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Abstract

Modeling soil evaporation has been a notorious challenge due to the complex-

ity of the phenomenon and the lack of data to constrain it. In this context,

a parsimonious model is developed to estimate soil evaporative efficiency

(SEE) defined as the ratio of actual to potential soil evaporation. It uses

a soil resistance driven by surface (0 − 5 cm) soil moisture, meteorological

forcing and time (hour) of day, and has the capability to be calibrated using

the radiometric surface temperature derived from remotely sensed thermal

data. The new approach is tested over a rainfed semi-arid site, which had

been under bare soil conditions during a 9-month period in 2016. Three

calibration strategies are adopted based on SEE time series derived from

1) eddy-covariance measurements, 2) thermal measurements, and 3) eddy-

covariance measurements used only over separate drying periods between sig-

nificant rainfall events. The correlation coefficients (and slopes of the linear

regression) between simulated and observed (eddy-covariance-derived) SEE
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are 0.85, 0.86 and 0.87 (and 0.91, 0.87 and 0.91) for calibration strategies

1, 2 and 3, respectively. Moreover, the correlation coefficient (and slope of

the linear regression) between simulated and observed SEE is improved from

0.80 to 0.85 (from 0.86 to 0.91) when including hour of day in the soil resis-

tance. The reason is that, under non-energy-limited conditions, the receding

evaporation front during daytime makes SEE decrease at the hourly time

scale. The soil resistance formulation can be integrated into state-of-the-art

dual-source surface models and has calibration capabilities across a range of

spatial scales from spaceborne microwave and thermal data.

Key words: Soil evaporation, soil resistance, soil moisture, surface

temperature, calibration, remote sensing.

1. Introduction1

To better understanding the water fluxes of crops, and optimizing irriga-2

tion in water-limited environments, efforts are being made to estimate both3

the plant consumption by transpiration (through stomata) and the water4

losses by evaporation (from soil and in some instances from canopy via in-5

terception) (Agam et al., 2012). The partitioning of evapotranspiration into6

soil evaporation and plant transpiration is needed to assess the crop water7

use efficiency through its transpiration rate (Hain et al., 2009), as well as8

to evaluate how much production is derived per unit of crop transpiration9

(Molden et al., 2010). Such information is also needed at multiple spatial10

scales, from the field scale where agronomic practices are carried out (Allen,11

1990), to the catchment scale where land and water management is operated12

(Zhang et al., 2001).13
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Field instrumentation for measuring soil evaporation and plant transpi-14

ration separately includes eddy covariance, micro Bowen-ratio energy bal-15

ance, micro lysimeter, soil heat pulse probe, chamber, isotope and sap flow16

techniques (Kool et al., 2014). Although those instrumentations have much17

evolved since the initial experimentations in the 1970s, data collected in18

situ are still very scarse (Schlesinger and Jasechko, 2014) and are generally19

representative of the local conditions, that is from the leaf/stem to approxi-20

mately the 100-m scale. This results in a large uncertainty of the transpira-21

tion/evapotranspiration ratio (estimated in the range 0.35−0.80) associated22

with a current lack of observation at the catchment scale (Coenders-Gerrits23

et al., 2014).24

To help evaluate the evaporation/transpiration partitioning at multiple25

space-time scales, advanced land-surface models are available to simulate en-26

ergy, water, and carbon fluxes at the land surface-atmosphere interface (Ole-27

son et al., 2013; Boone et al., 2017, e.g.). Simpler models such as two-source28

surface energy balance models (Lhomme and Chehbouni, 1999) require less29

input parameters. In general, state-of-the-art models rely on specific assump-30

tions on either the soil evaporation (Caparrini et al., 2004)or the plant tran-31

spiration (Kustas and Norman, 1999), or base their two-source representation32

on semi-empirical or semi-physical resistances. Whereas semi-empirical resis-33

tances are difficult to generalize in a range of agro-environmental conditions34

(Ershadi et al., 2014), semi-physical resistances generally depend on soil hy-35

drodynamic properties (Decker et al., 2017), which are highly variable and36

yet unavailable over large areas (Gutmann and Small, 2007).37

To address the above-described difficulties in representing the evapora-38
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tion/transpiration components across a range of space-time scales using a39

two-source resistance-based formulation, remote sensing data have great po-40

tential. In fact, one way of separating soil evaporation and plant transpiration41

is to estimate one component independently from the total evapotranspira-42

tion. In this regard, the soil evaporation process is quite well constrained43

by available remote sensing observations. Surface soil moisture derived from44

microwave data is one main controlling factor of evaporation (Prévot et al.,45

1984), and the radiometric soil temperature derived from thermal data in46

the absence of dense vegetation cover is, under non-energy-limited condi-47

tions, a signature of the evaporation rate (Norman et al., 1995). However,48

although thermal-microwave data combining approaches have been imagined49

since the 1990s (Chanzy et al., 1995; Li et al., 2006), none has been imple-50

mented yet. One of the reasons is the lack of remote sensing sensors with51

sufficient spatio-temporal resolution. Especially, the operational extraction52

of surface soil moisture at high-spatial resolution remains delicate and there53

is no thermal mission providing data at high spatio-temporal resolution. As54

a step forward, recently launched/future satellite missions such as Sentinel-155

(Paloscia et al., 2013) and Trishna (Lagouarde et al., 2013) as well as disag-56

gregation techniques (Peng et al., 2017; Zhan et al., 2013) could solve this57

issue in the near future.58

Another major issue when attempting to integrate thermal data in an59

evaporation model is the drying (usually around noon) of the top few mil-60

limeters of soil which inhibits evaporation, regardless of the availability of the61

soil water underneath (Mahrt and Pan, 1984; Dickinson et al., 1986; Soarès62

et al., 1988; Wetzel and Chang, 1988; Van de Griend and Owe, 1994; Heitman63
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et al., 2008; Shahraeeni et al., 2012). Or et al. (2013) identify two regimes:64

Stage I when both liquid phase continuity and capillary forces sustain evap-65

oration at the top soil and Stage II when the drying front is deeper in the66

soil and evaporation is mainly controlled by diffusion (Haghighi et al., 2013).67

In fact, the soil drying during daytime and the uniform rewetting of soil via68

capillary rises during nighttime is a cyclic phenomenon that is expected to69

affect the evaporation resistance at the hourly time scale (Tuzet et al., 2003).70

