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We present in this work well-resolved and accurate Direct Numerical Simulations (DNS) of droplet con-

densation. Despite the great scientific and industrial interest, to this day, there is not an extensive knowl-

edge of the different processes involved in droplet condensation. Consequently, DNS should be

considered as a promising tool to investigate on this phenomenon. A preliminary validation of our sim-

ulations is carried out by direct comparison with the quasi-static theory of the droplet condensation in an

infinite vapour medium. Next, more complex configurations have been considered: the condensation of a

moving droplet in a subcooled vapour flow and the condensation of a hemispherical droplet deposed on

an isothermal flat surface. The latter represents a first step towards the understanding of the more

demanding DropWise Condensation. In both configurations, the effects of the Jakob number, Ja, have been

thoroughly analysed to understand how the condensation impacts on the droplet heat flux and dynamics.

This has led to the definition of a particular condensation regime for the lower Ja values, hereinafter

called low condensation rate regime, where the droplet heat transfer is independent of the Ja. By increas-

ing the Ja, instead, the effects due to condensation start to grow exponentially. This regime is referred as

the high condensation rate regime in this paper. Finally, some general trends for correlations on the

Nusselt number and drag coefficient accounting for condensation are proposed in this study.

1. Introduction

The condensation of vapour on dispersed droplets is a phe-

nomenon of interest in many industrial applications, such as air

conditioning systems, mixing-type heat exchangers and emer-

gency cooling systems. It commonly occurs also in the everyday

life: clouds are a large-scale example of condensation, as well as

the tiny droplets over containers with leftovers reheated in a

microwave. As a result, numerous studies have been conducted

on this subject with particular efforts directed towards the theoret-

ical description of such phenomenon.

The literature identifies two different kinds of droplet conden-

sations: the Direct Contact Condensation [17, see chap. 12], due

to the direct contact between vapour and a spray of droplets, as

suggested by the name, and the DropWise Condensation, first

observed by Schmidt et al. [40], usually obtained when the vapour

condensates on a weakly wetted surface. The latter type of conden-

sation is collecting a great scientific and industrial interest because

of the high heat transfer coefficients compared to FilmWise Con-

densation. However, to this day, there is not an extensive knowl-

edge of the different processes composing droplet condensation,

involving the nucleation and the growth of a single droplet and

its coalescence with the neighbouring droplets.

With regards to Direct Contact Condensation, an overview of

the existing literature reveals a lack of information, since all the

mathematical models developed are based on many simplifying

hypotheses and, on the other hands, the experimental data are

insufficient for a full understanding of the phenomenon and for

clarification of the relative merits of each model. Early works dealt

with the condensation of saturated pure vapours where the liquid

and the vapour are the same substance. An example is the work of

Ford & Lekic [11], where the authors carried out experiments with

single water droplets of different diameters and developed a theo-

retical model to predict the droplet growth. Their model was based

on the assumption of pure conduction in the droplet, which leads

to over-predicted values of droplet volume. Kulic et al. [18] realised

a model to predict the temperature of a water droplet experiencing

condensation and they tried also to estimate the condensation heat

transfer rate for a water droplet moving in air-steammixtures [19].

An interesting review of the existing theoretical models developed

for a single condensing droplet is presented in the experimental

work of Celata et al. [4].

The hydrodynamics and the heat and mass transfer associated

with the condensation on a moving drop were thoroughly investi-

gated in the works of Sundararajan, Ayyaswamy and Chung



[6,7,41,42]. The authors evaluated the flow field and the transport

in the gaseous phase, as well as the motion inside the droplet, by

resolving quasi-steady elliptic PDEs, while the heat transport

inside the droplet was treated as a transient process. In this way

the authors showed the influence of condensation on droplet

external and internal flow and on the heat flux. However, no quan-

titative general correlations between the condensation rate and the

droplet heat transfer were defined.

On the other hand, the study of DropWise Condensation (DWC)

aroused a discontinuous interest from the scientific community.

Since its discovery in the 30s [40], DWC attracted significant atten-

tion due to its superior heat transfer performances compared with

filmwise condensation. Nevertheless, the first semi-empirical

models were developed starting from the second half of the 60s

by Le Fevre and Rose [22]. A detailed review is proposed in [35].

However, over these years, there were only a few demonstrations

of successful applications of DWC on industrial scale. For this rea-

son, new interest on this subject was revived by around the 90s,

when satisfactory method of promoting DWC under industrial con-

dition were designed. In this period some mathematical models

supposed to describe DWC were proposed [1,16]. As during DWC

the interested surface is covered by a large amount of droplets with

different sizes, all these models are made up of a semi-empirical

relationship able to evaluate the heat flow rate through a single

droplet and a distribution function in order to reproduce the dro-

plets population. Given that the heat transfer in DWC depends

on many parameters, e.g. the droplets contact angle, the surface

treatment and its thermodynamics properties, the small and large

droplets populations, each model takes into account only some of

these aspects, consequently not offering a full knowledge of the

overall phenomenon. An interesting comparison between the most

popular models used for DWC is offered by Parin et al. [29].

Indeed, there are few experimental campaigns on DWC avail-

able in the literature, as the study presented in Pang et al. [28],

because of the considerable complexity and cost of the testing

techniques. For the determination of heat transfer coefficients,

temperature differences of 1 K or less must be measured in condi-

tions where the surface temperature is varying both in space and in

time.

This literature survey shows that, to date, two-phase Direct

Numerical Simulation have not been used for studying droplet con-

densation. It is well know that two-phase DNS still represent a

great challenge and, obviously, the addition of the phase change

treatment strongly increases the numerical difficulties. Neverthe-

less, DNS of liquid-vapour phase change can represent a powerful

and promising tool to improve the current knowledge on conden-

sation phenomenon and to perform accurate predictions. In fact,

aim of this paper is to employ DNS to study simple cases of droplet

condensation, by solving directly primitive conservation laws

without using any ad-hoc models, in order to demonstrate the

capabilities of such a tool.

The paper is organised as follows: the governing equations and

the numerical methods considered are described in Section 2. The

results of our simulations are discussed in Section 3: a numerical

benchmark for validating our solver is reported in Section 3.1,

while in Sections 3.2 and 3.3 more complex configurations are con-

sidered, namely the condensation of a moving droplet at interme-

diate Reynolds numbers and the condensation of a static droplet

deposed on an isothermal surface. Finally, some concluding

remarks are drawn in Section 4.

2. Physical model and numerical methods

In this section details are given on the incompressible Navier-

Stokes and energy conservation solvers for two-phase flows with

phase change. These solvers have been implemented in the

in-house code DIVA, extensively validated with theoretical

Nomenclature

fields variables
_M total mass flow rate
_m local mass flow rate
j interface curvature
/ level set function
n
!

interface normal vector
U
!

velocity field
U
!

cond condensation velocity
U
!

int interface velocity
U
!

