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Abstract We propose a novel framework for despeck-

ling ultrasound image sequences while respecting the

structural details. More precisely, we use thresholding

in an adapted wavelet domain that jointly takes into ac-

count for the non-Gaussian statistics of the noise and

the differences in spatial and temporal regularities. The

spatio-temporal wavelet is obtained via the Kronecker

product of two sparsifying wavelet bases acting respec-

tively on the spatial and temporal domain. Besides en-

abling a structured sparse representation of the time-

space plan, it also makes it possible to perform a vari-

ance stabilization routine on the spatial domain through

a Fisz transformation. The proposed method enjoys

adaptability, easy tuning and theoretical guaranties. We

propose the corresponding algorithm together with re-

sults that demonstrate the benefits of the proposed

spatio-temporal approach over the successive spatial
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École Nationale Supérieure des Mines;
CNRS UMR 5307; LGF, F-42023 Saint-Etienne, France

Jean-Marc Freyermuth
Institute of Statistics, Université de Neuchâtel,
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treatment. Finally, we describe a data-driven extension

of the proposed method that is based on temporal pre-

filtering.

Keywords Dynamic ultrasound imaging · despeck-
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1 Introduction

Ultrasound (US) Imaging allows safe and cheap ex-

ploration of biological tissues and organs in real-time.

This medical modality continues to be an attractive

tool for clinical diagnostic and investigation. Unfortu-

nately, US images are affected by “speckle” noise re-

sulting from the accumulation of individual scattered

beams from tissue inhomogeneities. Although speckle

might give information about the properties of under-

lying tissues, it also affects the quality of these images

and makes them challenging for human perception and

for post-processing tasks such as segmentation and reg-

istration. Hence, pre-filtering is an important first step

in the US image analysis pipeline. Some structural de-

tails are, however, important for diagnosis. Therefore,

it is important to preserve them while performing the

denoising task.

Throughout the years, various US despeckling ap-

proaches have been proposed in the literature. Early

contributions were simply based on classical spatial ap-

proaches such as median filtering [15]. More sophisti-

cated techniques were developed to deal with the mul-

tiplicative nature of the speckle noise following method-

ologies introduced in the context of Synthetic Aperture

Radar (SAR) imaging. These include, for example, the

work of Lee [14]. More recently, adaptations of more ad-

vanced filtering techniques were proposed to deal with



2 Younes Farouj1 et al.

noise characteristics, e.g; complex diffusion [13]. The

main drawback of these methods is that many of the

structural details are not preserved. This is a common

feature of linear filtering methods. This suggests the use

of non-linear methods obtained naturally when using of

local or even multiscale transforms [9]. Nevertheless,

transform domain approaches [12] are more adapted

to additive Gaussian white noise removal. Researchers

also understood early how this limitation is not fully

surmounted in ultrasound even when logarithmic func-

tions is applied to transform the multiplicative noise

model into an additive one. Achim et al. [2] were first

to highlight the non-Gaussian statistics of wavelet coef-

ficients of US images after logarithmic transformations,

which makes the use of classical wavelet thresholding

schemes not straightforward. Thus, they proposed to

model the statistics of these coefficients using a family

of heavy-tailed distributions, called alpha-stable distri-

bution, and proposed an adapted thresholding scheme

in a Bayesian framework. In the present work, we pur-

sue the adjustment of wavelet-thresholding methods to

deal with the statistics and the regularity of US data.

It is surprising that research in speckle reduction has

been focused on images without taking into account

temporal information, while US imaging itself is often

related to dynamic phenomena. One of the few contri-

butions taking into account the temporal aspect is the

recent work in [11]. Here, however, the spatial aspect

is completely overlooked. We propose, therefore, an im-

portant extension of a despleckling method recently in-

troduced in [8] for US images, in order to deal with

spatio-temporal sequences. More precisely, we construct

a Kronecker product based wavelet that Gaussianize

the noise statistics in the transform domain. Using this

novel Kronecker construction for the spatio-temporal

wavelet atoms has two advantages: (i) It is well suited

for sparsifying multi-dimensional signals that are mea-

sured progressively on subsets of the coordinates (US

image sequences) and (ii) it makes it also possible to

apply variance stabilization on subsets of the coordi-

nates (e.g. spatial variables), this is of particular bene-

fit for computational purposes. Such constructions were

introduced by [7] in the context of compressive sens-

ing. In the present paper, the proposed construction

acts separately on the spatial and temporal variables.