One challenge is that the radiometric soil temperature is highly variable in71

time as a result of the diurnal dynamics of meteorological forcing (i.e. solar72

radiation, wind speed, air temperature, air humidity) and the evolution of73

soil moisture. Additionally, it is representative of the physical characteristics74

of the soil skin only. A direct consequence is that a thermal-based evapo-75

ration model should beneficially take into account the drying of the top soil76

during daytime.77

This was the rationale for developing a formulation of soil evaporative78

efficiency (SEE, defined as the ratio of actual to potential soil evaporation)79

with a shape that adapts to the soil moisture gradient. Given that the soil80

moisture profile is generally unknown, and that the drying of the top soil is81

related to the evaporative demand (in addition to the soil moisture value),82

Merlin et al. (2011) considered potential evaporation as a proxy for the soil83

moisture gradient in the topsoil. In fact, a large potential evaporation is84

associated with a strong moisture gradient in the top soil, which implies85

a decrease of SEE regardless of the moisture content integrated over the86

0 − 5 cm soil layer. Such a phenomenological modeling approach allows for87

implicitly representing the drying of the top soil during daytime. The SEE88

5



formulation of Merlin et al. (2011) was derived at the daily scale only, which89

is inconsistent with the subdiurnal availability of thermal data.90

In this context, this paper aims to develop a quasi instantaneous model91

of SEE that has the ability to consistently integrate both near-surface soil92

moisture and radiometric soil temperature data. In practice, the recent SEE93

modeling approach of Merlin et al. (2016) is improved by adding a temporal94

dependence, as well as an additional parameter controlling the cyclic phe-95

nomenon of the drying/rewetting of the top soil during daytime/nighttime.96

The new resistance model is tested in terms of SEE estimates using eddy97

covariance measurements collected over a bare soil site in central Morocco,98

and its performance is assessed against two benchmark models. Calibration99

capabilities of the SEE model from thermal (instead of eddy covariance) data100

are also investigated.101

2. Modeling approach102

Soil evaporation can be modeled using a resistance approach:103

LE =
ρCP
γ
× esat(T )− ea

rah + rss
(1)

with LE (W m−2) being the soil latent heat flux, rss (s m−1) the resistance104

to the diffusion of vapor in soil pores, ρ (kg m−3) the density of air, CP (J105

kg−1 K−1) the specific heat capacity of air, γ (Pa K−1) the psychrometric106

constant, esat(T ) (Pa) the saturated vapor pressure at the soil surface, T (K)107

the soil surface temperature, ea (Pa) the vapor pressure of air and rah (s108

m−1) the aerodynamic resistance to heat transfer from the soil surface to the109

reference height.110
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Based on Equation (1), one may also derive a potential soil evaporation,111

defined as the soil evaporation that would occur in fully saturated soil con-112

ditions so that rss = 0:113

LEp =
ρCP
γ
× esat(Twet)− ea

rah,wet
(2)

with Twet (K) and rah,wet (s m−1) being the soil temperature and aerodynamic114

resistance in saturated soil conditions, respectively. The parameters used as115

input to the LEp model are presented in the Appendix A. The ratio of actual116

to potential soil evaporation, i.e. the SEE, can then be expressed as:117

SEE =
esat(T )− ea
esat(Twet)− ea

× rah,wet
rah + rss

(3)

The soil resistance in Equation (3) is expressed as a function of soil mois-118

ture following Merlin et al. (2016):119

rss,M16 = rss,ref exp(−θ/θefolding) (4)

with rss,ref being a hypothetical soil resistance corresponding to dry soil con-120

ditions and θefolding the soil moisture value at which rss is equal to rss,ref/e.121

The present paper aims to intercompare three evaporation models based on122

the following assumptions for the rss formulation:123

• both rss,ref and θefolding of Equation (4) are set to constant values124

(depending on soil texture and structure) as in Passerat de Silans (1986)125

and Sellers et al. (1992).126

• rss,ref and θefolding of Equation (4) are analytically expressed as a func-127

tion of meteorological forcing and two observable parameters as in Mer-128

lin et al. (2016).129
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• a correction term (δrss,t) is added to rss,M16 to account for diurnal130

variations in SEE associated with top-soil drying (receding evaporation131

front) during daytime (Mahrt and Pan, 1984; Dickinson et al., 1986;132

Soarès et al., 1988; Wetzel and Chang, 1988; Van de Griend and Owe,133

1994; Heitman et al., 2008; Shahraeeni et al., 2012).134

For clarity, the three above models are named in the following as PdS86,135

M16 and new model, respectively.136

The third and new soil resistance model is written as:137

rss,t = rss,M16 + δrss,t (5)

with rss,M16 the soil resistance of Equation (4) and δrss,t a correction term138

that includes the effect of the receding evaporation front during daytime on139

quasi-instantaneous SEE. A phenomenological expression of δrss,t is proposed140

below as a function of time of day centered at solar noon (δt = t − 12 with141

t in unit of hour). The SEE difference between time t and 12 pm (δSEEt)142

can be expressed as:143

SEEt = SEE12 + δSEEt (6)

Now, we assume (this assumption will be shown to be valid in section 4) that144

the relative diurnal variations in SEE are linearly dependent on the time of145

day δt:146

δSEEt = −SEE12 × δt/τhyst (7)

with τhyst being a parameter (unit of hour) that characterizes the hysteretic147

time scale associated with the evaporative front drying during daytime, and148

the uniform rewetting of soil via capillary rises during nighttime. A rela-149

tionship between δSEEt and δrss,t is then built through the derivative of150

8



Equation (3):151

δSEEt = − SEE12

rah,12 + rss,12
× δrss,t (8)

with rss,12 and rah,12 being the soil and aerodynamic resistance estimated at152

noon, respectively. Herein, rss,12 is approximated by the M16 soil resistance153

(noted rss,M16) by assuming that θ does not vary much at the subhourly time154

scale (a reasonable assumption), and rah,12 is approximated by rah at time t,155

so that δrss,t can be instantly (not recursively) computed regardless of the156

conditions at noon. Hence, by substituting δSEEt in the above equation,157

one obtains:158

δrss,t = (rah + rss,M16)× δt/τhyst (9)

3. Data159

3.1. Sidi Rahal site160

The Sidi Rahal site (-7.3535 E; 31.7035 N) is located east of the Tensift161

basin in central Morocco (see Figure 1). The climate is semi-arid with an162

annual precipitation of about 250 mm mostly concentrated between Novem-163

ber and April and a reference crop evapotranspiration of 1600 mm per year.164

The Sidi Rahal monitoring station was set up in a rainfed wheat field in De-165

cember 2013 in the framework of a joint international project (Khabba et al.,166

2013; Jarlan et al., 2015). Due to an unusual lack of precipitation late 2015,167

the winter wheat crop had not been planted during the 2015-2016 season.168

As a result, the crop field remained in bare soil conditions from January to169

September 2016, which we took advantage of to test evaporation models in170

ideal conditions. The soil texture is predominantly loam.171
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The station is equipped with an eddy-covariance (EC) system, radiome-172

ters operating in the short and long wavelengths, heat flux plates and soil173

moisture probes. The net radiation is measured by a Kipp & Zonen CNR1.174

The soil heat flux is estimated with Hukseflux HFP-01 plates buried at 5175

cm depth. Those data are collected with a time step of 10 s and then av-176

eraged and recorded every 30 minutes. Latent and sensible heat fluxes are177

estimated with a Campbell Scientific KH20 fast response hygrometer and a178

Campbell Scientific CSAT3 anemometer at a frequency of 10 Hz and then179

converted to a 30-minute average. Both latent and sensible heat fluxes are180

corrected for energy balance lack of closure using the Bowen ratio method.181

The daily (computed using 30-minute estimates between 9 am and 5 pm)182

Bowen ratio and the 30-minute flux estimates are combined to derive the183

corrected 30-minute latent and sensible heat fluxes. The 5-cm soil moisture184

is measured by a Campbell Scientific CS616 calibrated using periodic gravi-185

metric measurements. The radiometric surface temperature is derived from186

an Apogee intruments 8-14 µm thermal infrared (TI) radiometer set up at a187

2-m height. Meteorological forcing data including air temperature, solar radi-188

ation, relative humidity, wind speed and rainfall are monitored continuously189

at a semihourly time step at 2 m as well.190

3.2. SEE estimates191

Given the bare soil conditions of the Sidi Rahal site during the study pe-192

riod, evapotranspiration originates only from soil in this experiment. There-193

fore, evapotranspiration and soil evaporation, as well as potential evapotran-194

spiration and potential soil evaporation, are assumed to be the same. An195

estimate of SEE can hence be obtained by dividing the measured latent heat196
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flux by potential (soil) evaporation:197

