N
N

N

HAL

open science

Model Driven Software Security Architecture of
Systems-of-Systems

Jamal El Hachem, Zi Yang Pang, Vanea Chiprianov, Ali Babar, Philippe

Aniorte

» To cite this version:

Jamal El Hachem, Zi Yang Pang, Vanea Chiprianov, Ali Babar, Philippe Aniorte. Model Driven Soft-
ware Security Architecture of Systems-of-Systems. 23rd Asia-Pacific Software Engineering Conference,
APSEC 2016, Hamilton, New Zealand, December 6-9, 2016, Dec 2016, Hamilton, New Zealand. pp.89-
96, 10.1109/APSEC.2016.023 . hal-01912338

HAL Id: hal-01912338
https://univ-pau.hal.science/hal-01912338
Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://univ-pau.hal.science/hal-01912338
https://hal.archives-ouvertes.fr

archives-ouvertes

Model Driven Software Security Architecture of
Systems-of-Systems

Jamal El Hachem, Zi Pang, Vanea Chiprianov, Ali Babar, Philippe Aniorte

» To cite this version:

Jamal El Hachem, Zi Pang, Vanea Chiprianov, Ali Babar, Philippe Aniorte. Model Driven Software

Security Architecture of Systems-of-Systems. Asia-Pacific Software Engineering Conference, 2016,

Hamilton, New Zealand. hal-01908383

HAL Id: hal-01908383
https://hal.archives-ouvertes.fr/hal-01908383
Submitted on 30 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr/hal-01908383
https://hal.archives-ouvertes.fr

Model Driven Software Security Architecture of
Systems-of-Systems

Jamal EL HACHEM*, Zi Yang PANGT, Vanea CHIPRIANOV*, Ali BABART, Philippe ANIORTE*
*UNIV PAU & PAYS ADOUR, LIUPPA, PAU, FRANCE
{jamal.elhachem, vanea.chiprianov, philippe.aniorte } @univ-pau.fr
TUniversity of Adelaide, Australia
a1681939 @student.adelaide.edu.au, ali.babar@adelaide.edu.au

Abstract—Recently, there is a growing interest in Systems
of Systems (SoS), their architecture, security and application
domains. However, their specific characteristics such as the
operational independence of SoS constituent systems (CS), the
absence of central authority and their emergent behavior make
the modeling of their structure, behavior and security a complex
task. One of the current main security challenges in the context
of SoS is the cascading attack problem. The challenge is to
predict the concatenation/sequence of CS’s vulnerabilities that
could be triggered resulting in destructive cascading failures
and take corrective actions to reduce the cost, development time
and effect of later changes. In this paper, we propose a domain
specific modeling language (DSML) to represent SoS security ar-
chitecture. Having SoS security models will enable the discovery,
analysis and resolution of cascading attacks, in the architecture
phase, preventing development time and cost wastage. Following
a Model Driven Engineering (MDE) approach, we generate a
graphical editor for our DSML and use it to model a Smart
Campus case study.

Keywords—Model Driven Engineering, Model-based Soft-
ware Engineering, Modeling Language, Software Architecture,
Systems-of-Systems Security, Smart Cities, Smart Campus.

I. INTRODUCTION AND BACKGROUND

We live in a hyper-connected world where software systems
become more and more linked. There are estimates that by
2020 thirty one billion intelligent devices will be connected
and world wide market for Systems of Systems (SoS) will
surpass 6.5 billion euros [1].

SoS is a promising research field gaining increasing impor-
tance. Although there have been several attempts to define
SoS, there is yet no standard definition [2]. However, one
of the popular definitions, which we also use in this paper,
is that of Jamshidi [3]: "SoS are large-scale, distributed,
concurrent systems comprised of complex systems". These
complex systems are systems themselves and in our work we
choose to call them Constituent Systems (CS). Many other re-
searchers identified SoS by their distinguished characteristics,
particularly Mair specifies the following five essential charac-
teristics: operational independence of the elements, manage-
rial independence of the elements, evolutionary development,
emergent behavior and geographic distribution [4]. Several
other concepts could describe SoS such as: global mission,
belonging, autonomy, connectivity, diversity [5].

These characteristics impact SoS non functional properties
as well, specially security, on which we will focus in this

paper. Security has been identified as a critical SoS research
theme [6]. In fact, SoS suffers from complex systems security
problems, as well as additional problems raising from their
specific characteristics as shown in [7] [8].

One of the crucial SoS-specific security problems is the cas-
cading attacks. An attack, as defined by ISO IEC 27000 [9],
"is any unauthorized attempt to access, use, alter, expose, steal,
disable, or destroy an asset". Considering that:

1) It is rare that an attacker exploits a single vulnerability
on a single target system to achieve its objective, in most
cases he uses several single attacks on several systems to
accomplish his attack [10].

2) "The consequences of attacks on the SoS cannot be
understood by means of the merely evaluation of the
behavior of the single systems, but require an assessment
of the effect of the inter-dependencies on the behavior of
the whole SoS" [11].

We define a cascading attack as a succession of possible single
attacks or a sequence of exploited vulnerabilities resulting
from the CS inter-dependencies employed for the achievement
of the SoS global goal.

