−179.2± 0.4 PPM (confidence level of 95%). If the
time calibration is repeated after every 100 seconds,
we get time uncertainty of ±40 µs from skew. The

timer offset od has a confidence interval of ±23 µs.
We can conclude that the Kinect 2 RGB-D camera
has a reliable internal timer that can be calibrated to
sub-millisecond precision. However, the calibration
should be repeated periodically, for instance, every
100 seconds, to reduce the time uncertainty from
clock skew estimation error.

4.3 Camera setup and calibration

Our 3D reconstruction method requires precise
intrinsic and extrinsic camera calibration.

Time-of-flight-based RGB-D cameras such as the
Kinect 2 typically have one depth sensor and one
color imaging sensor at different viewpoints. Intrinsic
parameters for both are calibrated in-factory and
are readable from the device. Extrinsic parameters
for converting coordinates between sensors are also
typically available. In the case of the Kinect 2,
the extrinsic transformation is given in a custom
high-degree polynomial format. We convert it to a
more convenient Euclidean rotation and translation
transformation.

Extrinsic calibration between RGB-D cameras is
done using color images. Initially, one camera is
fixed to the global coordinate system origin. Next,
a classical checkerboard-pattern with a known size
is used to determine the transformation between
initially fixed and other cameras. It is possible that all
cameras cannot simultaneously see the checkerboard.
In that scenario checkerboard is moved to get a
chain of transformations linking all cameras. As the
cameras in our experiments are in fixed positions, we
can repeat the extrinsic calibration a number of times.
With the use of quaternions we can average multiple
transformation estimates to achieve more precise
results. It also allows measuring standard error of
rotation and translation parameters to determine the
accuracy of extrinsic calibration.

5 Motion estimation

As detailed in Section 4.2, all image frames received
from the cameras are assigned precise timestamps.
Due to the consumer-oriented nature of the hardware,
we are unable to control shutter trigger time. The
result is that the cameras capture fast moving objects
at different time. A naive 3D reconstruction of such
data would result in one object appearing at slightly
different locations simultaneously.
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Our solution is to generate new synthetic camera
frames such that it appears as if the scene
were captured at the same time by all RGB-D
devices. Essentially, we interpolate images between
consecutive camera frames. Since the interpolation
method is continuous, we are free to generate data
for any point in time. This also leads to interesting
applications such as generating synthetic slow motion
videos.

The basic strategy for interpolating depth data
from cameras is to estimate scene flow for every
camera separately. The depth can then be warped
to an interpolated time by applying scaled scene
flow vectors to depth points. For an overview of
scene flow estimation methods please refer to Yan
and Xiang [26].

Unfortunately, the available methods tend to be
computationally too expensive to be practical for
estimating multiple flow maps in real time. Therefore,
we designed our own scene flow estimation method,
which trades some estimation quality for speed.
In a nutshell, scene flow is estimated by finding
correspondences in consecutive depth maps. We
generate a mesh of depth points in one frame and warp
it iteratively to the closest points on the second depth
map frame. Regularization is achieved by imposing
some local rigidity constraints on the mesh.
5.1 Scene flow

Scene flow estimation takes as input two consecutive
depth maps D and D′ from a single RGB-D camera.
For the first depth map, D, we generate a dense
mesh M from the depth pixels. Essentially, all
neighboring depth points with distance less than a
user-set threshold mt are connected by an edge. Our
aim is to warp this mesh so that it matches depth map
D′. The warped mesh is denotedM′. The scene flow
vectors for depth points then equal the displacements
of vertices between meshes M and M′.