SEEEC =
LEEC
LEp

(10)

with SEEEC being the EC-derived SEE, LEEC the evaporation measured by198

EC and LEp the evaporation in saturated soil conditions (Equation 2).199

Another relatively independent, indirect, estimate of SEE is derived from200

the radiometric soil temperature:201

SEETI =
Tdry − TTI
Tdry − Twet

(11)

with SEETI the TI-derived SEE, TTI the surface soil temperature retrieved202

from TI measurements, and Tdry and Twet the soil temperature in bone-dry203

and saturated soil conditions, respectively (Merlin, 2013; Stefan et al., 2015).204

In practice, Tdry and Twet (together with LEp) are simulated by the same205

soil energy balance model by setting rss = ∞ and rss = 0 in Equation206

(1), respectively. The reader is advised to refer to Appendix A for more207

information on the energy balance model.208

Figure 2 plots the half-hourly surface soil moisture and EC- and TI-209

derived SEE (for data collected between 6 am and 6 pm with LEp > 100210

Wm−2) as a function of day of year (DOY) 1 to 243 in 2016. One observes211

a strong correlation between SEE estimates and θ, as all drying periods are212

visible in the SEE time series. However, the TI-derived SEE is more scat-213

tered than the EC-derived SEE. As mentioned above, one major objective214

of this study is to assess the calibration capabilities of a SEE model using215

consistent but uncertain TI-derived estimates. A total of 9 study periods are216

defined for calibration and validation purposes: the whole study period noted217

P0 (DOY 1− 243) and 8 subperiods P1− 8 bounded by significant rainfall218
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events. The start and end DOY of each subperiod Pi for i = 1, ..., 8 are219

listed in Table 1. Note that many points corresponding to TI measurements220

exhibit a SEE larger than 1 or smaller than 0 in Figure 2. It means that221

the modeled Tdry and Twet can be smaller and larger than the observed tem-222

perature, respectively. This may be due to several factors: uncertainties in223

thermal data, uncertainties in modeled Twet and Tdry, and/or uncertainties in224

the model linking SEE to soil temperature. SEETI values larger than 1 and225

smaller than 0 mostly correspond to the early (before noon) and late (after226

noon) hours of dates with very wet and very dry conditions, respectively.227

Figure 3 illustrates the variations during daytime of potential soil evapora-228

tion, the soil evaporation measured by the EC system and the soil evaporation229

derived as TI-derived SEE times potential evaporation for a relatively wet230

(θ ∼ 0.18 m3m−3) and dry (θ ∼ 0.05 m3m−3) day separately. Both EC- and231

TI-derived estimates are rather close, especially at around 12 pm. However,232

the time at which the maximum LE value is reached is about 11:00-11:30233

am for TI-derived estimates, 12:15-12:45 pm for EC-derived estimates and234

1:15-1:30 pm for potential evaporation. Differences in the time of maximum235

latent heat flux value can be interpreted as the impact of top-soil drying i.e.236

the downward-moving drying front that counters the evaporation process (Or237

et al., 2013). The maximum of LEEC logically appears sooner than that of238

LEp, due to the decrease of soil evaporation associated with the receding239

of evaporation front in the top soil at around noon. Such phenomenon is240

visible in both relatively wet and dry conditions as illustrated in Figure 3.241

The fact that the maximum of SEETI × LEp appears sooner than that of242

LEEC is explained by the difference in the depth (within the top 0 − 5 cm243
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layer) at which the actual soil evaporation occurs and that (near-surface) of244

TI data. Hence, the thinner the soil layer used to represent evaporation, the245

more sensitive the evaporation model is to the daytime top-soil drying.246

Figure 3 also presents the hysteretic behavior of radiometric temperature247

as a function of LEp. For a given level of LEp, the surface soil is cooler in the248

morning than in the afternoon, explaining the decreasing rate of TI-derived249

evaporation (SEETI × LEp) during daytime. Note that the simulated ex-250

treme temperatures Tdry and Twet do not follow the same hysteretic behavior,251

as similar values are obtained (for LEp > 200 Wm−2) before and after the252

time of LEp maximum value. Hysteresis effects are nill in dry conditions253

because when the soil is completely dry, evaporation stops. Hysteresis effects254

are also theoretically nill in fully wet conditions, because when the soil is255

maintained permanently wet, evaporation is at its potential rate at any time256

of day. Another interesting feature of the temporal signature of radiometric257

temperature is its link with wind speed. Whereas the increase of the drying258

front intrusion during the day makes T increase, an increase in wind speed259

has instead the effect of decreasing T (increasing SEETI) due to the drop260

in rah. Nonetheless, extreme temperatures Twet and Tdry are estimated using261

quasi instantaneous wind speed as input to the energy balance model, and262

therefore, the TI-derived SEE is less influenced by wind speed than the un-263

normalized T . For instance, the correlation coefficient between unnormalized264

T and wind speed is 0.85 (0.69) for the wet (dry) date of Figure 3 while it is265

−0.03 (−0.06) between normalized T and wind speed, respectively.266
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4. Calibration strategies267

Various calibration strategies of M16 (Equation 4) and the new rss model268

(Equation 5) are investigated depending on the nature of SEE estimates269

(derived either from EC or TI data) and on the length of observed SEE time270

series.271

4.1. Calibrating rss,ref and θefolding272

In Merlin et al. (2016), the rss,ref and θefolding parameters of Equation273

(4) are analytically expressed as a function of meteorological forcing, cut-274

off soil moisture value θ1/2 at which SEE=0.5 and first derivative of SEE275

at θ1/2, named ∆θ−1
1/2. The main equations are reminded in Appendix B.276

In fact, both parameters θ1/2 and ∆θ−1
1/2 are estimated directly from a time277

series of SEE and θ observations. Merlin et al. (2016) developed a specific278

calibration approach to take into account the non-linearity of the SEE(θ)279

relationship, as well as to adapt for data sets with soil moisture values that280

may not be uniformly distributed around the targeted θ1/2 value. In the281

same way as in Merlin et al. (2016), the full SEE range [0 − 1] is split into282

20 (0.05-wide) bins, and the SEE and θ values falling into each SEE bin are283

averaged separately to provide a pair (SEEk, θk) per bin. Then, 10 segments284

are computed by joining the two points (SEEk, θk) and (SEEk+10, θk+10) for285

k = 1, ..., 10. Nevertheless, an improvement is made herein to 1) estimate the286

pair (θ1/2,∆θ
−1
1/2)k for each segment k and 2) weight the pair (θ1/2,∆θ

−1
1/2)k287

according to the mean difference between the ordinate of the center of the288

segment k and 0.5. In practice, we define the weight wk such as: i) wk = 1289

for SEEk = 0.5 and ii) wk = 0 for SEEk = 0.25 or SEEk = 0.75, with290
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SEEk = (SEEk + SEEk+10)/2. A general equation of wk is obtained by291

considering a linear interpolation between extreme values:292

wk = 1− 4× |0.5− SEEk| (12)