These cascading vulnerabilities may serve, intentionally or
unintentionally, to compose a cascading attack that affects the
whole SoS and cause huge important damages. The stuxnet
attack [12] is one of the most well-known cascading attack. It
was based on a 500 kilobyte computer warm that attacked in
three phases: first it targeted Microsoft Windows machines and
networks, repeatedly replicating itself, finally it compromised
the programmable logic controllers. Starting from a system
via a USB stick, stuxnet infected 14 industrial sites in Iran,
including an Uranium-enrichment plant. Recently, FireEye
researchers have discovered a complex malware which uses
some elements from stuxnet'.

However, addressing this problem involves studying how
to model SoS structure and behavior, focusing on their se-
curity aspects. Furthermore, knowing that early discovered
vulnerabilities are less expensive to fix than those discovered
later [13], how could security vulnerabilities be modeled
within SoS software architecture to allow the prediction, at
an early stage, of their concatenation/sequence which could

Thttp://www.silicon.fr/irongate-un-malware-aux-airs-de-stuxnet-cible-les-
scada-149299.html; accessed on 21st June 2016



be triggered in an unknown way and result in a cascading
attack?

In this paper, we propose a Domain Specific Modeling
Language (DSML) called SoSSec: Systems-of-Systems Se-
curity, with its corresponding graphical editor. We adopt
the Model Driven Engineering (MDE) approach to define our
DSML which will be used to model SoS security architectures.

MDE is considered as an effective approach to address
significant challenges in SoS architectures modeling [14]. In
MDE, models can be expressed using different languages like
General Purpose Modeling Languages (GPML) or DSML. The
main advantage of a DSML is its ability to simplify the model-
ing of complex systems by offering expressive domain specific
abstractions and notations focusing on a particular problem
domain in a precise and concise way. The use of a DSML to
model non-functional properties, like security, lead to better
solutions [15]. In our case, the DSML will be dedicated for
SoS cascading security attacks modeling. However, since it is
very costly to define a new language from scratch, our DSML
is defined as an extension of the System Modeling Language
(SysML). SysML is a general-purpose graphical modeling
language for specifying, analyzing, designing, and verifying
complex systems. One of the main advantages of adopting an
extension mechanism, is that the reference language is refined
in a strictly additive manner preventing the contradiction of
the standard semantics.

Generally, the definition of a DSML consists of three
essential components [16]:

- Abstract syntax: set of concepts and relations that serve to
express a model. It is usually described using a MetaModel;
- Concrete syntax: set of symbols to represent the MetaModel;
- Semantics: to determine the meaning of the models, usually
expressed by simulation or code generation.

Once the concrete syntax of the DSML is defined, MDE
allow the (semi)automatic generation of its tools, such as the
graphical editor modeling tool and the simulation tool.

After defining the SoSSec MetaModel (abstract syntax) and
developing its graphical editor (concrete syntax), we use it to
model a Smart Campus SoS case study.

The remainder of this paper is organized as follow: Section
2 briefly introduces the MDE approach for DSML definition.
In Section 3 we discuss related work. Section 4 presents our
SoSSec DSML and its tools. Smart Campus SoS security
models are presented in Section 5 while Section 6 concludes
the paper.

II. STATE OF THE ART

Historically, many approaches were used to model and
analyze software architectures of a system, like: formal ap-
proaches which incorporate mathematical analysis in the soft-
ware architecture models; goal oriented approaches which
focus on goals to capture the functional and non functional
system requirements in the software architecture models; and
Architectural Description Languages (ADLs) which are lan-
guages used to describe system software architecture, like its
components, connectors, rules and guidelines.

In trying to choose between these broad types of ap-
proaches, we focused on analyzing their suitability for mod-
eling SoS specific characteristics, as identified by Mair [4].

Some formal methods (e.g. graph based-methods: Bayesian
Networks (BN), Functional Dependency Network Analysis
(FDNA) seem well suited to model the geographic distribution
and interactions between CS but they are still limited com-
pared to ADLs regarding the representation of the structural
architecture (like components; interfaces; contracts and ability
to describe hierarchical levels of details).

Goal oriented approaches such as Multi-Agent Systems
(MAS) could be used to model SoS global goal and CSs
individual goals, as well as behavioral aspects like the emer-
gence and the interaction between different CSs. However, like
in the case of formal methods, goal oriented approaches are
not the best suited for describing SoS structural architecture.
Besides, seeing that another crucial aspect in the context
of our work is the ability to model security mechanisms,
properties and concepts like vulnerabilities, pre/post conditions
and attacks, ADLs security extensions presents more useful
modeling concepts than goal oriented approaches.

For these reasons, we choose to build our DSML upon
an existing ADL to model SoS taking into account their
characteristics and security properties. However additional
concepts inspired from goal oriented approaches will be used
to describe some SoS concepts like global and individual
goals. Furthermore, once the SoS security models are de-
signed, formal methods-inspired approaches could be used to
discover possible paths for cascading attacks and analyzing
and proposing solutions to tackle them.