MR droplet mean velocity
FD droplet drag force
h convective heat transfer coefficient
p pressure field
Qd total heat flux
r radial direction
RC droplet radius
Sd droplet surface
T temperature field
Ur velocity radial component
Uz velocity longitudinal component
V droplet volume
z longitudinal direction

Fluid properties
l dynamic viscosity
q density
r surface tension coefficient
Cp specific heat capacity at constant pressure

k thermal conductivity
Lvap latent heat
Tsat saturation temperature

Dimensionless numbers
q̂ density ratio
CD droplet drag coefficient
CD visc viscous component of CD

CDp pressure component of CD

Ja Jakob number
Nu droplet Nusselt number
Re droplet Reynolds number
We droplet Weber number

Constants
DT degree of subcooling
g
!

gravitational acceleration
D0 droplet initial diameter
Lr domain radial dimension
Lz domain longitudinal dimension
R0 droplet initial radius
T1 far field temperature
U1 inflow velocity
V0 droplet initial volume

Subscripts
liq liquid properties
vap vapour properties



solutions and experimental results in the case of droplet collisions

[44], of oscillating bubbles and droplets [20], of evaporating and

boiling flows [45,46], of nucleate boiling [15,47] and of a Leiden-

frost droplet [36,37].

Moreover, our code also permits computations involving com-

pressible two-phase flows [14] and the simulation of complex

geometries on structured grid by means of an Immersed Interface

Method for both single phase flows and two-phase flows [8,23,25].

2.1. Governing equations

Both the liquid and the vapour are here considered incompress-

ible and monocomponent, hence, Direct Numerical Simulations of

droplet condensation are performed by solving the following set of

equations representing, respectively, the mass conservation, the

momentum balance and the energy conservation,

r $ U
!

¼ 0; ð1Þ

q
DU
!

Dt
¼ (rpþr $ 2lDð Þ þ q g

!
; ð2Þ

qCp

DT

Dt
¼ r $ krTð Þ: ð3Þ

U
!

is the velocity field, p is the pressure, q and l are respectively the

fluid density and dynamic viscosity, D is the deformation tensor, g!

is the gravity, T is the temperature field and Cp and k are the specific

heat at constant pressure and the thermal conductivity. Note that

Eq. (3) represents a simplified advection-diffusion equation for

the temperature based on the enthalpy formulation [46].

The previous equations are written in each phase separately

and, following the Jump Condition Formulation [38], some condi-

tions have to be imposed at the interface C in order to ensure

the mass, momentum and energy conservations,

U
!h i

C

¼ ( _m
1

q

# $

C

n
!
; ð4Þ

p½ +
C
¼ rjþ 2 l

@Un

@n

# $

C

( _m2 1

q

# $

C

; ð5Þ

krT $ n
!

h i

C

¼ _mLvap: ð6Þ

$½ +
C
represents the jump operator, f½ +

C
¼ f liq ( f vap; n

!
is the interface

normal vector pointing to the liquid phase, _m is the local mass flow

rate, r is the surface tension coefficient, j the interface curvature,
@Un

@n
the derivative of the velocity normal component in the normal

direction, and Lvap is the latent heat of vaporization. In the case of

condensation, Lvap symbolizes the energy releases by the vapour

during the phase change.

The simplified jump condition on the thermal flux here adopted,

Eq. (6), is obtained in the hypothesis of an interface temperature

equal to the saturation temperature in accordance with the second

law of thermodynamics for a pure liquid-vapour system at local

thermodynamic equilibrium [12].

2.2. Numerical methods

The numerical methods used to perform the simulations pre-

sented in this paper are here briefly summarized.

The Navier-Stokes equations, Eqs. (1) and (2), are solved with a

standard projection method [5] where a Black-Box Multigrid solver

[9] is adopted for the resolution of the pressure Poisson equation in

order to speed up the simulations. Capillary forces are accounted

for as a jump condition on the pressure, Eq. (5), when solving this

Poisson equation.

The Level-Set method, introduced in [27,43], is used to define

the two-phase interface and to compute its motion. It consists in

solving a convection equation for a signed and continuous Level-

Set function /,

@/

@t
þ U
!

int $r/ ¼ 0: ð7Þ

where U
!

int is the interface velocity defined as

U
!

int ¼ U
!

liq þ U
!

cond; U
!

liq and U
!

cond being respectively the liquid

phase velocity and the condensation one. The latter is equal to:

U
!

cond ¼
_m

qliq

n
!
;

where _m is obtained from the jump condition Eq. (6),

_m ¼ krT $ n!
h i

C

=Lvap. A benefit of using the Level-Set function is

its regularity property in the whole domain. In order to maintain

this property, the re-initialization step proposed in [43] is used. This

is made up of the iterative solution of the following equation,

@d

@s
¼ sign /ð Þ 1( krdkð Þ; ð8Þ

where d is the re-initialized distance function, s a fictitious time and

sign /ð Þ the smoothed function defined in [43].

The jump conditions at the interface, Eqs. (4)–(6), are imposed

by following the general guidelines of the Ghost Fluid Method pro-

posed by Fedkiw et al. [10] for ensuring a sharp description of the

discontinuous terms, as in [26]. The discontinuous variables have

been extrapolated across the interface by populating some ghost

cells in order to ensure an accurate numerical discretisation. In

particular, a second-order Aslam extrapolation algorithm [2] have

been used for the temperature field, as in [15,36,37,47], and the

extrapolation technique proposed in [45] is required for the veloc-

ity field in order to guarantee the divergence-free property for the

extrapolated velocities at the interface.

As we consider in this work a single component liquid and its

pure vapour, the thermal field is computed with the same solver

proposed in [12,46]. For imposing a Dirichlet boundary condition

on the interface, the second order numerical scheme proposed by

Gibou et al. [13] is implemented.

Spatial derivatives appearing in the convective terms are com-

puted with a fifth order WENO-Z scheme [3], while a second order

finite volume scheme is used for the diffusion terms. The temporal

integration is performed with a TVD second order Runge-Kutta

scheme. In order to reduce the time step constraints, the diffusion

terms are discretized with an implicit temporal scheme which has

been previously proposed in [23] and referred as the Ghost Fluid

Conservative Viscous Method [21].

3. Numerical results

The results of the performed DNS are here discussed. Note that

in all the simulations the droplet environment is always made up

of a pure vapour cooled down its saturation temperature, while

the droplet is at the saturation temperature. In these conditions,

the vapour is in a metastable state which promotes the phase

change at the droplet interface.

The parameter characterizing the phase change is the Jakob

number, Ja, a dimensionless number representing the ratio

between the sensible heat in the vapour phase and the latent heat

of vaporization: higher is Ja, higher is the condensation rate. This

number is defined as,



Ja ¼
Cpvap Tsat ( T1ð Þ

Lvap
; ð9Þ

where T1 is the vapour environment temperature.