To reduce the computational cost of finding
correspondences between M and D′, we generate
multiple mesh and depth scales, {M0, . . . ,Mn} and
{D′0, . . . ,D′n}, respectively. A mesh scaleMi is found
by downscalingMi−1 to half size. Downscaling works
by removing every second vertex in horizontal and
vertical directions. Vertices in Mi are joined by
edges only if a path of edges exists with length two
or less connecting corresponding vertices in mesh
Mi−1. The mesh warping strategy begins at the

highest scale mesh Mn, which is iteratively matched
to target depth map D′n. The warping parameters
are then propagated down to the next mesh scale
Mn−1. We store correspondences between vertices
at levels n and n− 1 when downsampling. Hence we
can simply copy flow data for vertices which exist on
both levels. The data for vertices that only exist on
level n−1 can be generated by averaging flow vectors
of neighboring edge connected vertices with already
copied data. The warp estimation and propagation
procedure is repeated at each scale until we reach
mesh M0.

The mesh warping procedure works in two steps.
First, for all vertices inMi we find the closest points
in D′i using a grid search and store the new vertex
positions in M′i. Since warping is carried out at
multiple scales, a fairly small search window of 5× 5
suffices for finding good correspondences. Secondly
we need to regularize the found correspondences to
get more accurate flow vectors. This is done by
imposing local rigidity constraints on the meshes.
Given corresponding vertices v ∈ Mi and v′ ∈ M′i,
we minimize the energy function:

Ei =
∑

a,b∈Mi

‖(va − vb)− (v′a − v′b)‖2 (2)

where the sum is over all pairs of vertices connected by
edges in the mesh. We carry out energy optimization
by gradient descent due to its simplicity. In practice,
each gradient descent iteration makes the mesh more
rigid. Hence, we can easily tune the mesh rigidity via
the number of iterations.

A single warping pass on each mesh level is typically
sufficient for slowly moving objects. In the case
of rapidly moving objects, the depth has to be
warped a long distance from its original location.
Since the point correspondence search just selects
closest points, many initial matches can be inaccurate.
Regularization cannot completely fix bad initial
correspondences. Hence it is best to repeat warping
a few times, using the last warping result to increase
quality. The major steps of flow estimation are shown
in Fig. 3.

5.2 Depth warping

The final step of motion estimation is to interpolate
the depth frames based on the depth map meshes
calculated in the previous subsection.

Our system runs at a constant frame rate
determined by the user: the reconstruction time is
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Fig. 3 Scene flow estimation using a rapidly moving spherical object. Mesh M0 is generated from input D and is transformed through a
series of steps, resulting in mesh M′

0, which closely matches the second input depth map D′.

not influenced by RGB-D camera frame timestamps.
Let the reconstruction time be t. In that case,
for each camera separately, we find the consecutive
depth frames D and D′ from the buffers at time t1
and t2, respectively, such that t1 6 t < t2. The
interpolation ratio between those depth frames is
then r = (t2 − t) / (t2 − t1).

Next we generate a new meshM′′ by interpolating
the vertex positions of meshes M0 and M′0. Given
the corresponding vertices v ∈M0 and v′ ∈M′0, the
new vertex position for mesh M′′ is (1 − r)v + rv′.
The resulting mesh M′′ can effectively be rendered
using standard computer graphics tools to produce
a new interpolated depth map. Figure 4 shows an
example of interpolation at three different time points
using real data.

Fig. 4 Depth interpolation. Three interpolated depth maps with
interpolation ratios of 0.25, 0.50, and 0.75 are generated from input
depth maps D and D′.

6 Volumetric reconstruction

3D reconstruction of the collected images requires
as input multiple RGB-D camera depth maps, with

a common timestamp, taken from different cameras.
These images are fused into a triangle mesh model
of the scene. Our proposed method is designed to
reconstruct the whole scene from scratch on each
frame (one frame consists of a set of multiple RGB-
D images with the same timestamp). That is, no
reconstruction data is stored for use in reconstruction
of other frames. This approach prevents corruption
of the 3D reconstruction by incorrect model tracking.

The reconstruction starts by filtering the depth
maps for noisy object edges and estimating the initial
surface normals. Next, a block occupancy process
finds regions of space that are likely to contain
surfaces, in order to reduce the reconstruction cost.
Finally, the surface geometry is estimated and a
surface mesh is generated in the main reconstruction
process.
6.1 Preprocessing

The input to our reconstruction method consists of
depth maps generated from the process presented
in Section 5.1. We start with simple filtering of
the depth maps and estimation of the initial surface
normals.