This yields to a simple scheme based on the follow-

ing steps: (1) apply a spatial 2-dimensional wavelet

transform to the spatio-temporal sequence, (2) use the

low-frequency outputs of the wavelet transform as a

local means estimation, (3) Fisz transform: use these

local means to stabilize the variance of the wavelet co-

efficients, (3)Kronecker product: apply a temporal 1-

dimensional wavelet transform to the stabilized coeffi-

cients, (4) perform thresholding on the coefficients ob-

tained in step (3). The rest of the paper is organized

as follows. We start by motivating the noise model we

are considering by some statistical experiments on a

real US sequence, in Section 2. In Section 3, we de-

scribe the proposed approach; in particular, we show

how the combination of spatial Fisz transformation and

the Kronecker product construction stabilizes the vari-

ance of the wavelet coefficients allowing the use of sim-

ple thresholding procedures. Finally, we provide exper-

imental results on synthetic and real data in Section 4

to support our claims.

2 US image analysis & problem formulation

Before performing despeckling, a first step consists in

choosing an adequate mathematical description of the

noise component. A relevent noise model was intro-

duced by Loupas [15]. It stipulates that the standard

deviation of the speckle noise is proportional to a power

of the intensity at each time point:

fε(x, t) = f(x, t)+ε(x, t), ε(x, .) ∼ N (0, σfγ(x, .)), (1)

with γ > 0. x = (x1, x2) and t are respectively the

spatial and temporal variable while f , ε and fε, are,

respectively, the unknown sequence, the noise compo-

nent and the observed corrupted sequence. To assess

this model, we made a simple experiment; we estimated

the shape of the variance function of the noise compo-

nent using a pre-estimation based on temporal averag-

ing and a Nadaraya-Watson estimator [17]. Let us de-

scribe this routine. We choose a “Liver” image sequence

of 256× 256 pixels and 128 time-points. We start by a

applying a straightforward temporal averaging [1] to

obtain a smooth image fmean
ε (x). By fixing a time point

t̄, we can obtain an estimation of the noise component

on the current image f(x, t̄) by computing, first, the

residual:

ε̂(x, t̄) = f(x, t̄)− fmean

ε (x), (2)

and then evaluate the variance of ε̂ using a Nadaraya-

Watson estimator. We are interested in establishing a

possible relation between gray-level intensity values and

the variance. Thus, we start by defining a discrete uni-

form interval of intensities G with values ranging from

min
x

(fmean
ε (x)) to max

x
(fmean
ε (x)). Then, for each point

g ∈ G, an estimation of the variance function h is given

as:

h(g) =
〈Kb(g), ε̂2〉
K̂b(g)

, Kb(g) =
1

N2b
K
(fmean

ε − g
b

)
, (3)
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Fig. 1: The “Liver” sequence: The 40th image of the sequence
along with the estimated standard deviation and the theoret-
ical one from the model introduced in [15].

where Kb is a Gaussian smoothing Kernel K of band-

width b and N denotes the length of G. We applied

this routine to real US data; The “Liver” sequence with

b = 3 was used. The results are shown in Fig. 1. We can

observe that the estimated standard deviation (black

line),
√
h, is not constant. This means that the noise

component is not a white Gaussian, but it is rather

depending on the underlying intensity. with γ > 0.

The red curve in Fig. 1 is obtained with γ = 1/2 and

σ = 2.5. The gray curves correspond to standard de-

viation plots with different values of σ ranging from

1 to 5. Model (1) was, for instance, exploited by Ten-

brinck et al. [19] to perform robust histogram-based

optical flow estimation in US images sequences. Coupé

et al. [6] adapted the non-local means paradigm to this

model. In [8], the authors of the present work showed

how the wavelet-Fisz methodology introduced in [10]

can be used in this context. In the next section, we

recall this framework and we show how a structured

sparse representation based on Kronecker product of

wavelet bases can be used to perform wavelet-Fisz de-

speckling in dynamic US imaging.