For droplet condensation, classical values for the degree of sub-

cooling, i.e. DT ¼ Tsat ( T1, are between 1 and 50 K. In this paper,

we have fixed this value to DT ¼ 20 K. In order to study the effects

of the condensation on droplets heat transfer and dynamics, the

Jakob number has been swept over a large range of values from

0.01 to 1. This parametric analysis has been performed by varying

the latent heat over the range Lvap ¼ ½5- 104 ( 4- 106+ J kg
(1
.

We have to point out that, for a water droplet condensation,

Ja ’ 1 are unrealistic with the subcooling here considered, since

the ratio Cpvap=Lvap for the steam is very small, of the order

Oð10(3Þ K(1. Anyway, other gases, as well as some refrigerants,

with a ratio Cpvap=Lvap ’ ½10(2 ( 10(1+ K(1, can be considered for

configurations involving higher Jakob, as shown in Table 1.

3.1. Static droplet condensation

In this section is presented a numerical benchmark for validat-

ing the overall solver on a simple droplet condensation regime. In a

first time, we describe the theory of the condensation of a static

and isolated droplet at the saturation temperature, Tsat, in an infi-

nite subcooled vapour medium, T1 < Tsat, then we compare the

results of our DNS with this theory.

3.1.1. Theory of the condensation of a static droplet

This phenomenon can be modelled by solving the mass and the

energy conservations written in 1D spherical coordinate systems in

the quasi-steady hypothesis, as the increment of droplet volume

due to condensation is a very slow process,

1

r2
d

dr
r2qvapUr

% &

¼ 0; ð10Þ

1

r2
d

dr
r2qvapCpvapUrT

% &

¼
1

r2
d

dr
kvapr

2 dT

dr

' (

; ð11Þ

where Ur is the radial velocity component.

Note that a similar set of equations has already been used in

[36] to describe the evaporation of a static droplet.

The following boundary conditions, deduced from the jump

conditions for the velocity field and for the thermal flux at the

liquid-vapour interface C must be applied on the droplet radius

defined as r ¼ RCðtÞ,

_MðtÞ ¼ 4pR2
C
ðtÞqvapUrðr ¼ RCðtÞÞ; ð12Þ

4pR2
C
ðtÞkvap

dT

dr

)
)
)
)
r¼RCðtÞ

¼ ( _MðtÞLvap; ð13Þ

with _MðtÞ the total mass flow rate of condensation.

Other boundary conditions must be imposed on the tempera-

ture field,

Tðr ¼ RCðtÞÞ ¼ Tsat; ð14Þ

Tðr ! 1Þ ¼ T1: ð15Þ

A first integration of Eq. (11), by considering the boundary con-

ditions (14) and (15), gives the temperature field,

Tðr; tÞ ( T1

Tsat ( T1

¼
1( e

(
_MðtÞCpvap
4pkvap r

1( e
(

_MðtÞCpvap
4pkvapRC ðtÞ

: ð16Þ

By deriving this equation and by substituting it in the Neumann

condition for the thermal flux, Eq. (13), we obtain an expression

for the mass flow rate due to the condensation,

_MðtÞ ¼ (
4pRCðtÞkvap

Cpvap

ln
1

1( Ja

' (

; ð17Þ

where Ja is the Jakob number defined by Eq. (9). From Eq. (17), we

deduce the following relation for the temporal evolution of the dro-

plet radius with respect to the initial one, R0,

RCðtÞ

R0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2kvap

qliqCpvapR
2
0

ln
1

1( Ja

' (

t

s

: ð18Þ

Once known the temperature field and the mass flow rate

expressions, a Nusselt number, Nu, can be defined,

Nu ¼ (2
lnð1( JaÞ

Ja
: ð19Þ

This number represents the dimensionless integral droplet heat

flux.

If Ja tends to 0, the Nusselt number tends to 2, the well know

value characterizing the heat transfer of a static sphere. On the

other hand, if Ja tends to 1, the Nu tends towards an infinite value.

This singularity proves that for high condensation rate, the pro-

posed theory fails because the increment of droplet radius begins

to be faster and the quasi-steady approximation is no more valid.

3.1.2. Numerical simulations of the condensation of a static droplet

The theoretical solution derived in the previous paragraph pro-

vides a reference to validate our numerical simulations.

The physical properties of the liquid and vapour phases are

summarized in Table 2. These properties are close to the ones of

liquid water and water vapour, respectively at

T liq ¼ Tsat ¼ 373:15 K and Tvap ¼ 353:15 K, for an external pressure

p ¼ 1 atm. As the characteristic time of droplet condensation is

very slow if compared to dynamical effects (surface tension, con-

vection), the value of the water vapour latent heat has been mod-

ified to obtain Ja ¼ 0:4 for increasing the condensation rate.

The geometry of the problem being spherical, the simulations

have been performed in an axisymmetric coordinate system with

an uniform grid. The droplet initial radius is equal to R0 ¼ 2 mm

and the dimensions of the computational domain are Lr ¼ 8R0, in

the radial direction, and Lz ¼ 16R0, in the longitudinal direction.

The values obtained from the theoretical solution are used as

boundary conditions for the temperature field, while for the veloc-

ity field, free boundary conditions are used. On the symmetry axis,

Neumann symmetric boundary conditions are imposed both for

the temperature and the velocity.

A grid sensitivity study based on four different computational

grids,M ¼ ½128- 256;256- 512;512- 1024;1024- 2048+, which

corresponds respectively to 16 grid points/radius, 32 grid points/
Table 1

Specific heat at constant pressure and latent heat of vaporization at T ¼ Tsat and at

P ¼ 1 atm for the water vapour (H2O), the dihydrogen (H2), the helium (He) and the

refrigerant FC ( 72. For each vapour is reported the Jakob obtained with DT ¼ 20 K.

Cp ½J K(1 kg(1
+ Lvap ½J kg(1

+ Ja

H2O 2027 2:26- 106 0:02

H2 14307 4:46- 105 0:6

He 5193 2:28- 104 4:6

FC ( 72 1000 8:0- 103 0:2

Table 2

Physical properties (SI) of the fluid considered in the simulations presented in

Sections 3.1–3.3.

q l r Cp k Lvap

Water 958 2:82- 10(4 0:058 4:18- 103 0:6 –

Vapour 0:62 1:2- 10(5 – 2026:7 0:02 1:13- 105



radius, 64 grid points/radius and 128 grid points/radius, has been

carried out to investigate exhaustively the comparison between

the simulations results and the theory.