Depending on the type of RGB-D camera used,
the depth maps can contain various types of noise.
While our reconstruction method can handle per-pixel
measurement noise, completely incorrect surfaces
should be avoided. A typical issue with RGB-D
cameras is that object edges in depth maps can be
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noisy or incorrect. Such areas are best avoided, and
we alleviate this problem by eroding by one pixel
the depth map on object edges. These object edges
are found by looking for neighboring depth points
separated by a distance greater than a threshold
value mt, also used in Section 5.1. Note that
simultaneous use of multiple time-of-flight RGB-D
cameras, operating at the same frequency, can cause
interference. Most commonly, this interference can
make the pixel values periodically vibrate around
their true value. In our experiments, the effect was
not pronounced, and no specific filter was used to
remove such potential artifacts. Details of time-
of-flight camera interference are discussed by Li et
al. [27], who also proposed a filtering strategy.

The initial surface normals should be estimated at
each depth map point location. It is best to calculate
the normals for each depth map separately as multiple
depth maps may not be perfectly aligned, which may
distort the normal estimates. Normal estimation
starts by calculating gradients:

gx(x, y) = p(x + 1, y)− p(x− 1, y) (3)

and
gy(x, y) = p(x, y + 1)− p(x, y − 1) (4)

at all depth pixel coordinates. Here p(x, y) is a
3D point corresponding to a depth map pixel at
coordinates (x, y). Next, we calculate temporary
normals as

u(x, y) = gx(x, y)× gy(x, y) (5)

Finally, the initial normals are calculated as a
spatially weighted sum over a small window around
(x, y) as

n(x, y) =
∑
i,j

u(x, y)w
(
‖p(x, y)− p(i, j)‖

)
(6)

where w(·) represents spatial weighting. We follow
Guennebaud and Gross [28] and define the weight
function as

w(r) =


[
1−

(
r
h

)2]4
, r < h

0, otherwise
(7)

where h is a constant spatial smoothing factor. The
window size for normal calculation can be derived
from the spatial smoothing factor h and RGB-
D camera parameters dynamically for each point.
However, in terms of GPU code optimization, we

found it best to use a hardcoded 7× 7 pixel window
for our test scenes.

6.2 Volume hierarchy

Our method is a volumetric reconstruction approach;
the reconstructed scene area is defined as the
reconstruction volume. This volume can be specified
by the user or calculated from the camera positions
and their parameters. The smallest volume elements
are voxels, arranged in a grid-like fashion. We also
define a block as a sub-volume of voxels of fixed
size. A block has a uniform number of voxels in
all dimensions, for instance, 8× 8× 8.

There are two major reasons for dividing the total
volume into blocks. The first reason is that a spatial
hierarchy allows us to determine the occupied volume
regions, which need to be reconstructed. In other
words, we eliminate the need for expensive voxel
calculations in areas where there are no depth map
points and hence no surfaces. This method is simpler
than using octrees or k-d trees and can be computed
quickly. The second reason concerns storing voxel
values. We prefer not to store voxel data in the GPU
main memory as it is expensive and we have no use
for this data when reconstructing the next frame.
Our method is more light-weight than other proposed
volume memory reduction schemes [29, 30]. However,
it is important to note that we do need voxel values to
generate the mesh. The size of a block of voxels is low
enough to permit its temporary storage. Furthermore,
we can utilize modern GPU features in this scenario
to speed up the processing.