3 Methodology

3.1 Notations

Let ψ and ϕ be two one-dimensional functions, com-

monly known as the mother wavelet and the scaling

function, respectively. Note by ψj,k(.) = 2j/2ψ(2j .− k)

and ϕj,k(.) = 2j/2ϕ(2j . − k) with j, k ∈ N × Z their

dilated and translated versions. Then, one-dimensional

wavelet bases are defined by the family

{ϕ0,k}k∈Z ∪ {ψj,k}(j,k)∈N×Z, (4)

Any function f ∈ L2([0, 1]) can be decomposed on

this basis leading to a set of approximation coefficients

a0,k(f) = 〈f, ϕ0,k〉 and wavelet coefficients wj,k(f) =

〈f, ψj,k〉. In two dimensional settings, the most common

analogue construction to the one given in (4) relies on

wavelet product given for translations k = (k1, k2) by:

{Φ0,k}k∈Z2 ∪ {ΨHj,k, ΨVj,k, ΨDj,k}(j,k)∈N×Z2 , (5)

where the functions Φ0,k1,k2(x) = ϕ0,k1(x1)ϕ0,k2(x2)

lead to the approximation coefficients, while the hor-

izontal, vertical and diagonal wavelet coefficients are

obtained, respectively, by decomposing on:

ΨHj,k(x1, x2) = ϕj,k1(x1)ψj,k2(x2),

ΨVj,k(x1, x2) = ψj,k1(x1)ϕj,k2(x2),

ΨDj,k(x1, x2) = ψj,k1(x1)ψj,k2(x2).

(6)

The coefficients are computed in the same way as in

the one-dimensional case. In the sequel, DWT and 2-D

DWT will denote the discrete wavelet transforms lead-

ing to the wavelet decomposition in one and two di-

mensions. If not specified, aj,k and wj,k can refer to

approximation and wavelet coefficients in one or two

dimensions. In the sequel we denote {Ψj,k}(j,k)∈N×Z2 =

{ΨHj,k, ΨVj,k, ΨDj,k}(j,k)∈N×Z2

3.2 Proposed approach

Consider we are observing an corrupted image sequence

fε obeying model (1). By applying a 2- DWT to this

model, with respect to spatial variables and fixing the

time variable, we obtain:

wj,k(fε(., t)) = wj,k(f(., t)) + wj,k(ε(., t)), (7)

at each time point t. with (j,k) ∈ I ⊂ N×Zd, d = 1, 2.

The vectors {wj,k(ε(., t))}j,k are not Gaussian. Hence,

the hard-thresholding procedure is not applicable di-

rectly. In the subsequent subsections we introduce the

proposed approach for spatio-temporal despeckling in

order to adapt the thresholding to the non-Gaussianity

assumption.

3.2.1 Spatial wavelet-Fisz transform

We can notice that ε is asymptotically Gaussian in the

sense that at fine scales, under local piece-wise con-

stancy assumptions on f , fγ is locally constant and

thus ε and {wj,k(ε(., t))}j,k are locally Gaussian. To

have a globally normal vector {wj,k(ε(., t))}j,k, its vari-

ance should be stabilized for each couple (j,k). A way to

do so is the wavelet-Fisz procedure introduced by Fry-

zlewicz and his collaborators in a series of papers [10,16]

for the one dimensional case. It consists in dividing the

wavelet coefficients by local means computed on the
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same supports as the wavelet bases. A fancy computa-

tion of these local means involves the use of approx-

imation coefficients at each scale. If we denote two-

dimensional function scaling:

Φj,k(x1, x2) = ϕj,k1(x1)ϕj,k2(x2), (8)

Then, the scaling coefficients {aj,k}j,k are simply given

as:

aj,k(t) = 〈fε(., t), Φj,k〉. (9)

These coefficients can be seen as local approximations

of f in the supports of the scaling and wavelet functions:

aj,k(t) ≈ fj,k(x, t) = f(2jx1 − k1, 2jx2 − k2, t).

The Fisz-transformation consists in normalizing equa-

tion (7) by dividing it by aγj,k for each couple (j,k). Let

us denote by dj,k =
wj,k
aγj,k

. Then:

dj,k(fε(., t)) = dj,k(f(., t)) + dj,k(ε(., t)). (10)

Note that in equation (10) the variable t is fixed. In the

next paragraph, we address the temporal aspect by con-

structing a well-adapted spatio-temporal wavelet taking

into account the variance stabilization described above

and the differences in spatial and temporal regularities.

3.2.2 Kronecker Wavelet-Fisz despeckling

To incorporate the temporal aspect we apply a DWT

to (10) with respect to the temporal variable. Integrat-

ing (10) against a temporal one-dimensional wavelet

function ψl,m gives:

dl,mj,k (fε) = dl,mj,k (f) + dl,mj,k (ε), (11)

with

dl,mj,k (fε) = 〈dj,k(fε(., t)), ψl,m(t)〉,

dl,mj,k (f) = 〈dj,k(f(., t)), ψl,m(t)〉,

dl,mj,k (ε) = 〈dj,k(ε(., t)), ψl,m(t)〉.