Note that the values allocated for the weighting function correspond to the293

simplest (triangular) function with a weight set to 0 and 1 for the extreme294

(one end point of a segment is associated to SEE ∼ 0 or SEE ∼ 1) and295

middle (mean SEE = 0.5) case, respectively. The new calibration procedure296

aims to give a larger weight to the segments that are close to the inflexion297

point of the SEE(θ) relationship and a smaller weight to the segments that298

are located in a region where the nonlinearity of the SEE(θ) relationship is299

more prominent. The quasi linearity of the SEE(θ) relationship around θ1/2300

is indeed an assumption of the above calibration strategy.301

By way of illustration, Figure 4 plots EC-derived SEE versus θ and TI-302

derived SEE versus θ for data with LEp > 400 Wm−2 (arbitrary threshold)303

during the whole time period P0. Such a threshold is chosen to separate304

between relatively low and high LEp conditions. The above described cal-305

ibration procedure of (θ1/2,∆θ
−1
1/2) is applied to both time series separately.306

Although the TI-derived SEE values appear to be more scattered than the307

EC-derived SEE, calibrated parameters have similar values in both cases: θ1/2308

is 0.129 and 0.125 m3m−3, and ∆θ−1
1/2 is 4.01 and 4.21 m3m−3 for EC and TI309

case, respectively. Note that θ1/2 and ∆θ−1
1/2 may vary with parameters other310

than θ and texture (Merlin et al., 2016). For instance, the work in Chanzy311

and Bruckler (1993), a theoretical analysis supported by experimental evi-312

dences, has shown the role of LEp and wind velocity in the determination313

of θ1/2. Therefore, applying the calibration approach over several shorter314
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periods P1− 8 may help improving model performances.315

Once θ1/2 and ∆θ−1
1/2 values have been retrieved, two different strategies316

are investigated to estimate rss,ref and θefolding parameters of Equation (4):317

• For M16, rss,ref and θefolding are derived from the analytical expressions318

given in Appendix B (Equations 27 and 29). Therefore, both rss,ref and319

θefolding vary with meteorological conditions at the 30-minute time step.320

• For PdS86, rss,ref and θefolding are set to the average of the M16 values321

during the whole time period. Therefore, both rss,ref and θefolding are322

constant in this case.323

4.2. Calibrating τhyst324

Figure 5 plots the 30-minute EC-derived SEE as a function of δt = t− 12325

for two days of period P0. The linear fit of the daily relationship is superim-326

posed for each day separately. The slope (noted δSEE/δt) of the relationship327

observed at the daily time scale between SEEt and δt is a decreasing function328

of the daily mean SEE. The correlation coefficient between daily δSEE/δt329

and daily SEE is −0.90. Figure 5 also plots the 30-minute TI-derived SEE330

as a function of δt. Although the data points are more scattered around the331

daily linear fit than for EC case, the daily slope δSEE/δt is consistently332

decreasing with the daily mean SEE, as for EC case, with a correlation co-333

efficient of −0.68.334

Based on the daily relationships discussed above, the time parameter τhyst335

of Equation (9) is calibrated in a three-step procedure:336

• The daily slope δSEE/δt is computed for each day of the study period.337
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• The daily slope δSEE/δt is correlated with the daily mean SEE for338

each day of the study period. The daily mean is obtained by averaging339

the 30-minute SEE estimates during daytime.340

• The calibrated τhyst is equal to minus the inverse of the slope of the341

relationship between δSEE/δt and the daily mean SEE (see Equation342

7). Note that SEE12 in Equation (7) is replaced by the daily mean343

SEE to reduce uncertainties in quasi instantaneous SEE estimates. The344

calibrated value of τhyst is 11 and 9 hours for the EC-derived and TI-345

derived SEE case, respectively.346

Note that the above calibration strategy is valid if the observed relation-347

ships between SEEt and δt and between δSEE/δt and the daily mean SEE348

are linear as a first approximation. Moreover, we assume herein that the SEE349

at noon (SEE12 in Equation 7) is close to the daily mean SEE. In fact, such350

a hypothesis relies on the above linearity assumptions. As a linearity assess-351

ment of the SEEt(δt) relationship, the coefficient of determination (ordinary352

R-squared) between EC-derived SEE and time of day is estimated as 0.99353

and 0.93 for the wet and dry date of Figure 5 respectively. The R-squared is354

slightly degraded to 0.93 and 0.73 respectively for the TI case, due to larger355

uncertainties in TI-derived SEE estimates.356

5. Results and discussions357

The proposed rss,t model (Equation 5) is applied to the Sidi Rahal’16 data358

set and its performance in terms of SEE estimates is compared with that of359

two benchmark models: the M16 (Equation 4) and PdS86 rss models. It360
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is reminded that PdS86 and M16 differ with regard to the values of rss,ref361

and θefolding, which vary in time in M16 (according to Equation 27 and 29362

respectively) while they are set to a constant value in PdS86. Results are363

presented and discussed below for a calibration undertaken using EC- and364

TI-derived SEE estimates separately.365

5.1. Models calibrated using EC measurements366

5.1.1. Calibration parameters367

The calibration algorithm of (θ1/2,∆θ
−1
1/2) is run over each period P0−8 us-368

ing EC-derived SEE estimates. Note that diurnal patterns are not accounted369

for in the determination of θ1/2 and ∆θ−1
1/2 parameters. The rationale is that370

both parameters are largely independent of τhyst: θ1/2 and ∆θ−1
1/2 make SEE371

vary at the daily scale while τhyst makes SEE vary at the hourly scale around372

the daily mean SEE. Retrieved parameters are reported in Table 2 for data373

with a minimum LEp value of 400 Wm−2 and 100 Wm−2 separately. The374

main idea of those empirical thresholds is 1) to remove SEE estimates under375

low (< 100 Wm−2) evaporative demand conditions and 2) to qualitatively376

distinguish between relatively low and relatively high demand conditions.377

For data with LEp > 100 Wm−2, a pair (θ1/2,∆θ
−1
1/2) is obtained for each378

period P0 − 8. However there are too few data points with LEp > 400379

Wm−2 during the winter months, hence no parameter is retrieved for P1− 4380

in this case. EC-derived θ1/2 and ∆θ−1
1/2 vary in the range 0.07− 0.16 m3m−3

381

and 4 − 11 m3m−3 respectively, with smaller values of θ1/2 being associated382

with larger values of ∆θ−1
1/2 and reciprocally. Note that the extreme values383

of θ1/2 = 0.07 m3m−3 and ∆θ−1
1/2 = 11 m3m−3 are both obtained during the384

hottest and driest subperiod P7 (see Table 1).385

18



Figure 6 compares the retrieved values of θ1/2 and ∆θ−1
1/2 in both cases:386

LEp > 100 Wm−2 versus LEp > 400 Wm−2. The correlation coefficient (and387

root mean square difference) between both data sets (for EC-derived SEE)388

is 0.97 (0.006 m3m−3) and 1.0 (0.46 m3m−3) for retrieved θ1/2 and ∆θ−1
1/2,389

respectively. The calibration results when discarding the data with LEp <390

400 Wm−2 are very close to those obtained when including all data with391

LEp > 100 Wm−2. Therefore, the calibration parameters are found to be392

quite stable with respect to the evaporative demand conditions. Given that393

calibration results using EC-derived SEE estimates are very consistent for394

two different minimum LEp values, the lower (and less restrictive) threshold395

value LEp > 100 Wm−2 is chosen to assess model results in the rest of the396

paper.397

The definition of 9 study periods and the application of the same calibra-398

tion procedure to data with LEp > 100 Wm−2 and data with LEp > 400399

Wm−2 also allow for evaluating the uncertainties in retrieved parameters.400

The relative uncertainty in θ1/2 (and ∆θ−1
1/2) for a given time series is esti-401

mated as the absolute difference of the values obtained for data with LEp >402

100 Wm−2 and data with LEp > 400 Wm−2 divided by the average. The403

mean relative uncertainty for P0, P5 − 8 (see Table 2) is 3% and 7% for404

retrieved θ1/2 and ∆θ−1
1/2, while the temporal variability (relative to the mean405

value for all periods) is estimated as 19% and 40%, respectively. Such results406

further confirm the robustness of the calibration procedure.407

5.1.2. SEE results408

θ1/2 and ∆θ−1
1/2 are set to 0.12 m3m−3 and 4.6 m3m−3 respectively as es-409

timated previously for P0 data with a minimum LEp value of 100 W m−2,410
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and τhyst is set to 11 h. Figure 7 plots the SEE simulated by the calibrated411