Modern GPUs have multiple types of memory with
different characteristics. Global memory is plentiful
and is persistent from allocation to deallocation
but has slow access time. Shared memory, on the
other hand, has limited availability of just tens of
kilobytes, and the data is not persistent during
program execution, but it has much faster access time.
According to GPU manufacturer documentation,
recent GPUs such as those in the Nvidia GeForce
range have roughly 100 times lower shared memory
latency than for uncached global memory. We leverage
this to greatly accelerate 3D reconstruction. Typical
volumetric reconstruction methods store per-voxel
data in GPU global memory. This data needs
to be read and written when estimating surfaces.
Furthermore, mesh generation also requires multiple
lookups of the voxel values. In contrast, our method
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is designed to use only shared memory to store voxel
data.

Using the shared memory comes with certain
restrictions. Most importantly, the data is stored
only for the duration of GPU thread group execution.
This means that after any voxel value calculation,
we must immediately run mesh generation on the
same voxels. As the amount of shared memory is
very limited, this limits maximum block size.

Our mesh generation method, which uses the
marching cubes algorithm, can only generate triangles
between neighboring voxels. Essentially, every
possible 2× 2× 2 voxel sub-volume is processed to
yield zero or more triangles. We can run marching
cubes inside a block of voxels but not at block edges.
However, using the shared memory for block voxel
storage means that we cannot look up the voxel values
of neighboring blocks. We solve the problem similarly
to Ref. [30] and make all blocks overlap each other
by one voxel in each direction. As an example, if a
block consists of 8× 8× 8 voxels, then all blocks are
laid out with spacing of seven voxels on all axes.

Because the voxel blocks overlap, some voxels are
processed several times as parts of different blocks.
We can calculate the theoretical worst-case overhead
as s3/(s − 1)3, where s is the size of the block in
voxels. In the case of an 8× 8× 8 voxel block, we get
49% processing overhead. While the extra processing
might seem considerable, the savings from not having
to store and load voxels in global memory is greater.
However, the block size s should be chosen with
the balance of shared memory usage and processing
overhead in mind.

6.3 Block occupancy

To determine which blocks of voxels are likely to
contain surfaces, we count the number of points
found in each block. A three-dimensional array of
integers is allocated with one entry per block in the
reconstruction volume. Assuming we are using a
GPU that supports atomic operations, we project
all depth map points to the reconstruction volume.
Atomic addition, AtomicAdd(m, n), which adds the
value n to some array location m, is used to sum the
number of points in each block in parallel. Note that
because the blocks overlap by one voxel on each side,
we must detect when points are on edges and add
them to other block counts as well. The procedure is
summarized in Algorithm 1. An example of finding

Algorithm 1 Block occupancy calculation
Input: camera points p

Output: occupancy volume V

1: reset occupancy volume V to zeros
2: for every point p from cameras {parallelized} do
3: p← Rp + t {transform point to volume}

4: b← p/ (s− 1) {block coordinates}
5: AtomicAdd(V (b), 1)

6: if px mod (s− 1) = 0 and bx > 0 then
7: AtomicAdd(V (b− [1, 0, 0]T), 1)
8: end if
9: if py mod (s− 1) = 0 and by > 0 then

10: AtomicAdd(V (b− [0, 1, 0]T), 1)
11: end if
12: if pz mod (s− 1) = 0 and bz > 0 then
13: AtomicAdd(V (b− [0, 0, 1]T), 1)
14: end if
15: end for

the number of points inside the blocks is depicted in
Fig. 5.

Next we need to find a list of non-empty blocks so
that they can be reconstructed. We iterate over all
blocks to determine whether the point count exceeds
a constant threshold bt. This threshold acts as a
coarse point cloud filter. In practice, however, blocks
tend to have relevant surfaces even at quite low point
counts and hence setting bt = 1 is recommended.
Again we utilize the atomic add operation to create a
list of occupied block coordinates. Details are given
in Algorithm 2.

Fig. 5 Visualization of blocks to be reconstructed. Left side shows
the input point cloud and the right side shows the corresponding
non-empty blocks.
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Algorithm 2 Block list generation
Input: occupancy volume V

Output: block index B

1: i← 0
2: for every block coordinate b {parallelized} do
3: if V (b) > bt then
4: j ← AtomicAdd(i, 1)
5: B(j)← b

6: end if
7: end for

6.4 Reconstruction

The main part of scene reconstruction consists of
estimating the surface geometry and generating the
respective triangle meshes. The surfaces are defined
implicitly using a signed distance function (SDF).
The meshing algorithm can then find a zero-level set
of SDF and output triangles.