(12)

with (j,k, l,m) ∈ Ī ⊂ N×Z2×N×Z. Equation (10) has

the appropriate properties for wavelet thresholding. In

particular the wavelet coefficients of the noise compo-

nent have Gaussian distribution thanks to the following

lemma.

Lemma 1 Let {Ψj,k}(j,k)∈N×Z2 and {ψl,m}(l,m)∈N×Z be

two normalized wavelet bases, such that ‖Ψ‖22 = 1 and

‖ψ‖22 = 1. Let uj,k denote the restriction of u to the

support of the function ψj,k. Assume that local approxi-

mations aj,k converge to fj,k as j →∞. Then we have:{
dl,mj,k (ε)

}
j,k,l,m

d−→ N (0, σ), as j →∞ . (13)

Proof We recall that ε = fγ(x, .)ε, with ε ∼ N (0, σ).

Var
{
dl,mj,k (ε)

}
= Var

{∑
t

ψl,m(t)

aγj,k(t)

∑
x

Ψj,k(x)fγ(x, t)ε
}
,

= σ2
∑
t

ψ2
l,m(t)

a2γj,k(t)

∑
x

Ψ2
j,k(x)f2γ(x, t),

= σ2
∑
t

ψ2
l,m(t)

a2γj,k(t)

∑
x

Ψ2
j,k(x)f2γj,k(x, t),

= σ2
∑
t

ψ2
l,m(t)

∑
x

f2γj,k(x, t)

a2γj,k(t)
Ψ2
j,k(x).

Finally, since when j → ∞, aj,k converges to fj,k,

then for each x in the support of Ψj,k, we have:

lim
j→∞

f2γj,k(x, t)

a2γj,k(t)
= 1.

Thus: Var
{
dl,mj,k (ε)

}
= σ2||ψ||22||Ψ ||22 = σ2, which

ends the proof.

Now, using equation (11), we are able to perform

wavelet thresholding on the entire 2D+t data. Precisely,

we start by keeping only coefficients dl,mj,k (fε) larger than

the threshold given σ
√

log(Card(Ī)). Here, We tried to

present a line of reasoning to help the reader to under-

stand the succession of ideas. Nevertheless, we can link

the final equation (11) to the initial model (1) by the

use of an appropriate wavelet basis. Such a basis is the

product of a 1-D temporal basis as in (4) and a rescaled

version of the 2-D spatial basis in (5):

{Φ0,k} ∪ {
ΨHj,k
σaγj,k

,
ΨVj,k
σaγj,k

,
ΨDj,k
σaγj,k

}⊗ {ϕ0,m} ∪ {ψl,m}, (14)

where ⊗ refers to the Kronecker product of vectors.

This means that the resulting basis has all combina-

tions of products between the elements of each basis.

In particular, as the atoms are not obliged to be at the

same scale to be crossed, this results in isotropic filters

in the spatial plan and anisotropic filters in the space-

time plan. As we showed, besides its ability to produce

a structured sparsifying basis. This construction allows

to apply variance stabilization techniques such as the

Fisz-transformation on subsets of coordinates. It also

enables the use of different families of wavelets on dif-

ferent variables to fit the directional regularity of the

analyzed function. We finish this section by some re-

marks on discrete settings and the implementation of

our approach that we coined Kronecker Wavelet-Fisz

(KWF) Despeckling.
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3.3 Implementation