PdS86, M16 and new rss models as a function of EC-derived SEE. The new412

model outperforms M16 and M16 outperforms PdS86 (statistics are provided413

in Table 3). Especially, the correlation coefficient (and RMSD) between sim-414

ulated and observed SEE is improved from 0.80 to 0.85 (from 0.12 to 0.10)415

with the new model. The representation of SEE at the subhourly time scale416

has also an impact on the slope of the linear regression between modeled417

and observed SEE, increasing from 0.86 to 0.91 for M16 and new model re-418

spectively. The new parameterization thus allows for simply representing the419

SEE decrease associated with the receding evaporation front during daytime.420

Table 3 also lists the error statistics for each subperiod Pi (i = 1, ..., 8) us-421

ing model parameters retrieved from Pi data (from P0 data in parenthesis).422

A lower RMSD is generally obtained by the new model using the subperiod423

calibration, except for P3 when the P0 calibration provides a significantly424

improved RMSD (0.18 instead of 0.24). To further explore the case of P3,425

we investigate the SEE simulated by M16 and new model separately as a426

function of EC-derived SEE for data with LEp > 100 W m−2 during P2, P3427

and P7 (Figure 8). Several different behaviors of the SEE(θ) relationship428

are observed during P3, as evidenced by the presence of three groups of data429

points located significantly above, significantly below and around the 1:1 line430

respectively. Given that the calibration method is dedicated to find the best431

slope (∆θ−1
1/2) at θ1/2, one expects to obtain the best slope of the linear regres-432

sion between simulated and observed SEE by calibrating the model over each433

subperiod separately. Table 3 clearly shows that the slope is systematically434

improved in all cases, including the case of P3. However, a better slope does435
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not necessarily mean an improved RMSD between simulated and observed436

SEE.437

In summary, it is found that 1) both θ1/2 and ∆θ−1
1/2 vary between suc-438

cessive drying periods, 2) the representation of this temporal variability by439

means of a periodic calibration of (θ1/2,∆θ
−1
1/2) enhances SEE estimates, and440

3) the long-term calibration (during P0) of the SEE model still provides re-441

liable results that are generally more accurate than those of the PdS86 and442

M16 formulations.443

5.1.3. Evaporation results444

Since the target is evaporation, rather than SEE, results are also pre-445

sented in terms of evaporation estimates in Figure 7. It is reminded that LE446

is derived as SEE × LEp. Therefore, given that the same energy balance447

model is used to simulate both LEp and LE, there should be a perfect equiv-448

alence between simulated LE and simulated SEE. In practice, if simulated449

SEE is accurate compared to SEEEC (=LEEC/LEp), then simulated LE450

(= SEE×LEp) should be accurate compared to LEEC . To further assess the451

consistency between SEE and evaporation results, Table 4 reports the corre-452

lation coefficient, slope of the linear regression and RMSD between simulated453

and measured evaporation at Sidi Rahal site for all data with LEp > 100454

Wm−2. Statistics are presented for PdS86, M16 and new models separately,455

all three models being calibrated with the same input data set (EC data for456

LEp > 100 Wm−2). While the RMSD is relatively low (≤35 Wm−2) in all457

cases, the correlation coefficient (and slope of the linear regression) increases458

from 0.81 (0.89) to 0.85 (0.96) for the PdS86 and new model, respectively.459

Such improvement is fully consistent with previous results in terms of SEE460
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estimates.461

5.2. Models calibrated using TI measurements462

5.2.1. Calibration parameters463

Given that EC measurements are available at few locations only, we now464

investigate the applicability of the calibration algorithm of (θ1/2,∆θ
−1
1/2) to465

TI data. In practice, the calibration procedure is applied to TI-derived SEE466

estimates over each period P0 − 8. Retrieved parameters are reported in467

Table 5 for data with a minimum LEp value of 400 Wm−2 and 100 Wm−2
468

separately. TI-derived θ1/2 and ∆θ−1
1/2 vary in the range 0.06 − 0.16 m3m−3

469

and 4 − 23 m3m−3 respectively. Consistent with EC case, smaller values470

of TI-derived θ1/2 are associated with larger values of TI-derived ∆θ−1
1/2 and471

reciprocally. However, in contrast to EC case, the TI-derived ∆θ−1
1/2 for data472

with LEp > 100 Wm−2 is about twice the value obtained for data with473

LEp > 400 Wm−2, while the TI-derived θ1/2 for data with LEp > 100 Wm−2
474

is about one third lower than the value obtained for data with LEp > 400475

Wm−2 (see Figure 6).476

Figure 9 plots TI-derived versus EC-derived θ1/2 and ∆θ−1
1/2 for all periods477

P0 − 8 and for data with a minimum LEp value of 100 and 400 Wm−2
478

separately. It is clear that a better match of retrieved parameters is obtained479

when LEp > 400 Wm−2 than when LEp > 100 Wm−2. In fact, the TI-480

derived SEE greatly overestimates the EC-derived SEE in conditions of low481

LEp values. In relatively wet conditions for instance (see Figure 3), the482

TI-derived evaporation (estimated as SEETI × LEp) can even exceed the483

potential evaporation. The above results confirm the applicability domain of484

the energy balance model to conditions with LEp > 400 W m−2. Therefore485

22



the calibration of the pair (θ1/2,∆θ
−1
1/2) using TI-derived SEE data should be486

carried out under relatively large LEp conditions only.487

The systematic difference between EC- and TI-derived SEE under low488

LEp conditions can be explained by the inconsistency between the soil tem-489

perature modeled at the evaporation front (Equation 1) and the remotely490

sensed radiometric temperature that is representative of the surface skin491

temperature only. In fact, the soil temperature modeled in dry conditions492

Tdry is expected to deviate from the top soil temperature in the presence of493

a receding evaporation front (Or et al., 2013). There are methods to correct494

this inconsistency. For instance two distinct approaches have been devel-495

oped to relate the observed superficial temperature to deeper soil tempera-496

tures, either by implementing a physically-based heat diffusion model (Bateni497

et al., 2013) to dynamically constrain the modeled surface temperature from498

deeper temperatures or by smoothing/lagging the surface temperature using499

a Fourier dissipation (Heusinkveld et al., 2004; Gentine et al., 2011) or lag500

(Gentine et al., 2012) model.501

The relative uncertainty in the (θ1/2 and ∆θ−1
1/2) parameters retrieved from502

TI data is estimated by computing the absolute difference of the values ob-503

tained for TI data with LEp > 400 Wm−2 and for EC data with LEp > 100504

Wm−2 divided by the average. The mean relative uncertainty for P0, P5−8505

(see Tables 2 and 5) is 8% and 21% for retrieved θ1/2 and ∆θ−1
1/2, respectively.506