A. System of Systems Modeling Approaches

After restraining our state of the art to ADL for modeling
SoS structure, behavior and security, we selected the latest
and most used approaches adopted in recent International
and European SoS projects like COMPASS 2, DANSE 3,
Road2SoS “. Following we present the analyzed ADLs:

An extension of the Architecture Analysis and Design Lan-
guage (AADL) was proposed in a recent work [17] to specify
and model cyber-physical systems based on SoS approach.

In [18] the authors propose an extension of Acme to
model the architecture of cloud applications by introducing
some concepts like relationships between elements, contracts,
etc. The proposed ADL remains a simple specific language
for cloud SoS service providers and applications. Previously
mentioned ADLs lack concepts to model SoS taking into
account their special characteristics, and remain specific to
particular domains.

Lately, in the COMPASS European project, SysML was
used to model SoS CSs, their interfaces and contracts that
oversee operations between them. Along with SysML, Com-
pass Modeling Language (CML) was proposed for contract

Zhttp://www.compass-research.eu/; accessed on 21st June 2016
3http://danse-ip.eu/home/; accessed on 21st June 2016
“http://road2sos-project.eu/; accessed on 21st June 2016



TABLE I
ADL COMPARISON FOR SYSTEMS SECURITY MODELING

UMLSec Secure UML Secure i* MODELO SysML -Sec
Integrity
Authenticity Authenticity

Security concerns ACCGSS-(/O'ntf‘Ol Access Control Access Control Access Control Conﬁc.lentlahty
Confidentiality Integrity
Non-Repudiation Autonomy
Non-Interference

Modeling Language UML UML UML UML SysML

Model Transformations Model to Text Model to Text ? Model to Model | Model to Text

Threat-Vulnerability _ j + ) ]

concepts

Goal concept - + + +- (task) -

Context concept - - - + -

Attack concept - - - - +

Security prediction - - +- (goal satisfaction) | - -

verification at interfaces [19]. The proposed approach does
not take into account yet security features in the contracts.

Some recent studies on ADL for software intensive SoS
compare UML, SysML, SysML+CML and X-UNITY regard-
ing a number of features to exhibit their ability to model
SoS [20] and propose a conceptual model for missions of
SoS [21]. Results show that SysML seems to be the best suited
approach for SoS architecture modeling due to its ability to
model CS structure and interactions in terms of interfaces and
constraints. This study shows that the existing ADLs that have
been used recently for describing SoS architectures miss some
of the SoS features like: The representation of CS missions
(goals) and evolution, architectural elements that manages the
interactions (mediators) among CS, the architecture descrip-
tion of SoS emergent behavior resulting from CS interactions
related to SoS mission accomplishment.

We can conclude that none of the existing languages can
be used as a standalone approach to model SoS taking into
account their specific characteristics as well as security prop-
erties and specially the cascading attack problem. Despite that,
SysML extended with some concepts inspired from [20][21]
like mission, global mission and individual mission seems like
a strong basis for SoSSec.

B. System Security Modeling Approaches

Generally, security deals with confidentiality, integrity and
availability of data [22]. These essential properties, as well
as security mechanisms like access control, authorization,
encryption need to be described and verified as soon as
possible in the development life cycle of any system. This
is the more important in the context of SoS as additional
security problems may raise. In this work we will focus on the
cascading attacks problem. In [7], there have been identified
that approaches which handle SoS, architecture and security
aspects, all three together are not numerous: [23] discuss a
design for evolution to maintain operation regardless of SoS
state and [24] describe the importance of designing solutions
that consider security without detailing these solutions.

As no ADL have been developed to model SoS security,
we studied existing techniques that address system security.

To determine their usefulness for SoS, we analyzed them re-
garding the following criteria which seem essential to meet our
objectives: model and discover security cascading attacks in
the context of the SoS (table I). Indeed, to model security, we
prefer to remain general to cover many security concerns (like
integrity, confidentiality and access control), so we choose this
aspect as a criteria; while we select some additional criteria,
like attack, threat, vulnerability and context, specific to the SoS
cascading attack security problem that we treat in our work.
Another important criteria is the goal concept because it is
necessary to model SoS aspects like global goal, individual
goals and security goals. Furthermore, since we are following
the MDE approach, the modeling language upon which they
are based and their ability to support model transformations
are important criteria. An extra criteria, which is not in the
thick of the current work, is security prediction. This will be
useful for future work in order to predict cascading attack
paths.

UMLSec is a UML extension proposed by Jurjens [25] to
express security requirements like data secrecy and integrity,
information flows restrictions and role based access control.

SecureUML is an approach based on role based access
control with additional support for specifying authorization
constraints. It was proposed to increase the productivity and
quality of secure distributed systems [26].

Secure i* is a goal oriented approach used to model and
analyze security trade-offs among competing goals of multiple
actor systems and quantitatively assess security mechanism’s
impact on actor’s goals and threats [27].

MOoDELO is a MOdel-Driven sEcurity poLicy approach that
extends UMLSec with OrBAC elements for early modeling
and evaluation of access control requirements [28].