Fig. 1(a) and (b) demonstrate the spatial convergence of the

numerical solution to the theoretical one, with a reasonably low

error for the two more refined grids, i.e. 64 grid points/radius

and 128 grid points/radius. In Fig. 1(a) the droplet integral heat

flux, expressed in terms of Nusselt number, is reported. The Nus-

selt number is defined as

Nu ¼
2R0h

kvap
¼

Qd

2pR0DTkvap
; ð20Þ

where h is the convective heat transfer coefficient,

h ¼ Qd=ð4pR
2
0DTÞ, and Qd is the integral droplet heat flux. The latter

is evaluated as

Qd ¼ (kvap

Z Z

Sd

rT $ n
!

dA: ð21Þ

For a Ja ¼ 0:4, Eq. (19) gives Nu ¼ 2:47. In Fig. 1(b), the numer-

ical droplet radius increment is compared with the relation (18). To

go further in the convergence study, the differences between the

exact solutions and the numerical results, as well as the rates of

convergence, are reported in Table 3. Note that the faster growth

of the droplet measured with the coarser meshes are not due to

physical aspects, but mostly to the parasitic currents present in

the liquid phase and generated by the capillary effects. By refining

the mesh these spurious velocities are strongly reduced and the

droplet volume increment is only produced by the vapour conden-

sation, as confirmed by the perfect match with the theory.

We present the temperature field in Fig. 2(a), and the compar-

ison between the temperature profile from the numerical simula-

tion and the theoretical one in Fig. 2(b), for the finest grid

considered, M ¼ 1024- 2048. This comparison shows a perfect

agreement between the simulation and the exact solution.

The real velocity field, the vapour velocity field and its exten-

sion in the liquid domain and the liquid velocity field and its exten-

sion in the vapour domain, are respectively drawn in Fig. 3(a), (b)

and (c). As already stated in [46], the good agreement between the

simulations and the exact solution is strongly linked to the accu-

rate extension of these velocities which allows a sharp description

of the velocity jump condition. We clearly observed that the con-

densation induces in the vapour phase a radial velocity field

inward the droplet (condensation is like a ‘‘suction”), while in

the liquid phase low amplitudes parasitic currents are observed

(100 times smaller than the vapour velocity). These parasitic cur-

rents are related to the capillary effects and their amplitude is

decreasing when the grid size is refined.

3.2. Condensation of a moving droplet

In this section we present numerical simulations of condensing

droplet interacting with an external flow in order to quantify how

the droplet dynamics and heat transfer are impacted by the vapour

flow induced by condensation. In particular, our study proposes to

go further the previous works of Ayyaswamy and Chung

[6,7,41,42] by fully coupling the condensing flow, the external flow

and the heat transfer. In particular, this complete model allows

investigating on the evolution of the Nusselt number in function

of the Reynolds and Jakob numbers.

A saturated droplet, T liq ¼ Tsat, moving in a cold vapour environ-

ment, Tvap ¼ Tsat ( DT , is considered. The physical properties of the

fluids are summarised in Table 2. Four different values of the Jakob

number have been investigated: Ja ¼ ½0:01;0:2;0:4;0:8+. The gov-

erning equations are integrated in the droplet reference system

in order to fix the droplet position in the centre of the computa-

tional domain during the simulation. The method used is the one

proposed by Mougin et al. [24]. The authors, instead of expressing

the equations in terms of a velocity defined relatively to the chosen

moving reference system, have written the equations for the veloc-

ity field obtained by projecting the ‘‘absolute” velocity onto the

droplet reference frame. The momentum balance equation, Eq.

(2), and the interface advection equation, Eq. (7) are consequently

recast in the following form

q
@U
!

@t
þ U

!
( UMR

--!% &

$rU
!

¼ (rpþr $ 2lDð Þ þ q g
!
;

@/

@t
þ Uint

--!
( UMR

--!% &

$r/ ¼ 0;

where UMR

--!
is the velocity of the moving reference frame, i.e. the

droplet mean velocity. In this way, terms due to the body inertial

forces are avoided in the momentum balance equations.

Fig. 1. Comparison between the DNS results in terms of the Nusselt number (a), and of droplet radius increment (b), with the theoretical results.

Table 3

Differences between the theoretical and the numerical solution and rates of

convergence, q. The reported values are referred to t=tmax ¼ 1.

M ENu ½%+ qNu ER=R0
½%+ qR=R0

128- 256 7:65 – 0:1 –

256- 512 2:31 1:7 0:02 2:3

512- 1024 0:53 2:1 0:003 2:7

1024- 2048 0:08 2:7 0:0004 2:9



Fig. 2. Temperature field at t=tmax ¼ 1 (a), and comparison between the numerical temperature profile and the theoretical one (b).

Fig. 3. Real velocity field (a), vapour velocity field and its extension in the liquid domain (b), and liquid velocity field and its extension in the vapour domain (c), at t=tmax ¼ 1.



The Reynolds numbers Re have been limited to Re 6 100 to

ensure that the whole field is axisymmetric. Moreover, the Weber

numberWe is imposed such asWe < 0:1 to guarantee that the dro-

plet remains perfectly spherical.

In this analysis, the definition of both the Reynolds and the

Weber numbers is based on the vapour properties, the initial dro-

plet diameter D0, and the vapour uniform inflow velocity U1,

Re ¼
q
vapD0U1

lvap

; We ¼
qvapD0U

2
1

r
:

Four different values of Reynolds have been investigated,

Re ¼ ½25;50;75;100+. These values have been obtained by varying

D0;D0 ¼ ½0:5- 10(3;1:0- 10(3;1:5- 10(3;2:0- 10(3+m, while the

vapour velocity has been fixed at U1 ¼ 1 m ms(1. The relative

Weber numbers are respectively We ¼ ½0:005; 0:01;0:016;0:02+.

A sketch of the simulation set-up is plotted in Fig. 4, where Tsat

and DT take the same values previously used for the static droplet

in Section 3.1, i.e. Tsat ¼ 373:15 K and DT ¼ 20 K. Free boundary

conditions are imposed for the velocity on the right and the upper

side of the domain, while homogeneous Neumann conditions are

used for the temperature field. The inflow is imposed on the lower

side of the domain and the gravity is neglected.

In order to avoid containment effects, the dimensions of the

computational domain are ½Lr ; Lz+ ¼ ½8;16+R0 for Ja < 0:8. Actually,

for the higher Jakob, since the radial droplet inward velocity field

induced by the condensation is stronger and, consequently, the

boundary layers around the droplet is thinner (we will go through

this aspect later), the computational domain has been halved, i.e.

½Lr ; Lz+ ¼ ½4;8+R0. Indeed, for Ja ¼ 0:8 the values of droplet drag coef-

ficient and Nusselt number evaluated with these two domains are

selfconsistent (to within the 3%).

All details on the grid sensitivity study that we have performed

are presented in Appendix A.