Although EC-retrieved parameters (3% and 7% relative error, respectively)507

are more accurate than TI-derived parameters, the temporal variability in508

retrieved parameters (19% and 40%, respectively) remains larger, i.e. cali-509

bration using TI data is still effective and meaningful. Such results further510
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confirm the consistency between TI- and EC-derived SEE estimates when511

LEp > 400 Wm−2.512

5.2.2. SEE results513

The hysteretic parameter τhyst is set to 9 h and the pair (θ1/2,∆θ
−1
1/2) is514

set to (0.085, 10.0) and (0.125, 4.21) as estimated with the P0 TI data for a515

minimum LEp value of 100 and 400 W m−2, respectively. Table 6 reports516

error statistics in terms of correlation coefficient, slope of the linear regression517

and RMSD between simulated and EC-derived SEE for all LEp conditions518

(LEp > 100 W m−2). Best results are highlighted in bold. Consistent519

with EC case, the correlation coefficient between simulated and observed520

SEE is improved from 0.77 to 0.81 and from 0.80 to 0.86 when including521

time of day in the soil resistance for data with LEp > 100 and LEp > 400522

Wm−2, respectively. Moreover, the error statistics for data with LEp > 400523

Wm−2 are very similar to those obtained with the EC, with a correlation524

coefficient of 0.86 and a RMSD of 0.10. Only the slope of the linear regression525

between simulated and observed SEE is degraded from 0.91 (EC case) to526

0.87 (TI case). Results in terms of SEE estimates are logically superior when527

calibrating the model using TI data with LEp > 400 Wm−2 than using TI528

data with LEp > 100 Wm−2, as the actual to wet temperature difference is529

a good indicator of water stress when energy is not limiting (Boulet et al.,530

2007).531

Table 6 also lists the error statistics for each subperiod Pi (i = 1, ..., 8)532

using model parameters retrieved from the data set corresponding to sub-533

period Pi and LEp > 100 Wm−2 and from the data set corresponding to534

P0 and LEp > 400 Wm−2 (in parenthesis). The new SEE formulation gen-535
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erally provides best results in terms of correlation coefficient, slope of the536

linear regression and RMSD between simulated and observed SEE. However,537

the calibration of (θ1/2,∆θ
−1
1/2) by subperiod does not succeed in representing538

the temporal variability of model parameters, which is due to the system-539

atic bias in TI-derived SEE for low LEp values. The relatively large slope540

(1.25 for P0) of the linear regression between simulated and observed SEE541

for data with LEp > 100 Wm−2 also reflects the overestimation of SEE by542

using TI data under low evaporative demand conditions. On the contrary,543

the calibration of (θ1/2,∆θ
−1
1/2) over the whole period P0 using TI data with544

LEp > 400 Wm−2 provides good results at the subperiod scale (during each545

period P1− 8).546

In summary, the above results indicate that 1) the calibration of model547

parameters is feasible using TI data and 2) selecting TI data collected under548

relatively high evaporative demand conditions (LEp > 400 Wm−2 herein) is549

required for obtaining similar accuracy to the EC-based calibration case.550

5.3. Applicability to temporally-sparse thermal data551

The new rss formulation of Equation (5) is based on three parameters:552

τhyst, θ1/2 and ∆θ−1
1/2. Validation results at Sidi Rahal site have shown that553

all three parameters can be efficiently calibrated using TI data combined554

with meteorological forcing and near-surface soil moisture observations. This555

opens up the path for model calibration using spaceborne thermal-derived556

radiometric surface temperature. However, the spatio-temporal resolution557

of available remote sensing products may be in some cases inadequate for558

implementing such a calibration. In particular, the thermal data available at559

high (100 m) spatial resolution have a repeat cycle of 8 days (by combining560
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Landsat-7 and Landsat-8) only or more, depending on cloudy/non-cloudy561

conditions on Landsat overpass dates.562

This subsection aims to assess the applicability of the calibration ap-563

proach of (θ1/2,∆θ
−1
1/2) to temporally sparse thermal data. In practice, pa-564

rameter τhyst is set to 9 hours (as retrieved from high frequency TI data) and565

the observation cycle of available TI data is increased from the hourly time566

scale (previous results) to the 1-day, 2-day, 3-day, 4-day, 5-day, 6-day, 7-day567

and the 8-day period (Landsat repeat cycle), and model results are evalu-568

ated in each case. Note that the 1-day repeat cycle mimics the availability of569

MODIS (MODerate resolution Imaging Spectroradiometer) TI data collected570

onboard Terra and Aqua at 1 km resolution. To quantitatively evaluate the571

uncertainty in retrieved parameters and model outputs (SEE and LE), an572

input ensemble is built at a given TI observation cycle by extracting the TI573

data at 11:30am, 12:00pm and 12:30pm separately and, for observation cycles574

larger than 1 day, by including all the possible independent time series shifted575

by 1 day from one another. The acquisition time approximately corresponds576

to the overpass time (from 10:30am to 1:30pm) of available thermal sensors577

at 100 m and 1 km resolution. For the hourly observation cycle, the ensemble578

of input parameter sets is composed of the 3 (θ1/2,∆θ
−1
1/2) pairs retrieved dur-579

ing the whole study period using EC data with LEp > 100 Wm−2, EC data580

with LEp > 400 Wm−2 and TI data with LEp > 400 Wm−2. For the other581

cases (observation cycles equal to 1 day or more), TI data with LEp > 400582

Wm−2 are used.583

Figure 10 presents model results as a function of an increasing TI ob-584

servation cycle. The calibration results in terms of retrieved θ1/2 and ∆θ−1
1/2585
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correspond to data with LEp > 400 Wm−2 while the model output results586

in terms of SEE and LE correspond to all data with LEp > 100 Wm−2.587

The mean retrieved θ1/2 is found to be remarkably stable for all observation588

cycles ranging from 0 to 8 days, although its standard deviation significantly589

increases for an observation cycle changing from 1 to 2 days. The mean re-590

trieved ∆θ−1
1/2 is systematically biased by about +20% for an observation cycle591

ranging from 1 to 8 days, and the variability of the retrieved ∆θ1/2 within592

each input ensemble is relatively large (20−50%) for observation cycles 2-8593

days. The relatively large variability of ∆θ−1
1/2 is attributed to the lack of ther-594

mal observations with both wet soil and LEp > 400 Wm−2 conditions. Note595

that such a limitation is specific to rainfed semi-arid areas like the Sidi Rahal596

region. Finally, as an assessment of the calibration strategy, LE estimates597

are compared for three different calibration approaches of rss,ref and θefolding:598

the fixed parameters (S92) of Sellers et al. (1992), the pedotransfer function599