SysML-Sec [29] is a SysML based MDE environment
inspired by KAOS. SysML-Sec process includes three stages:
system analysis (identification of security requirements and
threats by system’s partitioning), system design (implementa-
tion of software security mechanisms) and system validation
(formal verification, simulation and test of the models).

The analysis of the listed approaches is presented in table 1.
Plus and minus signs means that the evoked criteria are,



respectively, taken or not into consideration by the analyzed
security modeling languages. This analysis shows that none
of the studied ADL satisfy all the investigated criteria. Hence
concepts from each approach should be used by any future
ADL to be proposed (like the concepts marked in red in
table I. In addition, other concepts need to be proposed to
represent the cascading attack, and to explicitly model threats
and vulnerabilities.

III. PROPOSAL: SOS SECURITY DSML

After identifying the limitations of the existing languages
and security extensions in modeling SoS when taking into
account their characteristics and security, specially attacks, we
now detail the abstract and concrete syntax of our SoSSec
language.

As mentioned before, to represent SoS structure and behav-
ior, we extend the SysML MetaModel by modifying the Block
Definition Diagram and proposing two new diagrams: security
and goal diagrams. For the security diagram, we p artially
leverage existing security modeling language semantics such
as SysML-Sec, Secure i*, MoDELO and UMLSec by adding
new concepts and relations to represent vulnerabilities and cas-
cading attacks. As for the goal diagram, we propose SoS spe-
cific concepts, with additional concepts inspired from [20][21]
like global goal and individual goal.

Extending SysML and introducing new diagrams means
that we have one unifying MetaModel and several views on
it (defined as diagrams). Having a unified MetaModel has
the advantage of not having to deal with composition of
models. If we defined a family of DSMLs, each with their
own MetaModel, each corresponding to a view or a purpose,
the models created with these DSMLs would need to be
composed/combined in order to obtain a complete overview.
This would result in important composition challenges [30]
to address, while from the user/modeler point of view, both
approaches result in similar functionalities of several views.

A. SoSSec Abstract and Concrete Syntaxes

SoSSec MetaModel is an extension of SysML MetaModel,
indeed, we modified Block definition diagram (Fig. 1) to
model SoS, their interfaces and operations on these interfaces.
Additionally, we propose two new diagrams: Goal Diagram
(Fig. 2) to model SoS global goal and CS’s individual goals
as well as necessary refinement relationships between these
goals; and Security Diagram (Fig. 3) to illustrate the cascading
attack security problem.

1) Block Definition Diagram: In SoSSec MetaModel, we
use Block to represent SoS structure (Fig. 1), since Block
could be used to describe a system or other elements of
interest (hardware, software, data, procedure, facility, person).
Theoretically, an SoS could be refined into one or many
other SoS, e.g. a smart city SoS may encompass a smart
grid/building/transportation SoS. The latter idea could be
modeled using the composition relationship block. Another
aspect that we introduce to SysML MetaModel is GlobalGoal

[ BlockDefinitionDiagram
=1 name : EString

{

[ remFlow

name :
[0..*] itemflow ! EString

[0.] relationships [0.#] block [0.7] port

[2..2]| flow_between

[2..2] relates_together 10.4 block

] Relationships 1
B E part
-, name: [ Block 0.4

]
EString name :
[0.%] aims = name : EString Interaction_point =) = EString 0.7

| is_nested
[0.7] i

3 _within
H Geal is_refined_into 0.4 is,J*ped,b}’ /—‘[
= name : EString | | FullPort | | BProxyPort |

[0..1] works_in

] mterfaceBlack

‘ = name : EString ‘ ‘ — hame: |

£1 name : EString EString
I

& Organization

= name : EString [0.4] 1s_typed_by

[O..*]\k:perat\on
[O.."d}'nteracts

[ Environment [0./] engage [ operation 10.4] menace [ Threat

= name : E5tring £ name : EString

= name : EString

Fig. 1. SoSSec MetaModel Block Diagram.

to explicitly represent SoS aim(s). GlobalGoal(s) could be
refined_into one or many individual goal achieved by its CSs.

Further, each SoS is composed of many CSs which are
usually unstable because of the evolution characteristic. Col-
laborations between these CS are unknown due to the emergent
behavior (e.g. the operations related to the achievement of
global goals). During CS’s modeling, it is important to well
describe the interfaces because CS regular and emergent
functionalities are represented at the interfaces, as well as the
interactions between CSs and security aspects related to these
functionalities and interactions. Mair evoked that "The greatest
leverage in system architecture is at the interfaces. The greatest
dangers are also at the interfaces. There is nothing else to
architect" [4].

For these reasons, we model CS as "black-boxes" using
InterfaceBlock. These CSs participate in the realization of
SoS objective(s) through individual goals and ItemFlow (data,
energy, material) exchange. Every CS has interaction points
represented by Port which serve to establish connections with
other CS to accomplish one or more Operation(s). To better
model Operation(s) on interfaces due to their importance in the
description of CS functionalities, we modify the latter SysML
concept by making it a <graphical node>. As for the SysML
Port concept, we adopt it without modifications.