The temperature field and the streamlines pattern at the dimen-

sionless time t/ ¼ 50, where t/ ¼ tU1=ðD0Þ, for Re ¼ 50 and

Re ¼ 100, are displayed respectively in Figs. 5 and 6. Each snapshot

is referred to a different Jakob number. For both the considered

Reynolds, the flow separates on the rear of the droplet by forming

a recirculatory wake, clearly visible for Ja ¼ 0:01, Figs. 5(a) and 6

(a). By increasing the Ja, the radial inward flow towards the droplet

surface due to condensation increases strongly. This causes a

reduction of the rear wake size till to its complete disappearance

at Ja ¼ 0:8. Evidently, this modification of the flow field alters both

the droplet drag coefficient and the heat transfer which are

reported in Fig. 7 for Re ¼ 100 and for all the investigated Ja.

We remind that the drag force FD is the fluid force on the dro-

plet surface projected in the flow direction, in this case the z-

direction, and is defined as

FD ¼ (

Z Z

Sd

pnzdA

þ

Z Z

Sd

l
@Ur

@z
þ
@Uz

@r

' (

nr þ 2
@Uz

@z
nz

' (

dA; ð22Þ

Fig. 4. Sketch of the simulations set-up.

Fig. 5. Snapshots of the temperature field and streamlines for Re ¼ 50 and for the

four Jakob numbers considered in the analysis at t/ ¼ 50. Ja ¼ 0:01 (a), Ja ¼ 0:2 (b),

Ja ¼ 0:4 (c), and Ja ¼ 0:8 (d).



which accounts for the pressure component and the viscous compo-

nent on the overall force. The dimensionless drag coefficient is

CD ¼
FD

0:5qvapU
2
1pR

2
0

: ð23Þ

We observe in Fig. 7(a) and (b) that both the CD and the Nu increase

by increasing the Ja. This phenomenon can be easily explained by

considering that a higher Ja means a higher radial inward velocity

and, hence, thinner dynamic and thermal boundary layers. The tan-

gential velocity gradient around the droplet, as well as the temper-

ature gradient, are steeper and, therefore, the shear stress and the

heat flux are larger. Such mechanism has already been observed

for the condensation of a liquid pool [30]. Indeed, the authors

showed that, in the case of condensation, the interface velocity

jump due to the phase change promotes the boundary layer thin-

ning and this process is amplified at higher Ja. This behaviour is

confirmed by Fig. 7, where non-linear growth of CD and Nu can be

visualized when the Jakob number is increased. These results will

be further discussed.

Additional details have to be given with respect to CD. As shown

by Eq. (22), the drag force is composed of two main components,

CD p and CD visc, respectively due to the pressure and to the viscous

stress. The temporal evolutions of these two drag components are

reported in Fig. 8. On one hand, the pressure recovery in the dro-

plet rear, observed for high Ja in Figs. 6 and 5, implies a decrease

in CD p, as depicted in Fig. 8(a). On the other hand, it can be visual-

ized in Fig. 8(b) that the viscous components CD visc, associated to

the shear stress, increase with the Ja. The increment of CD visc is

stronger than the reduction of CD p, hence, a global growth of CD

results from a Ja increase.

In Table 4 and in Table 5 are listed all the values of CD and Nu

found in our parametric studies. These values have been compared

with several correlations, as the semi-empiric correlation between

CD and Re of Schiller-Naumann [39],

CD ¼
24 1þ 0:15Re0:687

% &

Re
for Re 6 1000: ð24Þ

This correlation describes the variation of the drag coefficient with

the Reynolds number for a solid sphere.

The Nusselt number is compared with the Ranz-Marshall corre-

lation [31,32],

Nu ¼ 2þ 0:60Re1=2Pr1=3; ð25Þ

which characterized the heat transfer coefficient of a non-

deformable liquid droplet in function of the Reynolds and the Pran-

dlt numbers. In the present simulations, the Prandtl number is

always kept equal to Pr ¼ 1:22.

The CD and Nu obtained for Ja ¼ 0:01 are in good agreement

with the ones gives by the two correlations chosen, to within the

7% or less. As these correlations do not consider phase change, this

result proves that at this Jakob the dynamical effects induced by

condensation are nearly inactive.

With regards to evaporating droplets, Renksizbulut & Yuen

[33,34] proposed some corrections to these correlations to take

into account the blowing effect of the evaporation around a dro-

plet. Instead, to the best of our knowledge, there are no previous

studies which have investigated on the effect of condensation on

the drag coefficient and the Nusselt number of a moving droplet.

Consequentially, here we intend to define some preliminary corre-

lations describing the variation of CD and Nu with the main param-

eters considered in this study, namely the Reynolds and the Jakob

numbers.

The evolutions of CD with Re and Ja are shown in Fig. 9. In Fig. 9

(a) are reported the curves of CD obtained with a given value of Ja

and by varying the Re. It has been found that the CD varies follow-

ing a modified version of the Schiller-Naumann correlation,

CDjJa ¼
24 $ aðJaÞ þ bðJaÞ $ RecðJaÞ

% &

Re
; ð26Þ

where the coefficients a;b and c, found by fitting our simulation

data, are functions of the Jakob number. In the range of the consid-

ered Ja, a varies between 1:32 and 1:47;b increases with the Jakob

from 0:09 to 0:23, and c varies between 0:66 and 0:78. As already

stated before, we observe that the curve for Ja ¼ 0:01, i.e. the black

one, is almost superimposed to the Schiller-Naumann correlation

(24) represented by the black dashed line in Fig. 9(a), while, on

the other hand, the distance between two successive curves, rea-

lised by doubling the Jakob number, is not constant, but it increases

with the Ja. This trend is clearly depicted by Fig. 9(b), where the

Fig. 6. Snapshots of the temperature field and streamlines for Re ¼ 100 and for the

four Jakob numbers considered in the analysis at t/ ¼ 50. Ja ¼ 0:01 (a), Ja ¼ 0:2 (b),

Ja ¼ 0:4 (c), and Ja ¼ 0:8 (d).



Fig. 7. Temporal evolution of the droplet drag coefficient CD (a), and of the droplet integral heat flux Qd (b), for Re ¼ 100 and all the Jakob numbers considered.

Fig. 8. Temporal evolution of the two main components of droplet drag coefficient for Re ¼ 100 and all the Jakob numbers considered: the pressure drag coefficient CDp (a),

and the viscous drag coefficient CD visc (b).

Table 4

Comparison between the drag coefficients obtained for different Ja and Re numbers with the ones evaluated with the Schiller & Naumann correlation, [39]. D represents the

percent increment of CD by increasing the Jakob number.