(M16) in Merlin et al. (2016) and the proposed TI-based calibration. The600

mean root mean square error (RMSE) between simulated and EC-derived601

LE is about 60, 50 and 40 Wm−2 for the S92, M16 and TI-based calibra-602

tion strategy, respectively. Such results emphasize the utility of calibrating603

evaporation models using thermal data, even when TI data are temporally604

sparse.605

6. Conclusions and perspectives606

A new rss formulation is proposed to improve soil evaporative efficiency607

(SEE) estimates at the subhourly time scale given the near-surface (0 − 5608

cm) soil moisture, time of day and meteorological forcing data. The model609

27



builds on the recent M16 SEE model and integrates time of day to implicitly610

represent the impact of the receding evaporation front on quasi instantaneous611

SEE during daytime. The three model parameters namely θ1/2, ∆θ−1
1/2 and612

τhyst are calibrated using Eddy-covariance (EC) measurements collected at a613

bare soil field (Sidi Rahal site) in central Morocco. Results in terms of corre-614

lation coefficient, slope of the linear regression and RMSD between simulated615

and observed SEE indicate that the new model clearly outperforms both M16616

and also PdS86, which is classically used in many land surface models. Given617

that EC measurements are available at few locations only, the applicability618

of the calibration approach is also tested using thermal infrared (TI) instead619

of EC data. It is found that TI-derived SEE overestimates EC-derived SEE620

under low LEp (< 400 Wm−2) conditions. However, the model calibration621

using TI data under relatively high LEp (> 400 Wm−2) conditions provides622

very similar SEE results to the EC-based calibration case.623

The phenomenological modeling approach allows to represent instanta-624

neous SEE over long time periods using a limited number (3) of input pa-625

rameters. Moreover, the hysteretic parameter τhyst (controlling the intrusion626

of evaporation front during daytime under given LEp and θ conditions) re-627

trieved at the Sidi Rahal site is found to be fairly stable during the 9-month628

study period. Both θ1/2 and ∆θ−1
1/2 parameters (controlling the nonlinear SEE629

response to θ) vary between two successive drying periods, but accurate SEE630

estimates are still obtained when considering those paramaters as constant631

during the whole study period. An alternative calibration scheme could be632

the calibration of a single parameter (τhyst), while the others (θ1/2,∆θ
−1
1/2)633

being estimated using pedotransfer functions as proposed in (Merlin et al.,634
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2016). Nonetheless, two questions that still remain open are the spatial vari-635

ability of τhyst and the temporal variability of (θ1/2,∆θ
−1
1/2). Additional vali-636

dation under different conditions is needed as a single site under the semi-arid637

climate of Morocco is used in this study to develop and evaluate the method.638

Also, it is difficult to provide a deep, and quantitative, physical understand-639

ing of the origin of this variability using a downward/semi-empirical modeling640

framework solely. Future studies based on a mechanistic model could address641

the issue of interpreting temporally-variable parameters. Moreover, the en-642

ergy balance model used in this study to relate SEE to evaporation has been643

successfully evaluated in terms of Twet and Tdry in Stefan et al. (2015) but644

not in terms of LEp directly. Although simulated LEp values are very con-645

sistent with EC LE observations (SEEEC = LEEC/LEp consistently ranges646

between 0 and 1), further research should be undertaken to quantitatively647

evaluate LEp estimates. This would require a specific experiment where soil648

is maintained at field capacity under various atmospheric forcing conditions649

(during several weeks).650

The coupling of the new rss/SEE formulation with microwave-derived651

soil moisture and thermal-derived radiometric temperature would allow soil652

evaporation to be estimated at multiple scales over large areas. However, the653

concurrent requirements -to calibrate the model’s parameters- of high evap-654

orative demand (a threshold of 400 W m−2 is used in this study), rainfall655

or irrigation events (enough to produce soil moisture variability) but lack of656

clouds, so that thermal satellite images can be acquired, and bare soil sur-657

faces for relatively long periods are difficult to reach with current satellites.658

In fact, the model calibration over areas of agricultural or ecological interest659
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requires remote sensing data at high spatio-temporal resolution (Lagouarde660

et al., 2013, e.g.). As a long-term vision, the integration of the rss parameter-661

ization in state-of-the-art dual-source surface models (Norman et al., 1995,662

e.g.) has great potential to help separate soil evaporation and plant transpi-663

ration components of agricultural crops (Merlin et al., 2014, e.g.), and hence664

to better assess the crop water use efficiency. Under vegetated surface, soil665

evaporation would be affected not only by the soil available energy but also666

by the heat and vapor transfer coefficients between the soil, vegetation and667

atmosphere (Shuttleworth and Wallace, 1985; Haghighi and Or, 2015). In668

the recent study of Hssaine et al. (2018), the soil resistance’s parameters were669

calibrated over partially covering wheat by implementing a network of soil,670

vegetation and air resistances and by separating phenological stages with671

fractional vegetation cover smaller and larger than 0.5. Further research672

should tackle the structural (radiation interception) and functional (tran-673

spiration rate) vegetation effects of different biomes on the soil evaporation674

underneath. Last but not least, future studies should investigate the impact675

on evaporation estimates (and calibration parameters) of uncertainties in in-676

put soil moisture data sets derived from active microwave, passive microwave,677

disaggregation and/or assimilation techniques (Peng et al., 2017).678

A. Soil energy balance model679

The evaporation model classically solves the energy budget equation over680

bare soil:681

LE = Rn−G−H (13)
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with LE (W m−2) being the soil latent heat flux, H (W m−2) the soil sensible682

heat flux, Rn (W m−2) the soil net radiation and G (W m−2) the ground683

conduction at 5-cm depth. The soil net radiation is expressed as:684

Rn = (1− α)Rg + ε(Ra − σT 4) (14)

with α (-) being the soil albedo, Rg (W m−2) the incoming solar radiation,685

ε (-) the soil emissivity (set to 0.95), Ra (W m−2) the atmospheric longwave686

radiation, σ (Wm−2K−4) the Stefan-Boltzmann constant and T (K) the soil687

skin temperature. For simplicity, α is set to a constant value (0.20) as in688

(Merlin et al., 2016). When applied to low resolution remote sensing data,689

albedo could be made variable as a function of surface soil composition and690

moisture (Liu et al., 2014). The downward atmospheric radiation at ground691

level is expressed as:692

Ra = εaσT
4
a (15)

with εa (-) being the effective atmospheric emissivity, and Ta (K) the air693

temperature. The emissivity of clear skies is estimated as in Brutsaert (1975):694

εa = 0.553(ea/100)1/7 (16)

with:695

ea = esat(Ta)(ha/100) (17)

with ha (%) being the air relative humidity and:696

esat(Ta) = 611 exp
[
17.27 (Ta − 273.2)/(Ta − 35.9)

]
(18)

with Ta in K. The ground conduction is estimated as a fraction of soil net697

radiation (Choudhury et al., 1987; Kustas and Daughtry, 1990):698

G = CGRn (19)
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with CG (-) a coefficient (set to 0.20). The sensible heat flux is expressed as:699

H = ρCP
T − Ta
rah

(20)

with the aerodynamic resistance being estimated as in Choudhury et al.700

(1986):701

rah =
rah0

(1 +Ri)η
(21)

with rah0 (s m−1) being the neutral aerodynamic resistance and Ri (-) the702

Richardson number, which represents the importance of free versus forced703

convection, and η (-) a coefficient set to 0.75 in unstable conditions (T > Ta)704

and to 2 in stable conditions (T < Ta). The neutral rah0 is computed as:705

rah0 =
1

k2ua

[
ln
( Z

z0m

)]2
(22)

with k (-) being the von Karman constant, ua (m s−1) the wind speed mea-706

sured at the reference height Z (m) and z0m (m) the momentum soil rough-707

ness (set to 0.001 m (Yang et al., 2008; Stefan et al., 2015; Merlin et al.,708

2016)). The Richardson number is computed as:709

Ri =
5gZ(T − Ta)