Even if CSs collaborate within the SoS to accomplish its
GlobalGoal(s), they remain managerially and operationally
independent. To model these aspects, we introduced Orga-
nization concept to SysML block diagram. It serves mainly
to tie a CS with the organization in which it works. The
Organization will be responsible of the functional as well as
non functional goals of the CS under its governance, specially
security goals. Moreover, Threat concept was also introduced
to SysML BlockDefinitionDiagram to make the link between
with SecurityDiagram.



u GoalDiagram

= name : EString

[0.7*] alternative

[ securityDiagram

[} precondition

= name : EString

= name : EString

[ Postcondition

= name : EString

H Block *“
[0.*]|goal [0.4]

is_refined_into

name :
EString H Goal E mechanism

[0.18ims | = name : EString o fname:
EString

[0.7]
operationalize

| . T

H clobalGoal

name :

H IndividualGoal

H securityhMechanism

name :

= name : EString

o =a
Estring EString

[&.*ﬂ}are\re nt

[ Threat

[ FunctionalGoal H securityGoal

= name : E5tring & name : EString =1 name : EString

Fig. 2. SoSSec MetaModel Goal Diagram.

2) Goal Diagram: As mentioned earlier, the CSs collab-
orate in order to accomplish a GlobalGoal assigned to the
SoS [4]. This GlobalGoal is_refined_into IndividualGoal(s)
accomplished by different CS [21]. The GoalDiagram (Fig. 2)
is a new diagram we introduce to model the Goal aspects of
SoS. Goal and Block are duplicated in both BlockDefinition
and Goal diagrams to make the link between them.

To clearly model SoS non-functional properties, precisely
security, we refined Goal into two sub-categories: Functional-
Goal and non functional goals precisely SecurityGoal which
describe respectively usability SoS and/or CS goals (what a
system is supposed to accomplish) and quality goals which
influence the operations of the SoS e.g. security (how a system
is supposed to be).

Another aspect that seems essential to model the latter
quality goals is the concept of Mechanism used to opera-
tionalize a Goal. To benefit from this concept, in the context
of SoS security architecture modeling, we instantiate it into
SecurityMechanism. In order to operationalize (satisfy) secu-
rity NunFunctionalGoal, most approaches use one or more
security mechanisms, e.g. access control and encryption. These
SecurityMechanism help to detect, prevent and/or recover from
an attack/Threat. The SecurityMechanism and Threat concepts
are duplicated in Goal and Security Diagrams to make the link
between them.

3) Security Diagram: In our work we choose to describe
the cascading attack problem which is a crucial security
problem with destructive consequences in the context of SoS
as detailed in section I. Indeed, the collaboration between
independent CS for the achievement of SoS global goal(s)
results in emergent behaviors. In this context, small, known,
unresolved and insignificant Vulnerabilities in each CS could
be exploited and connected in an unknown way, to form
a cascading attack. It is important to mention that in this
work we address the unknown known vulnerabilities category.
Indeed, Rumsfeld [31] classify the knowledge in three cate-

L

[1..%] activates [1..%] threat [1..%] results_in

[ Threat E vulnerability

H securityGoal

= name : E5tring name :
EStrin

1.4 &

exploits

name :
EString

[1.74]
breaks

Fig. 3. SoSSec MetaModel Security Diagram.

gories: known knowns, known unknowns, unknown unknowns.
Sawyer [32] added a complementary category, on which we
will focus: the unknown knowns. He defined it as "knowledge
that a person holds, but which they withhold". These categories
could be projected onto vulnerability categories. In the context
of SoS, each CS may define a list of its own vulnerabilities
(known). Since there is no central authority in the SoS, this
list of vulnerabilities will remain unknown by other CS, hence
the nomination unknown known vulnerabilities.

To be able to model this cascading attack security problem,
we propose the SecurityDiagram given in (Fig. 3), to extend
SysML with security concepts. These concepts, will serve
to discover, analyze and evaluate cascading attacks early at
modeling level of the SoS development life cycle.

Each CS may have one or more Threat(s) or malicious
goal(s). It represents a possible risk that might be exploited
by one or many vulnerabilities to break a SecurityGoal. A
security vulnerability is any weakness in or back door to
a system [9]. Examples of most common vulnerabilities in
many computer systems are "buffer overflow" and "password
cracking" [33]. One or several vulnerabilities exploit one or
several Threat(s). A Threat is activated by one or many
Precondition(s) and activates one or many Postcondition(s)
causing damages and loss in an SoS and could lead to an im-
portant cascading attack. Precondition(s) [21] are condition(s)
which activates a threat. For example, a pre-condition of the
"buffer overflow" vulnerability could be "execution stack by
overwriting the stored return address, the stack pointer or the
frame pointer". Whereas, Postcondition(s) [10] represent the
results of an activated threat. For example, the results of a
"buffer overflow: could be an "unauthorized access to system".
The effect could directly affect the concerned CS or could lead
to a cascading attack that influence the whole SoS.

After defining SoSSec’s abstract syntax, we adopt existing
visual notations to represent it. Indeed, defining a DSML
undertakes corresponding one or many concrete syntax(es) to
its abstract syntax. The concrete syntax is a set of textual or
visual notations that facilitates the language presentation and
construction. As SoSSec MetaModel is a SysML extension, we
adopt existing related visual notations (e.g. nodes and edges)
to represent model elements.