Re ¼ 25 D ½%+ Re ¼ 50 D ½%+ Re ¼ 75 D ½%+ Re ¼ 100 D ½%+

Schiller&Naumann 2:27 1:53 1:25 1:09

Ja ¼ 0 2:32 1:52 1:21 1:06

Ja ¼ 0:01 2:32 – 1:52 ( 1:21 – 1:06 –

Ja ¼ 0:2 2:41 3:9 1:58 3:3 1:27 5:0 1:11 3:8

Ja ¼ 0:4 2:51 4:2 1:64 4:5 1:33 4:7 1:15 4:6

Ja ¼ 0:8 3:12 24:3 2:09 27:4 1:66 24:8 1:46 26:90

Table 5

Comparison between the Nusselt numbers obtained for different Ja and Re numbers with the ones evaluated with the Ranz & Marshall correlation, [31,32]. D represents the

percent increment of Nu by increasing the Jakob number.

Re ¼ 25 D ½%+ Re ¼ 50 D ½%+ Re ¼ 75 D ½%+ Re ¼ 100 D ½%+

Ranz&Marshall 5:21 6:53 7:55 8:41

Ja ¼ 0:01 5:21 – 6:80 – 8:04 – 9:03 –

Ja ¼ 0:2 5:90 13:27 7:60 11:82 8:93 11:09 9:99 10:67

Ja ¼ 0:4 6:66 12:93 8:66 14:00 10:20 14:26 11:47 14:77

Ja ¼ 0:8 11:50 72:59 15:26 76:16 18:21 78:45 20:76 81:00



curves of CD obtained with an imposed value of Re and by varying

the Ja are reported.

The same analysis can be performed on the droplet Nusselt

number. The evolutions of Nu with Re and Ja are shown in

Fig. 10. In Fig. 10(a) are reported the curves of Nu obtained by fix-

ing the Ja and by varying the Re: the Nu varies following a power

law,

NujJa ¼ NujRe¼0 þ a1ðJaÞ $ Re
b1ðJaÞ: ð27Þ

The term NujRe¼0 stands for the expression (19), derived to define

the Nusselt number of static droplet, see Section 3.1, and the coef-

ficients a1 and b1 depend on the Jakob number; in particular, a1

increases with the Jakob from 0:53 to 1:14 and b1 varies between

0:54 and 0:58. The evolution of the Nusselt with the Jakob number,

by fixing the Reynolds, seems following an exponential trend, as

shown by Fig. 10(b). Such trend is caused by the presence of two

different mechanisms which increase each other at higher Ja: the

increment of droplet heat flux due to the phase change and the

thermal boundary layer thinning, because of the increase of the

radial velocity field inward the droplet, which results into a steeper

temperature gradient at droplet interface.

In conclusion of this section, we want to point out that Eqs. (26)

and (27) do not represent definitive correlations for the CD and the

Nu of a condensing droplet, but they enable understanding how

these two quantities will vary with the Jakob number for different

Reynolds. Actually, more general correlations would require addi-

tional analyses to investigate the effects of other parameters gov-

erning the droplet thermodynamics, as the density ratio and the

Prandtl number.

3.3. Condensation of a hemispherical droplet on an isothermal wall

In this section numerical simulations of the condensation of a

hemispherical droplet deposed on an isothermal surface are pro-

posed. This simplified configuration represents a first attempt

towards the comprehension of the phenomena involved in DWC

process.

As briefly mentioned in the introduction Section 1, DWC is a

complex process occurring over a wide range of length and time

scales: starting from the atomic scale of the droplet embryos grow-

ing at specific nucleation sites, progressing toward the growth of

droplets, coalescence and droplets instabilities. The droplets

Fig. 9. Evolution of droplet drag coefficient, CD , in function of Re for a fixed Ja (a), and in function of Ja for a fixed Re. The symbols represent the DNS results while the solid

lines the fitting curves. The dashed line in the figure on the left represents the correlation (24).

Fig. 10. Evolution of droplet Nusselt number in function of Re for a fixed Ja (a), and in function of Ja for a fixed Re. The symbols represent the DNS results while the solid lines

the fitting curves. The dashed line in the figure on the left represents the correlation (25).



formed by this kind of vapour condensation have different sizes

and behaviours. In particular, the ‘‘small” droplets grow by direct

condensation of vapour while the ‘‘large” droplets tend to grow

by coalescence with their neighbours and, when a certain size is

reached, they begin to become gravitationally unstable. The con-

densation rate of each droplet is influenced by many parameters

as the liquid-vapour heat flux, function, in its turn, of the droplet

curvature and contact angle, the thermal properties of the solid

wall and the degree of subcooling [16,29,35]. All these aspects

make DNS of the overall condensation cycle very challenging.

Focus of this work is to study the influence of the condensation

induced flow on the heat flux exchanged between a droplet and a

subcooled and static vapour phase in a simplified configuration,

sketched in Fig. 11: the contact angle is h ¼ 90o, both the droplet

and the wall are at the saturation temperature, Tsat ¼ 373:15 K,

and they are immersed in a static vapour phase cooled down at

353:15 K. The gravity effect has been neglected.

The choice of Twall value has been made to avoid the resolution

of the thermal conduction inside the wall in order to limit the

number of the parameters to investigate. Indeed, the numerical

resolution of thermal conduction inside the solid wall is required

if Twall – Tsat for preventing the appearance of a discontinuity in

the heat flux on the contact line.

In order to study the effects of the condensation on the droplet

heat transfer and volume variation, a parametric analysis has been

performed by sweeping the Jakob number in the range

Ja ¼ ½0:01( 1:25+. The physical properties of the two fluids consid-

ered are listed in Table 2.

As in the previous sections, axisymmetric simulations have

been performed, thus, symmetric conditions for the velocity and

the temperature are imposed on the left of the domain. On the bot-

tom, the velocity has to respect the no-slip and the impermeability

conditions and the temperature is fixed to Twall ¼ Tsat; on the right

and the upper side of the domain, free boundary conditions have

been imposed for the velocity field and homogeneous Neumann

conditions for the temperature field. The droplet initial radius is

R0 ¼ 2 mm and the computational domain dimensions are

½Lr; Lz+ ¼ ½8;8+R0.

The temperature and the velocity fields referred to two simula-

tions performed at different Jakob numbers, i.e. Ja ¼ 0:4 and

Ja ¼ 1:25, are shown respectively in Fig. 12(a) and (b). These two

snapshots have been taken at the same simulation time. As for

the condensation of a static droplet, Section 3.1, at the beginning

the vapour phase is at rest, then, the onset of the condensation trig-

gers the development of a radial velocity field droplet inward. The

results illustrated in Fig. 12 confirm that the intensity of this veloc-

ity field increases with the Ja, indeed, from Ja ¼ 0:4 to Ja ¼ 1:25 the

velocity grows of one order of magnitude. This implies the neces-

sity of more refined grids at high Ja in order to correctly reproduce

the boundary layers around the droplet surface. For details on the

performed convergence studies at different Jakob numbers we

refer to Appendix B.