Tau2a
(23)

with g (m s−2) being the gravitational constant. The energy balance of710

Equation (13) is solved by initializing the surface soil temperature T = Ta,711

and by looking for the value of T that minimizes the cost function F (T ):712

F (T ) = (LE +H −Rn+G)2 (24)

with LE being expressed as in Equation 1.713
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B. Analytical expressions of rss,ref and θefolding714

As an attempt to approximate SEE over its full range [0 − 1], SEE is715

approached linearly at the mid-value (0.5). The linear approximation of716

SEE(θ) at SEE = 0.5 sets two constraints on the model. First, the soil717

moisture value at which SEE = 0.5 is noted θ1/2:718

SEE(θ1/2) = 0.5 (25)

Second, the first derivative of SEE at θ1/2 is set to the slope (∆θ−1
1/2) of the719

linear regression between SEE and θ observations:720 (
∂SEE

∂θ

)
(θ1/2) = ∆θ−1

1/2 (26)

The combination of the above two equations allows to estimate both rss,ref721

and θefolding parameters given a time series of SEE and θ observations. Pa-722

rameters rss,ref and θefolding in Equation (4) are analytically expressed as a723

function of θ1/2, ∆θ−1
1/2, soil temperature (Twet and T1/2) and aerodynamic724

resistance (rah,wet and rah,1/2) values corresponding to rss = 0 and θ = θ1/2,725

respectively. The soil energy balance model described in Appendix A is used726

to estimate both pairs (Twet, rah,wet) and (T1/2, rah,1/2) for a given meteoro-727

logical forcing.728

Briefly, rss,ref is derived by inverting Equation (4):729

rss,ref = rss,1/2 exp(θ1/2/θefolding) (27)

with rss,1/2 being the soil resistance at θ1/2 obtained by combining Equations730

(3) and (25):731

rss,1/2 = 2
esat(T1/2)− ea
esat(Twet)− ea

rah,wet − rah,1/2 (28)
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θefolding is obtained by applying the first derivative at θ = θ1/2 to the soil732

energy balance equation:733

θefolding =

rss,1/2
rss,1/2+rah,1/2

(
esat(T1/2)− ea

)
+ f(θ1/2)ėsat(T1/2)

rss,1/2+rah,1/2
rah,wet

(
esat(Twet)− ea

) × 1

∆θ−1
1/2

(29)

with ėsat being the derivative of saturated vapor pressure with respect to T734

and f(θ1/2) expressed as:735

f(θ1/2) = −
rss,1/2rah,1/2

(rss,1/2+rah,1/2)
2

(
esat(T1/2)− ea

)
γ +

rah,1/2
rss,1/2+rah,1/2

ėsat(T1/2) + 4 γ
ρCP

εσ(1− CG)T 3
1/2rah,1/2

(30)

Note that the full analytical development of θefolding is described in Merlin736

et al. (2016).737
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Table 1: Start and end day of year (DOY) of the 9 study periods, including the whole

bare soil period (P0) at Sidi Rahal site in 2016 and its 8 subperiods (P1− 8) bounded by

significant rainfall events. The soil moisture range, mean soil moisture, mean EC-derived

SEE and mean potential evaporation are also listed for each period.

Start End θ range mean θ mean SEEEC mean LEp

Period (DOY) (DOY) (m3m−3) (m3m−3) (-) (Wm−2)

P0 1 243 0.03−0.38 0.06 0.24 354

P1 1 8 0.05−0.24 0.10 0.38 238

P2 9 45 0.04−0.23 0.08 0.33 242

P3 46 57 0.05−0.25 0.10 0.40 283

P4 58 80 0.05−0.33 0.10 0.32 286

P5 81 95 0.07−0.38 0.14 0.46 313

P6 96 125 0.04−0.22 0.07 0.27 342

P7 126 234 0.03−0.12 0.04 0.16 398

P8 235 243 0.03−0.16 0.05 0.20 386
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Table 2: List of θ1/2 and ∆θ−1
1/2 parameters retrieved from EC measurements for data with

LEp > 100 Wm−2 (for data with LEp > 400 Wm−2 in parenthesis) and for periods P0−8

separately.

Period θ1/2 (m3m−3) ∆θ−1
1/2 (m3m−3)

P0 0.119 (0.129) 4.58 (4.01)

P1 0.129 (NA) 4.72 (NA)

P2 0.126 (NA) 4.54 (NA)

P3 0.112 (NA) 8.41 (NA)

P4 0.140 (NA) 5.61 (NA)

P5 0.156 (0.146) 4.49 (3.77)

P6 0.136 (0.136) 3.90 (3.51)

P7 0.073 (0.073) 11.0 (11.2)

P8 0.120 (0.120) 5.40 (5.22)
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Table 4: Correlation coefficient (R), slope of the linear regression (S) and root mean square

difference (RMSD) between simulated and measured evaporation at Sidi Rahal site.

Model R (-) S (-) RMSD (Wm−2)

PdS86 0.81 0.89 34

M16 0.83 0.96 35

New 0.85 0.96 32
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Table 5: Same as for Table 2 with model parameters calibrated using TI measurements.

Period θ1/2 (m3m−3) ∆θ−1
1/2 (m3m−3)

P0 0.085 (0.125) 10.0 (4.21)

P1 0.086 (NA) 9.31 (NA)

P2 0.086 (NA) 12.7 (NA)

P3 0.093 (NA) 23.3 (NA)

P4 0.108 (0.128) 10.1 (5.63)

P5 0.143 (0.164) 9.86 (3.95)

P6 0.102 (0.150) 10.5 (3.52)

P7 0.055 (0.063) 20.1 (19.9)

P8 0.080 (0.111) 17.7 (6.46)
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Figure 5: The observed SEE for data with LEp > 100 Wm−2 is plotted as a function of δt

at the daily time scale for a wet (January 7th) and dry (May 1st 2016) day (top) and the

estimated daily slope δSEE/δt is plotted as a function of the daily mean SEE (bottom)

for each day of period P0 and for the EC-derived (left) and TI-derived (right) SEE case

separately.
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Figure 8: Simulated versus observed (EC-derived) SEE for data with LEp > 100 W

m−2 during P2 (top), P3 (middle) and P7 (bottom) period and for M16 and new models

separately. In all six cases, both θ1/2 and ∆θ−1
1/2 are calibrated during P0 from EC-derived

SEE data with LEp > 100 W m−2.
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Figure 10: Model results in terms of (a) retrieved θ1/2, (b) retrieved ∆θ−1
1/2, (c) RMSE

in simulated SEE and (d) RMSE in simulated evaporation are presented for an increas-

ing observation cycle −ranging from the hourly to the 8-day period− of TI calibration

data. The mean (circles) and standard deviation (errorbars) of retrieved parameters are

computed from an ensemble of input TI data sets (with LEp > 400 Wm−2) collected

at 11:30 am, 12:00pm and 12:30pm separately and, for observation cycles longer than 1

day, on all possible observation cycles shifted by 1 day. The mean (circles) and stan-

dard deviation (errobars) of RMSE in SEE/LE are computed from data (with LEp > 100

Wm−2) during the whole study period using the ensemble of parameter pairs (θ1/2,∆θ
−1
1/2)

retrieved previously. For comparison purposes, the RMSE of the SEE/LE estimated by

M16 (pedotransfer function) and S92 (fixed parameters) is also plotted.
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