< Block Defintion Diagram - Smart Campus SoS

Global Goal

Reduce 4 Weather Station C5
energy
consumpti
on inthe
smart
campus

< Operation < Operation

Send outside
ambient

temperature
information

Adjust heater
temperature

engage

< Operation

aims
Adjust air- Engage menace
conditioner

temperature

4+ HVACCS

<4 Threat < Threat Individual Goal

menace Exceed high
temperature Data
limit. modification

Capture the
weather
information

4 Operation

Measure the
inside
temperature

: of the room
aims

engage

< Smart Access Control C5 4 Individual Goal

Individual Goal <4 Operation

Allow access
(open doorj to
the room

Regulate
Temperature
in rooms

Regulate the

aims | BCeess to
the room

Fig. 4. Smart Campus Model - Block Diagram

B. SoSSec Graphical Editor Development

SoSSec abstract syntax (MetaModel) is specified using
the Eclipse Modeling Framework (EMF) and its concrete
syntax (graphical editor) is (semi)automatically generated us-
ing model transformations through the Graphical Modeling
Framework (GMF). We choose EMF/GMF tooling because
they are open source, recently used by the community, well
documented relatively easy to use and support MDE. First,
we specified our abstract syntax using Ecore, which is the
MetaModel of the EMF . Then, the Ecore model was used
within the GMF to generate (parts of) the graphical editor. In
fact, GMF provides the fundamental infrastructure and com-
ponents for developing visual models and modeling surfaces
in Eclipse. Having SoSSec MetaModel (Ecore model), GMF
allows the definition of diagrams based on a mapping between
the abstract and the concrete syntaxes and the (semi)automatic
generation of the corresponding graphical editor (visual tool).
This graphical editor corresponding to our SoSSec DSML
(Fig. 6) could now be used by SoS security architects to
model their SoS taking into account its specific characteristics
and security aspect related to the cascading attack security
problem.

C. Discussion

Having SoSSec DSML will allow to an SoS (security)
architect to discover unknown known sequence of CS’s vul-
nerabilities that could be triggered resulting in destructive
cascading attacks. An architect will be able to model, using
SoSSec graphical editor, the structure of an SoS taking into
account its specific characteristics (like CSs, Interfaces, global
and individual goals) as well as SoS behavioral aspects (like
interactions, operations and exchange of data.). In addition,
an architect will be able to describe a list of vulnerabilities
for each CS, including the pre-condition(s) that trigger each
vulnerability and the resulting damages (post-condition(s)).

Shttp://www.eclipse.org/modeling/emf/

< Goal Diagram
<4 Individual Goal <4 Individual Goal

Regulate
temperature in

Capture the
weather

[Dons isrefined inte & Global Goal is refined into  INformation
is refined into Reduce energy is refined into
4 Security Goal IR AE I 4 Security Goal

the smart campus
Prevent information
maodification by
unauthorized person

Prevent dysfunction
of the heater

Fig. 5. Smart Campus Model - Goal Diagram

Compared to existing ADLs, SoSSec covers some missing
SoS features such as the representation of SoS global goal and
CS sub-goals, the interactions/operations among CS, as well
as non functional properties, specially the description of the
cascading attack specific SoS security problem resulting from
CS interactions related to SoS goals accomplishment.

Once the SoS Security model is designed, the architect
could simulate it through a simulation approach like Multi-
Agent Systems (MAS) (we are currently working on this
semantic part of SoSSec DSML). The simulation will allow the
discovery, at the architecture level of the SoS development life
cycle, of possible unknown sequences of known vulnerabilities.
Thus, cascading attacks could be discovered and analyzed
at an early stage and corrective actions could be applied to
prevent the cost, development time and effect of later changes.

IV. SMART CAMPUS CASE STUDY

SoS have many application domains, such as defense,
cyberspace, health-care and electrical power grids. A more
recent SoS domain with growing popularity is Smart Cities.
According to [34], 80% of the world’s population will be
living in cities by 2020. There are estimates that smart cities
market will attain 14 Bn EUR addressable revenue by 2020
and 400 Bn Dollars per year will be dedicated for smart urban
systems [35].

Design and implementation of smart cities initiatives are
complex and challenging tasks. Thus, it is more reasonable
to design and implement solutions on a smaller but realistic
scale [34]. Hence, to demonstrate our proposition, we chose
to model a small-scale view of a smart city SoS: the smart
campus. Indeed, smart campus have similar operationnaly and
managerially independent CS such as smart lighting system
and similar global goals that implies the intervention of many
CSs to be achieved such as an efficient energy management
and security.

Therefore, a smart campus could be analyzed as an SoS
with the following CSs: smart lighting system; air-conditioner
and heaters; temperature and humidity sensors and control sys-
tems; smart energy system; spatial awareness sensors and data
analysis system; monitoring cameras, alarm, video surveillance
and security control; internet network; smart vehicles, bicycles,
parking These CS need to collaborate in order to achieve
some global goals, such as: monitor the building use (energy



4= Security Diagram 1

< 5% Palette

CESEEE & Threat i

~& —4 L_y b 4= Security Goal
M breaks ) )
i e Data Prevent information

maodification maodification by

exploits unautharized person

(= Block Definition Dia...