Many of the choices we made for the construction of the

KWF Despeckling approach were driven by practical

reasons. The choice for hard-thresholding over the soft-

thresholding paradigm is motivated by our use of the

non-decimated wavelet transform (NDWT) [5] which

has proven to outperform classical (decimated) wavelet

transforms [18]. In the sequel, we denote by SNDWT

the 2-D dimensional spatial NDWT and TNDWT the

1-D dimensional temporal NDWT. We denote their in-

verses, respectively, ISNDWT and ITNDWT. We should

mention that the local means estimation {aγj,k}j,k is

not accurate at all scales. In particular, at very fine

scales the observation is not large enough for an ac-

curate estimation. Accordingly, at coarse scales, the

rough piece-wise constancy constraint is not verified

anymore. This issue is naturally handled by the hard-

thresholding approach; small coefficients corresponding

to fine scales are not kept as they are considered as

noise, while coarse scale coefficients are kept as they

are larger than the threshold. Finally, the Kronecker

product procedure can be implemented as a sequence

of two independent wavelet transforms [7]. Algorithm 1

describes the overall routine of the KWF Despeckling

procedures. Fig. 2 shows the distribution of a portion

of the coefficients dl,mj,k (fε), before and after stabiliza-

tion, at the finest thresholding scale of the diagonal

sub-band. The figure highlights the ability of the spa-

tial Fisz-transform at normalizing the coefficients. This

obviates the need to apply the Fisz transformation after

the temporal analysis which motivates our approach.

Algorithm 1 KWF Algorithm

Input: fε, σ, γ

Output: Estimate f̂
[wj,k, aj,k]←− SNDWT(fε)
for each couple (j, k) do

cj,k = σ × (aj,k)γ

dj,k = |wj,k|/cj,k
[dl,mj,k ]←− TNDWT(dj,k)

for each couple (l,m) do

if dl,mj,k < T then dl,mj,k = 0
end if

d̂j,k ←− ITNDWT(dl,mj,k )
end for

end for

ŵj,k = d̂j,k × cj,k
f̂ = ISNDWT(ŵj,k)

3.4 A data-driven extension

Similarly to the majority of wavelet based approaches,

the KWF Despeckling is adaptive, in the sense that

no prior knowledge on the regularity of the unknown
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Fig. 2: Normal plot showing the distribution of the 3-

dimensional wavelet coefficients dl,mj,k (fε), at the finest scale
of the diagonal sub-band, with and without the stabilization
step (“Liver” sequence).

is needed. Still, the method is not data-driven as one

needs to fix parameters σ and γ to run Algorithm 1.

This is not desirable in practice. To overcome this lim-

itation, it is possible to use variance estimation tech-

niques. For example, by applying the Nadaraya-Watson

estimation, for each point of a given discretization of

the grayscale values range, a value of the variance is

obtained (cf. 1). Then, the data-driven extension (D-

DKWF) consists in replacing step 3 in Algorithm 1,

where σ and γ are needed, by cj,k = ĥ(aj,k) where

ĥ is the estimated variance. This variance estimation

technique was also used in the original work on the

wavelet-Fisz methodology [10]. Since we have, now, a

model to rely on, it would also be valuable to consider

the fact that the variance function is expected to be

non-decreasing. As in [10], this can be done by apply-

ing, an isotonic regression seeking for the non-increasing

function that is the closest to the estimated variance in

the mean square error sense by pooling on which the

assumption is violated with their neighbors.
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4 Experiments & Discussion

In this section we present some experiments to assess

the performance of KWF Despeckling for both syn-

thetic and real data. Note that the WF approach [8] has

proven to perform as well as the state-of-the-art adapta-

tion of non-local means paradigm [6] coined Optimized

Bayesian non-local means (ONBLM). As this method

does not have spatio-temporal extension in the litera-

ture, we restrict ourselves to a comparison with spatial

WF and spatial ONBLM filtering1. Through these com-

parison, we aim essentially at showing the benefits of

the spatio-temporal processing provided by the KWF.

For all experiments, we used Daubechies wavelets with

6 vanishing moments in the spatial domain while Haar

wavelets are used in the temporal coordinate. The use

of Haar wavelets in the temporal domain favors piece-

wise constancy that can be observed over the sequence

because of the preservation of pixel intensity values. For

the OBNLM algorithm, the parameters α and M con-

trolling the number of blocks and the size of the search

window were fixed at 3 and 6, as in the original pa-

per, and the filtering parameter was optimized for each

noise level scenario.

4.1 Synthetic data

Our synthetic data is a clean sequence, “Heart”, of

a beating heart provided by the simulation software

in [4]. Even though the motion does not necessary fit

the heart motion that can be observed in US imaging,

this is not disturbing as we only consider the noise re-

moval task. Here we assume that γ = 1/2. This is sug-

gested by our experiments in Section 2. The same value

was used, for instance, in [6]. Our experiments were

conducted for σ = {1, 2, 3, 4}. Accordingly, the cor-

responding filtering parameter for OBNLM was fixed

at {1, 1, 1.5, 2}. We evaluated the peak-signal-to-noise-

ratio (PSNR) over the entire sequence. Moreover, to

assess the details preservation we measured the struc-

tural similarity index measure (SSIM) [20]. The results

are reported in Table I: The results show the constancy

σ 1 2 3 4
Noisy 29.76/0.78 23.74/0.56 20.21/0.42 17.72/0.32
WF 32.93/0.93 30.44/0.88 28.48/0.84 26.90/0.80

OBNLM 33.30/0.89 31.83/0.87 29.43/0.83 27.72/0.77
KWF 34.31/0.96 33.28/0.95 32.27/0.93 31.34/0.91

Table 1: Quantitative comparison (PSNR (dB)/SSIM) for
different methods applied to “Heart” at different noise levels.