We estimate SDF for each voxel by sampling nearby
points from all RGB-D cameras. State-of-the-art
dynamic scene reconstructions using signed distance
functions (e.g., Refs. [6, 7]) typically use only one
depth map point per camera to update single voxel
values. This method works well only if the SDF is
updated over multiple frames. Because our volume
is not stored between reconstructions, this approach
does not suit our needs. We choose to estimate the
local surfaces using MLS, which samples many points
in the neighborhood of the voxel.

To estimate the local surface, we first need to
retrieve depth points pi and the corresponding initial
surface normals ni from the neighborhood of a given
voxel position p. Following Kuster et al. [23], we
project p to each RGB-D depth map and retrieve a
u × u square block of depth points pi and normals
ni around the projected point.

For the actual surface estimation, we follow the
moving least squares formulation put forward in
Ref. [31]. Given a voxel position p, some corres-
ponding points pi, and some normals ni, we can
calculate a new weighted position:

a(p) =
∑

i w
(
‖p− pi‖

)
pi∑

i w
(
‖p− pi‖

) (8)

and weighted normal:

n(p) =
∑

i w
(
‖p− pi‖

)
ni∑

i w
(
‖p− pi‖

) (9)

where w(r) is the spatial weighting function pre-
viously defined in Eq. (7) for use in normal estimation.

We also define a voxel confidence value simply as
c(p) =

∑
i

w
(
‖p− pi‖

)
(10)

Finally, the implicit surface distance function is
given as

f(p) = n(p)T(p− a(p)
)

(11)

In cases where the confidence value c(p) is below a
constant user-specified threshold ct, we mark f(p) as
invalid. This effectively removes surfaces that do not
have enough points for an accurate estimation. We
store the SDF value f(p), the normal n(p), and the
confidence value c(p) for each voxel. The normal is
stored so that there is no need to estimate the surface
normal again during meshing. Also the confidence
value can be used to generate smooth object edges
during rendering.

To generate the mesh, we use marching cubes
triangulation [32]. Every possible 2 × 2 × 2 voxel
sub-volume of the block is passed to triangulation.
The marching cubes method decides which triangles
to create between each voxel based on SDF values. If
any values f(p) are found marked as invalid, then no
triangles are output. All valid triangles are written
to a global buffer and include a point location p, a
normal n(p), and a confidence c(p) attribute for each
vertex.

Both surface estimation and mesh generation are
summarized in Algorithm 3. The major steps of
reconstruction are also visualized in Fig. 6.

Algorithm 3 3D reconstruction and mesh generation
Input: block index B

Output: triangle mesh M

1: i← 0
2: for every block b in index B {parallelized} do

3: . MLS reconstruction
4: for voxels c ∈ [0, 1, . . . , s]3 {parallelized} do
5: p← R(c + sb) + T {global coordinates}
6: F (c), N(c)←MovingLeastSquares(p)
7: end for

8: . Marching cubes triangulation
9: for voxels c ∈ [0, 1, . . . , s− 1]3 {parallelized} do

10: m←MarchingCubes(F (c), N(c))
11: for all triangles t ∈ m do
12: j ← AtomicAdd(i, 1)
13: M(j)← t

14: end for
15: end for
16: end for
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Fig. 6 Reconstruction of an 8× 8× 8 voxel block using real-world data. (a) Input point cloud data; colors mark different RGB-D cameras; (b)
MLS voxel values (only negative voxel values are visualized); (c) meshing result after marching cubes triangulation. Note that the outlier points
on the left side of the block are successfully excluded from the final result.

6.5 Rendering

The reconstructed scene is rendered solely using
triangles generated by the process described in the
previous subsection. The included normals can be
used to shade the 3D model under lighting.