(= Behavior Diagram activates results in

(= Parametric Diagram ¥ Precondition 4 PostCandition <4+ Vulnerability
T Paossibility of
(= Internal Block Diagram i Abnormal
(= Struct Diagram unauthorized temperature SQL Injection
(= Security Diagram & database query information
r Threat Breaks
<= Precondition - Security Diagram 2
7 Precondition 4 Threat breaks Security Goal
Activates Exceed high
Prevent dysfonction
. t it i
< Postcondition ”emrriltpera ure exploits of the heater
— e results in
> Goal Di
& |ag:adm activates
4 Goal Precondition <+ Postcondition < Yulnerability
7 Goal Is refined into Abnormal high

Production
default

Heater

contributes ;
explosion

<4 GlobalGoal

temperature
infarmation

Fig. 6. Smart Campus Model - Weather Station and HVAC CSs Security
Diagrams

management); evolution (new components, materials and de-
sign principles); security engagement (work place accessibility
control).

Using SoSSec and its graphical editor, we have modeled
a simple smart campus SoS. As we can see in the Block
Definition Diagram of Fig. 4, the Smart Campus SoS is
represented by a block. Three CSs were assigned to this SoS
and represented as interface blocks: Heating, Ventilation and
Air-conditioning (HVAC) CS, a Weather Station with sensors
for weather-related information and Smart Access Control CS.
These CSs are geographically dispersed, belong to different
organizations (managerial interdependence) and each CS has
its own goals represented by individual goals and operations
to achieve these goals (operational independence). HVAC CS
engages the following operations: Adjust heater temperature,
Adjust air-conditioner temperature and measure the inside
temperature of a room; The weather station CS sends outside
ambient temperature information and smart access control CS
prevent or allow the access to the room. The global goal of
this SoS is to reduce the energy consumption in the smart
campus.

The modeling of the latter global goal are presented in
Fig. 5: Smart Campus global goal is refined into individual
goals to be realized by CS: HVAC CS individual goal is to
regulate the temperature in rooms, Weather Station CS has
the individual goal is to capture weather information and the
individual goal of Smart Access Control CS is to regulate the
access to the room. An operation could be menaced by a threat
and an individual goal could be refined into a security goal to
make the link with the security diagram (Fig. 6).

In order to give a small example of a cascading attack
problem within the described smart campus, we associate two
threats: "exceed high temperature limit" and "data modifi-

cation" respectively to the HVAC CS and Weather Station
CS. Each threat is described with a security diagram (Fig. 5)
showing:

1) The corresponding vulnerability: "data modification"
threat could be exploited by "SQL injection” or "weak
authentication" vulnerability" and "exceed high tempera-
ture threat" could be exploited by HVAC CS "production
default”" vulnerability (Fig. 6);

2) Security goal(s) broken by the threat are also represented

in the security diagram:
"data modification threat" break "Prevent Information
modification by unauthorized person" individual goal and
"exceed high temperature limit" threat break "prevent
dysfunction of the heater" individual goal (Fig. 6);

3) The pre-condition which activates the threat and the post-
condition which results from the activated threat: "data
modification" threat is activated by the pre-condition
"possibility of sending unauthorized database query"
and results-in "abnormal temperature information" post-
condition (Fig. 6) and "exceed high temperature limit"
threat is activated by the pre-condition "abnormal high
temperature information" and results-in "heater explo-
sion" post-condition causing fire in the HVAC CS.

Having these models, we can imagine the following emerg-

ing cascading security problem resulting from the collabora-
tion between CS to achieve the smart campus global goal.
Normal Scenario:

1) Weather station CS send ambient temperature information
to HVAC CS

2) According to the received information, HVAC CS adjusts
its heater, air-conditioner temperatures

3) HVAC CS measure inside temperature room and send it
to the Smart Access Control CS

4) The latter analyze the information in order to al-
low/prevent access to the room

Cascading attack scenario:

1) Ambient temperature information is decreased by an
attacker taking advantage of the temperature monitoring
CS’s vulnerability: SQL injection or weak authentication

2) HVAC CS acts upon the received erroneous information
by increasing heater’s temperature. This action exploits
another small vulnerability related to HVAC CS which is
"exceed high temperature limit"

3) The latter vulnerability lead to heater explosion causing
a fire in the room

4) Thus the Smart Access Control System will permit doors
opening so staff could leave the room (and maybe any
non-allowed person will enter the room at this moment.)
We illustrated a small example of a cascading attack
security problem in smart campus case study. In the same
way, more complex scenarios could be discovered having
the security models of our SoS.

V. CONCLUSION

System of Systems (SoS) architecture is a promising re-
search field gaining increasing importance. SoS are comprised



of complex distributed constituent systems (CS) which need to
collaborate to achieve their own local goals as well as global
SoS goal(s). These interactions may cumulate or trigger a se-
quence of small security vulnerabilities coming from different
CS. These cascading vulnerabilities may serve, intentionally
or unintentionally, to compose a cascading attack that affects
the whole SoS and causes huge important damages.