1 Available on https://sites.google.com/site/

pierrickcoupe/softwares/denoising-for-medical-imaging/

speckle-reduction/obnlm-package
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Fig. 3: Quantitative evolution ((a) PSNR & (b) SSIM) of
different methods applied to the sequence “Heart” (σ = 3):
frame by frame evolution.

of KWF despeckling at outperforming OBNLM and

WF filtering, at a global level, for different values of σ.

OBNLM gives good PSNR results as it is constructed

to minimize the noise variance. For the SSIM measure,

the two wavelet based techniques are better. Fig.3 helps

to understand these performances, and the local be-

havior of the three approaches. This figure illustrates

the PSNR and SSIM on the spatial coordinates at each

time-point; for each image of the sequence. Note that

the KWF approach also outperforms locally the WF ap-

proach. It is also interesting to not that the PSNR in the

WF and OBNLM approach is stationary as each image

is treated individually. On the other hand, the PSNR

in the KWF shows variations in time. Specifically, we

can observe a periodic behavior and the presence of

two modes in each period. This is related to the car-

diac motion. In fact, the discontinuities in motion affect

the temporal regularity and hence the despeckling per-

formance. This explains the drops in PSNR when the

cardiac cycle phase switches from relaxation (diastole)

to contraction (systole). Finally, a visual comparison

is shown in Fig. 4. It highlights the visual improvement
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(a) Original (b) Noisy (σ = 2) (c) WF (d) OBNLM (e) KWF

Fig. 4: Example of results obtained by the two methods for the 20th image of the sequence “Heart”.

provided by the KWF. We can observe that the arti-

facts related to wavelet atoms are less visible and the

contours are nicely preserved.

4.2 Real data

For our experiment on real data, we used the “Liver”

sequence presented earlier and the “Median” sequence

that shows the median nerve. We ran the algorithms

with α = 2.5 and γ = 1/2 as suggested by Fig. 1. We

fixed h = 1 for the OBNLM filter. Fig. 5 and Fig. 6

show images in the original sequences along with the

recovered images from the two approaches. Here again,

we can observe that the output of the WF approach

has more artifacts related to wavelet atoms, while the

KWF and OBNLM results are more visually pleasant

and less blurred. A video is provided, as an accompany-

ing media to this paper, for a comparison over the se-

quences. Though the results are convincing, the choice

of parameters σ and γ was visually estimated from the

curve in 1. The D-DKWT makes it possible to perform

despeckling, without fixing these parameters, using the

variance estimation procedure. The results are shown

in Fig. 7. Isotonic regression forces the estimated vari-

ance to be non-decreasing. This variance is plugged di-

rectly in the stabilization step. The despeckled results

are even less blurred with sharp edges. A video of the

D-DKWF is also available in the accompanying media.

We are convinced that data-driven (blind) denoising

approaches are very appreciated in medical imaging in

general and in US imaging in particular, as they are

easier to use in the image analysis pipeline effectuated

by practitioners.

5 Conclusion

We presented the KWF and D-DKWF Despeckling al-

gorithms for dynamic US imaging. These approaches

are based on a combination of multi-scale variance sta-

bilization and a structured sparse representation pro-

vided by the Kronecker product of spatial and temporal

wavelet bases. The results confirmed our claims on the

relevance of this construction. The data-driven exten-

sion, which we believe is of great interest in practice,

give convincing results with incorporating priors on the

model parameters. Future work will focus on perform-

ing simultaneously deconvolution and despeckling via

the presented approach. A way to address this task is

through a variational framework with a regularization

term controlling the KWF coefficients and data-driven

term taking into account the blur operator. Another

possible improvement is the use of motion compensa-

tion techniques [3] to improve the spatio-temporal fil-

tering in the presence of highly non-uniform motion.
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