The 3D mesh can contain discontinuities at edges
of thin objects or due to limited depth map coverage
of the scene. A naive rendering of such areas will
result in jagged edges. This is because marching
cubes has no native way of handling discontinuities.
However, we can use the confidence value c(p) of the
vertices to smoothly cut off triangles at a user-defined
threshold cr. Optionally, the edges can be smoothly
made transparent using alpha blending together with
an order-independent transparency technique such as
depth peeling [33]. Different ways of handling edge
rendering are visualized in Fig. 7.

Fig. 7 Edge rendering methods. (a) The mesh is rendered as is; (b)
mesh triangles are cut off at a user-defined confidence value; and (c)
mesh triangles smoothly transition from opaque to transparent based
on confidence value.

7 Results

All of our experiments were conducted on a server
with an Intel i7-5930K CPU, 32 GB of RAM, and
an Nvidia GeForce GTX 1080 Ti graphics card. The
client computers were Intel NUC7i3 machines with
an Intel i3-7100U CPU and 16 GB of RAM. For RGB-
D cameras, we exclusively used Microsoft Kinect 2
devices.

The system performance characteristics for a
typical scene recorded with four RGB-D cameras
can be seen in Table 1. Because our pipeline is
completely executed on the GPU, precise statistics
for each process step can be obtained by OpenGL
timer queries. We used the system parameters given
in Table 2, which were tuned to obtain maximum
reconstruction quality while retaining a real-time
frame rate.

An important aspect of our reconstruction system
is the ability to handle scenes with significant
dynamic content. This includes fast-moving objects
as well as changing scene topology. Figure 8 shows

Table 1 Performance

Process Avg. time Max. time
Motion estimation

Scene flow 11.7 ms 12.7 ms
Depth warping 0.7 ms 1.0 ms

Reconstruction
Preprocessing 2.5 ms 2.9 ms
Block occupancy 0.07 ms 0.05 ms
Reconstruction 17.6 ms 19.3 ms

Total 32.6 ms 36.0 ms
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Table 2 Recommended parameters

Parameter Value
Motion estimation

Mesh segmentation threshold mt = 1.5 cm
Mesh layers n = 4

Reconstruction
Number of voxels in volume 2× 107

Block size in voxels s3 = 83

Minimum points in block bt = 1
Neighbor search window u = 11
Spatial weight radius h = 4 cm
Confidence value threshold ct = 30

Fig. 8 Frame interpolation using a fast-moving spherical object.
Without interpolation (above), the point clouds from the different
cameras are not aligned. Using interpolation (below), the point clouds
are aligned and the object is correctly reconstructed.

the effectiveness of the approach. A selection of
challenging situations is shown in Fig. 9 and in the
Electronic Supplementary Material (ESM). Rapid
movements of objects are correctly reconstructed
thanks to our depth frame interpolation method.

Human actor reconstruction can be seen in Fig. 10
and in the accompanying video in the ESM. Source
data was taken from a publicly available dataset,
courtesy of Alexiadis et al. [21]. The resulting model
has good quality where visibility from cameras is
good. However, as our method is designed to be very
general, we do not use human templates to fill missing
surface areas.

Large scenes can also be reconstructed with our

method in real time. Figure 11 shows a room of size
10m× 3m× 3m. Movements can more clearly be seen
in the supplementary video in the ESM. The scene
can be reconstructed in real time mostly because of
the block occupancy test, which avoids the need to
reconstruct empty spaces. Moreover, because we do
not store the reconstruction volume, the memory cost
is low. For a volume with 2×107 voxels, we only need
to store block occupancy, taking 153 kB, and block
index data, taking up to 457 kB of memory. The rest
of the memory usage is related to input depth maps
and normals, and the output triangle mesh.