Since at low Ja the velocity field is very weak and the boundary

layers developed are thicker, we have analysed the containment

effects due to the longitudinal dimension Lz of the domain. The

temporal evolution of the droplet heat transfer obtained with

two different Lz; Lz ¼ 8R0 and Lz ¼ 16R0, is shown in Fig. 13 for

Ja ¼ 0:01, Fig. 13(a), and Ja ¼ 0:08, Fig. 13(b). For the lower Ja,

the heat transfer evaluated with Lz ¼ 16R0 is slightly smaller,

while, for Ja ¼ 0:08 the curves are perfectly superimposed. The

influence of Lz at low Ja can be explained by considering that, at

slow condensation rate, when the velocity jump at droplet inter-

face is little, the heat flux exchanged by the droplet is mainly dri-

ven by the thermal conduction between the droplet and the

subcooled vapour. Therefore, the energy equation, Eq. (3), tends

Fig. 12. Temperature contours lines and velocity field at t ¼ 1 s for two different Jakob numbers: Ja ¼ 0:4 (a), Ja ¼ 1:25 (b).

Fig. 11. Sketch of simulation set-up.



to a simpler formulation where only conduction has to be consid-

ered, Eq. (28),

qCp
@T

@t
¼ r $ krTð Þ; ð28Þ

In this case, the conduction length becomes infinite. This explains

why a slight dependence on the domain length still remains at

low Jakob numbers, but it disappears at higher Jakob number for

which the convective effect of condensation increases and the

domain containment is not as significant.

In order to evaluate the dependence of velocity and heat flux

jumps at droplet interface on the condensation rate, Eqs. (4) and

(6), the evolution of the velocity longitudinal component, Uz, and

of the heat flux in z-direction, along the droplet symmetry axis,

i.e. r ¼ 0, are shown in Fig. 14 for different Jakob numbers at the

end of the simulation time, t=tmax ¼ 1. The velocity and the heat

flux jumps are visible at z=R0 ¼ 1: for Ja 6 0:04 the velocity jump

is almost insignificant, Fig. 14(a), while the heat flux curves are

superimposed, Fig. 14(b). As these two quantities depends on the

local condensation mass flow rate _m, they increase with the Ja in

a non-linear way, as demonstrated by the space between two suc-

cessive curves for Ja > 0:04.

The same trend can be observed looking at the temporal evolu-

tions of the droplet heat transfer and volume variation illustrated

respectively in Fig. 15(a) and in Fig. 15(b). The curves overlapping

for Ja 6 0:04 is a further prove that for this range of Jakob number,

the heat transfer is independent of the condensation induced flow

and is only function of the thermal conduction. Thus, for this range

of Jakob numbers a particular regime of condensation takes place:

we can talk about low condensation rate regime.

As the Nusselt number is the ratio between the convective and

the conductive heat transfer, it is possible to define a Nusselt char-

acterizing the studied configuration as the ratio between the dro-

plet integral heat flux obtained at t=tmax ¼ 1 and the one

evaluated for Ja ¼ 0:01, the latter depending only on thermal

conduction,

Nu ¼
Qd

QdjJa¼0:01

: ð29Þ

The evolution of this Nusselt with the Jakob number is depicted

in Fig. 16. The red dots represent the simulations results while the

black solid line represents a correlation law found by fitting the

numerical data. The expression of this correlation is

Nu ¼ a $ eb$Ja þ c $ ed$Ja: ð30Þ

The Nusselt number increases with the Jakob following an

exponential law: for Ja 6 0:04 it is constant (i.e. the Nusselt num-

ber is independent of the Jakob number) and after it starts to

Fig. 13. Effects of domain longitudinal dimension, Lz , on droplet heat transfer for two different Jakob numbers: Ja ¼ 0:01 (a), and Ja ¼ 0:08 (b).

Fig. 14. Variation of the longitudinal velocity, Uz (a), and of the heat flux component (kvap
@T
@z

(b), along the domain symmetry axis.



increase in a non-linear way. Indeed, for Ja ! 1, the Nu ! 1. For

Ja > 0:04, therefore, we are in the high condensation rate regime.

This trend can be again explained by considering that the normal

velocity jump at the droplet interface promotes the local heat

transfer by thinning the thermal boundary layer thickness and this

effect is amplified at high Ja because of the increase of the heat

transfer due to the phase change. This is the same mechanism

already observed for the moving droplet in Section 3.2.

The same dependence on Ja has been found also for the droplet

final volume increment due to condensation, reported in Fig. 17.

Actually, the correlation defined by fitting the DNS results, Eq.

(31), shows that also the droplet volume varies with the Jakob

number following an exponential law, coherently with the Nu,

V

V0

¼ a $ eb$Ja þ c $ ed$Ja: ð31Þ

The coefficients used for the Nusselt and droplet volume correlation

are listed in Table 6.

An expression predicting the temporal evolution of the droplet

volume is proposed here. The droplet volume increases according

to a power law,

VðtÞ

V0

¼ 1þ k1ðJaÞ $ t
k2ðJaÞ: ð32Þ

In the range of the considered Ja, the coefficient k1 varies from

1:6- 10(4 to 2:3- 10(3, and the exponent k2 varies from 0:85, for

Ja ¼ 0:01, to 0:2, for Ja ¼ 1:25. Such scaling law of droplet growth

has been tested for different Jakob numbers. The comparison

between the numerical droplet growth and Eq. (32) are shown in

Fig. 18. The greater deviation between the proposed scaling law

and DNS appears for lower Ja values, Fig. 18(a). Anyway at these

Jakob numbers, characterizing the low condensation rate regime,

the droplet growth is almost insignificant: at the end of the simu-

lation the volume has increased only of the 0.05%.

Fig. 15. Temporal evolution of droplet heat transfer (a), and volume (b), for different Jakob numbers.

Fig. 16. Variation of the Nusselt number in function of the Jakob number.

Fig. 17. Variation of the droplet final volume increment in function of the Jakob

number.

Table 6

Coefficients found for the correlations (30) and (31) by fitting the simulations data

with the MATLAB CFtool.

NuðJaÞ V
V0

Jað Þ

a 9:510- 10(1 1:000

b 1:020- 10(1 1:100- 10(2

c 4:800- 10(2 4:300- 10(5

d 1:300 4:494



4. Conclusions

In this paper we have presented well-resolved and accurate

direct numerical simulations of droplets experiencing condensa-

tion in a pure vapour environment, cooled down below the satura-

tion temperature. After a preliminary validation of the proposed

numerical solvers by direct comparisons with the quasi-static the-

ory of the condensation of an isolated droplet, the condensation of

a moving droplet and of a hemispherical droplet deposed on an

isothermal surface have been studied. The influence of the conden-

sation on droplet dynamics and heat transfer has been investigated

by varying the Jakob number, the main governing parameter.