The number of systems to which we can compare
our method is limited. Recent dynamic scene
reconstruction methods, especially ones that utilize
truncated signed distance volumes, require fusing
depth data over multiple frames and are not designed
to handle cameras with unsynchronized shutters. In
addition, we are restricted in choosing comparative
methods as our scenes contain backgrounds and
highly non-rigid objects, such as cloth, for which
template generation is very difficult.

We compared our 3D reconstruction method with
another MLS method that uses mesh zippering [24]
and with Poisson surface reconstruction [19]. Some
results for highly dynamic and large scenes are shown
in Fig. 11 and Fig. 12, respectively. These methods
were chosen for their ability to reconstruct entire
scenes from only one depth frame per RGB-D camera.
In terms of quality, mesh zippering tends to have
rough edges at surface discontinuities. Additionally,
joining meshes can fail in some areas with complex
geometry, resulting in small holes in the meshes
or incorrectly generated triangles protruding from
surfaces. The Poisson method works off-line, taking
between 2 and 4 s to reconstruct the scenes in Fig. 11
and Fig. 12 when the reconstruction depth parameter
is set to 8. This method has the ability to complete
a surface even when point cloud data is missing from
some scene areas. While this feature can be beneficial
in repairing some areas of the generated mesh, it also
has drawbacks. Firstly, real-world scenes tend to be
topologically open and have many boundaries. These
areas are incorrectly reconstructed by the Poisson
method. Secondly, repairing surfaces is an under-
determined problem and holes in geometry can be
filled in various ways. This results in temporally
inconsistent surfaces.
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Fig. 9 Reconstructing highly dynamic scenes: (a) a ball is thrown at a cloth curtain; (b) a cloth is shaken; (c) a ball bounces off the ground;
and (d) a large piece of paper is torn apart.

Fig. 10 Reconstruction of human actors in various poses. Capture data is courtesy of Alexiadis et al. [21]. Above: part of “Alexandros” scene.
Below: part of “Apostolakis1” scene. In general, the models are correctly reconstructed. However, some smaller details are missing due to lack
of visibility from cameras.
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Fig. 11 Reconstructing a fast ball throw in a large scene with five RGB-D cameras: (a) shows our method together with camera positions, (b)
uses MLS-based mesh zippering [24], and (c) shows Poisson reconstruction method [19].

Fig. 12 Comparison of 3D reconstruction methods: (a) shows our method, (b) uses MLS-based mesh zippering [24], and (c) shows the Poisson
reconstruction method [19]. Zippering shows bad edge quality and occasionally has incorrect triangles protruding from surfaces. The Poisson
method tends to over-smooth areas and incorrectly handles open scenes.
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8 Conclusions

In this paper we demonstrated a novel 3D
reconstruction system that can reconstruct highly
dynamic, large scenes in real time. We solve the
problem of combining data from multiple consumer
RGB-D cameras lacking synchronized shutters. Our
reconstruction method is designed to be memory
efficient and provides real-time performance.

The proposed method may have uses in
teleconferencing, virtual reality, or free-viewpoint
television applications. It allows the use of consumer
RGB-D devices for scene capture rather than
requiring custom-made camera rigs. Finally, the
synthetic slow-motion playback could be useful in
performance-capture applications.

Electronic Supplementary Material Supplementary
material demonstrating our method in both highly dynamic
and large scenes is available in the online version of this
article at https://doi.org/10.1007/s41095-018-0121-0.
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[12] Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M.
Real-time 3D reconstruction at scale using voxel hashing.
ACM Transactions on Graphics Vol. 32, No. 6, Article
No. 169, 2013.

[13] Berger, M.; Tagliasacchi, A.; Seversky, L. M.; Alliez, P.;
Guennebaud, G.; Levine, J. A.; Sharf, A.; Silva, C. T.
A survey of surface reconstruction from point clouds.
Computer Graphics Forum Vol. 36, No. 1, 301–329,
2017.

[14] Li, Z.; Ji, Y.; Yang, W.; Ye, J.; Yu, J. Robust 3D
human motion reconstruction via dynamic template
construction. In: Proceedings of the International
Conference on 3D Vision, 496–505, 2017.