The simulations have shown that condensation acts like a ‘‘suc-

tion”, since it triggers the generation of a radial velocity field dro-

plet inward, the intensity of which increases with the Jakob

number, reducing the thickness of the boundary layers around

the droplet. Thus, in order to well represent these boundary layers,

accurate spatial convergence studies have been performed for each

considered Ja. Such grid sensitivity has revealed that very refined

meshes are required to simulate droplet condensation (at least

64 computational points along the droplet radius for the lower Ja).

With regards to the moving droplet, it has been observed that

the condensation greatly alters the droplet external velocity field

and, hence, the droplet drag coefficients diverge from the ones pre-

dicted by the well-known Schiller-Naumann correlation. Indeed, a

modification of such correlation has been proposed in order to take

into account the effects of the phase change. New correlations on

the Nusselt number in function of the Jakob number have been

proposed both for the moving droplet and for the hemispherical

droplet. In both cases, the Nu grows exponentially by increasing

the Jakob because of the steeper temperature and velocity gradi-

ents due to the boundary layer thinning mechanism. Finally, for

low Jakob numbers, a particular kind of condensation have been

observed, here called low condensation rate regime, in which the

effects of the phase change are almost negligible.

The presented study can be considered a pioneering feasibility

study of the use of DNS to investigate droplet condensation, since

it has allowed to highlight all the numerical challenges to over-

come. Anyway, the simple analysed configurations represent a nec-

essary first stage that opens to many perspectives. Further steps,

indeed, will be to use the numerical tool here described to com-

pute, by means of three-dimensional numerical simulations, the

interaction between a condensing droplet deposed on a surface

and an external vapour flow, laminar at the beginning and then

turbulent too, as well as the effects of the droplets contact angles.

After, it would be possible to study configurations typical of the

DropWise Condensation mechanism, characterized by complicated

droplets patterns and multiple sites nucleation.
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Appendix A. Convergence study for the condensation of a

moving droplet

The temporal evolutions of CD and Qd for different mesh refine-

ments are shown in Figs. A.19–A.21, respectively, for Ja ¼ 0:01;0:4;

0:8. Note that the Re taken into account in this study is Re ¼ 100

since, for this value, the thinner boundary layers are developed.

Fig. A.21. Convergence study for the temporal evolution of the droplet drag coefficient, CD (a), and the droplet integral heat flux, Qd (b), for Re ¼ 100 and Ja ¼ 0:8.

Fig. A.19. Convergence study for the temporal evolution of the droplet drag coefficient CD (a), and the droplet integral heat flux Qd (b), for Re ¼ 100 and Ja ¼ 0:01.

Fig. A.20. Convergence study for the temporal evolution of the droplet drag coefficient, CD (a), and the droplet integral heat flux, Qd (b), for Re ¼ 100 and Ja ¼ 0:4.



For Ja ¼ 0:01 the convergence is achieved with a mesh refine-

ment of Dr ¼ R0=64 grid cells, while, for greater Jakob numbers,

an acceptable convergence is reached with Dr ¼ R0=128 grid cells.

To perform the simulations at Ja ¼ 0:2, the same computational

domain and mesh refinement of Ja ¼ 0:4 have been adopted.

The differences on CD and on Qd between the different consid-

ered grids are reported for each Jakob in Tables A.7–A.9.

Appendix B. Convergence study for the condensation of a

hemispherical droplet on an isothermal wall

The convergence study on droplet heat transfer is here detailed

for two different Jakob numbers, Ja ¼ 0:4, Fig. B.22(a), and Ja ¼ 1,

Fig. B.22(b). For Ja 1 0:8 the spatial convergence is achieved with

M ¼ 512- 512 computational points, i.e. with a mesh refinement

of Dr ¼ R0=64. For higher Jakob a mesh of M ¼ 1024- 1024 has

been chosen, where Dr ¼ R0=128.

The maximum differences on the heat transfer between the dif-

ferent meshes, registered in the transient phase of the simulation,

are reported in Table B.10 for Ja ¼ 0:4 and Table B.11 for Ja ¼ 1.
Table A.8

Differences on droplet drag coefficient, CD , and on integral droplet heat flux, Qd , for

several mesh refinements at Re ¼ 100 and Ja ¼ 0:4.

Ja ¼ 0:4 CD DCD
½%+ Qd ½W+ DQd

½%+

Dr ¼ R0=32 1:10 – (0:0303 –

Dr ¼ R0=64 1:12 1:8 (0:0288 3:0

Dr ¼ R0=128 1:15 2:7 (0:0275 5:0

Dr ¼ R0=256 1:14 0:9 (0:0272 1:0

Table A.7

Differences on droplet drag coefficient CD and on integral droplet heat flux Qd for

several mesh refinements at Re ¼ 100 and Ja ¼ 0:01.

Ja ¼ 0:01 CD DCD
½%+ Qd ½W+ DQd

½%+

Dr ¼ R0=32 1:046 – (0:0232 –

Dr ¼ R0=64 1:058 1:2 (0:0220 5:0

Dr ¼ R0=128 1:061 0:3 (0:0215 2:3

Table A.9

Differences on droplet drag coefficient, CD , and on integral droplet heat flux, Qd , for

several mesh refinements at Re ¼ 100 and Ja ¼ 0:8.

Ja ¼ 0:8 CD DCD
½%+ Qd ½W+ DQd

½%+

Dr ¼ R0=64 1.31 – (0:048 –

Dr ¼ R0=128 1.46 11.5 (0:050 4.2

Dr ¼ R0=256 1.51 3.0 (0:051 2.0

Fig. B.22. Convergence study for the temporal evolution of the droplet integral heat flux Qd for Ja ¼ 0:4 (a), and for Ja ¼ 1 (b).

Table B.10

Max differences on integral droplet heat flux Qd for several mesh refinements at

t ¼ 0:007 s and Ja ¼ 0:4.

Ja ¼ 0:4 Qd ½W+ DQd
½%+

Dr ¼ R0=16 (1:21- 10(2 –

Dr ¼ R0=32 (1:25- 10(2 3.3

Dr ¼ R0=64 (1:275- 10(2 2.0

Dr ¼ R0=128 (1:28- 10(2 0.4

Table B.11

Max differences on integral droplet heat flux Qd for several mesh refinements at

t ¼ 0:012 s and Ja ¼ 1:0.

Ja ¼ 1:0 Qd ½W+ DQd
½%+

Dr ¼ R0=64 (1:78- 10(2 –

Dr ¼ R0=128 (1:86- 10(2 4.5

Dr ¼ R0=256 (1:89- 10(2 1.6
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