[15] Wang, K.; Zhang, G.; Xia, S. Templateless non-rigid
reconstruction and motion tracking with a single RGBD
camera. IEEE Transactions on Image Processing Vol.
26, No. 12, 5966–5979, 2017.



16 S. Meerits, D. Thomas, V. Nozick, et al.

[16] Curless, B.; Levoy, M. A volumetric method for building
complex models from range images. In: Proceedings of
the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, 303–312, 1996.

[17] Guo, K.; Xu, F.; Yu, T.; Liu, X.; Dai, Q.; Liu, Y.
Real-time geometry, albedo, and motion reconstruction
using a single RGB-D camera. ACM Transactions on
Graphics Vol. 36, No. 3, Article No. 32, 2017.

[18] Zhang, H.; Xu, F. MixedFusion: Real-time
reconstruction of an indoor scene with dynamic objects.
IEEE Transactions on Visualization and Computer
Graphics DOI: 10.1109/TVCG.2017.2786233, 2018.

[19] Kazhdan, M.; Hoppe, H. Screened Poisson surface
reconstruction. ACM Transactions on Graphics Vol.
32, No. 3, Article No. 29, 2013.

[20] Wang, R.; Wei, L.; Vouga, E.; Huang, Q.; Ceylan,
D.; Medioni, G.; Li, H. Capturing dynamic textured
surfaces of moving targets. In: Computer Vision–ECCV
2016. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds.
Springer Cham, 271–288, 2016.

[21] Alexiadis, D. S.; Zioulis, N.; Zarpalas, D.; Daras P. Fast
deformable model-based human performance capture
and FVV using consumer-grade RGB-D sensors. Pattern
Recognition Vol. 79, 260–278, 2018.

[22] Alexiadis, D. S.; Chatzitofis, A.; Zioulis, N.; Zoidi,
O.; Louizis, G.; Zarpalas, D.; Daras, P. An integrated
platform for live 3D human reconstruction and motion
capturing. IEEE Transactions on Circuits and Systems
for Video Technology Vol. 27, No. 4, 798–813, 2017.

[23] Kuster, C.; Bazin, J.-C.; Öztireli, C.; Deng, T.; Martin,
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[30] Steinbrücker, F.; Sturm, J.; Cremers, D. Volumetric
3D mapping in real-time on a CPU. In: Proceedings
of the IEEE International Conference on Robotics and
Automation, 2021–2028, 2014.

[31] Alexa, M.; Adamson, A. On normals and projection
operators for surfaces defined by point sets. In:
Proceedings of the First Eurographics Conference on
Point-Based Graphics, 149–155, 2004.

[32] Lorensen, W. E.; Cline, H. E. Marching cubes: A high
resolution 3D surface construction algorithm. ACM
SIGGRAPH Computer Graphics Vol. 21, No. 4, 163–
169, 1987.

[33] Everitt, C. Interactive order-independent transparency.
White paper, nVIDIA Vol. 2, No. 6, 7, 2001.

Siim Meerits received his B.Sc. degree
in physics from Tartu University, Estonia,
in 2010. He continued at Keio University,
Japan, receiving his M.Sc.Eng. degree
in computer science in 2015. Currently
he is in the Ph.D. program at the
same institution. His research interests
include computer vision, particularly 3D

reconstruction, and augmented reality.

Diego Thomas received his master
degree in informatics and applied
mathematics from the Ecole Nationale
Superieure d’Informatique et de
Mathematiques Appliquees de Grenoble,
France, in 2008. He received his Ph.D.
degree from the Graduate University
for Advanced Studies in 2012. After

two years as a JSPS postdoc at Kyushu University, he
is now assistant professor at the Laboratory for Image
and Media Understanding at Kyushu University, Fukuoka,
Japan. His research interests include 3D image registration,
3D reconstruction, and photometric analysis.

Vincent Nozick received his Ph.D.
degree in computer sciences in 2006 from
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