In this work, we focused on this security problem. We in-
troduced a DSML, a SysML extension, to model SoS security
early at the architecture level of the development life cycle
to reduce the cost, time and effect of later modifications. We
followed a Model Driven Engineering approach to define the
SoSSec parts (concrete syntax, abstract syntax). This paper
describes the details of the abstract syntax of our language -
the MetaModel, and its concrete syntax with the corresponding
graphical editor. Our SoSSec DSML has been used to model
a motivating smart campus case study and has illustrated a
possible cascading attack scenario. In the future, we plan to
develop the semantics of our language in order to simulate,
analyze and quantitatively predict security of an SoS archi-
tecture. We also aim to extend a well known graphical editor
in the enterprise and research communities such as Papyrus
to have a complete and easy extensible tool compatible with
existing SysML models.

REFERENCES

[11 A. Pétrissans, S. Krawczyk, G. Cattaneo, N. Feeney, L. Veronesi, and
C. Meunier, “Towards SoS trends and challenges,” IDC, Tech. Rep.,
2012.

[2] R.Jaradat and C. Keating, “A histogram analysis for SoS,” Inderscience,
2014.

[3] M. Jamshidi, “SoS innovations for 21st century,” in ICIIS, IEEE inter-
national Conference on Industrial and Information Systems, 2008.

[4] M. Maier, “Architecting principles for SoS,” Systems Engineering, 1998.

[5] M. Gongalves, E. Cavalcante, T. Batista, F. Oquendo, and E. Nakagawa,
“Towards a conceptual model for software-intensive SoS,” IEEE Inter-
national Conference on Systems, San Diego, CA, 2014.

[6] H. Dogan, C. Ncube, S. Lim, M. Henshaw, C. Siemieniuch, M. Sinclair,
V. Barot, S. Henson, M. Jamshidi, and D. DeLaurentis, “Economic and
societal significance of the sos research agenda,” In IEEE International
Conference on Systems, 2013.

[7]1 J. E. Hachem, “Towards Model Driven Architecture and analysis of
SoS access control,” International conference on software Engineering
Doctoral Symposium, Florance, Italy, 2015.

[8] V. Chiprianov, L. Gallon, M. Munier, P. Aniorte, and V. Lalanne,
“Challenges in security engineering of SoS,” Conférence de I’Ingénierie
Logiciel, Paris, France, 2014.

[9] Information technology — Security techniques — Information security
management systems — Overview and vocabulary, ISO IEC 27000,
section 2, Terms and definition; 2014 Std.

[10] L. Gallon and J.-J. Bascou, “Cvss attack graphs,” 7th International
Conference on Signal-Image Technology and Internet-Based Systems
(SITIS), Dijon, France, 2011.

[11] C. Guariniello and D. DeLaurentis, “Communications, information, and
cyber security in SoS: Assessing the impact of attacks through inter-
dependency analysis,” Conference on Systems Engineering Research,
California, USA, 2014.

[12] NERC, “Sql slammer worm lessons learned for consideration by the
electricity sector,” North American Electric Reliability Council, Tech.
Rep., 2003.

[13] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the
efficiency and effectiveness of vulnerability discovery techniques,” In-
formation and Software Technology, vol 55, pp. 1279-1288, 2013.

[14] E. Nakagawa and O. Oquendo, “The state of the art and future perspec-
tives in SoS software architecture,” Proceedings of the International
Workshop on Software Engineering for SoS, NY, USA, 2013.

[15] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a large
industrial context - motorola case study,” MDE Languages and Systems,
LNCS, vol. 3713, pp. 4762491. Springer, 2005.

[16] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” In Companion to the ACM symposium on Object-oriented
programming systems, languages, and applications, NY, USA, 2006.

[17] L. Zhang, “Applying system of systems engineering approach to build
complex cyber physical systems,” Advances in Intelligent Systems and
Computing, 2015.

[18] E. Cavalcante, A. Medeiros, and T. Batista, “Describing cloud applica-
tions architectures,” In Proceedings of the 7th European conference on
Software Architecture, Montpellier, France, 2013.

[19] J. Bryans, J. Fitzgerald, R. Payne, A. Myazawa, and K. Kristensen,
“SysML contracts for SoS,” International SoS Engineering Conference,
Stamford Grand, Adelaide, Tech. Rep., 2014.

[20] M. Guessi, E. Cavalcante, and L. Oliveira, “Characterizing architec-
ture description languages for Software-Intensive SoS,” International
Workshop on Software Engineering for Systems-of-Systems Conference,
Florence, Italy, 2015.

[21] E. Silva, E. Cavalcante, T. Batista, F. Oquendo, F. Delicato, and P. Pires,
“On the characterization of missions of SoS,” European Conference on
Software Architecture Workshops, Vienna, Austria, 2014.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” in IEEE Trans. on
Dependable and Secure Computing, vol.1, no.1, pp.11-33, 2004.

[23] M. Duren, H. Aldridge, R. Abercrombie, Sheldon, and T. Frederick,
“Designing and operating through compromise: Architectural analysis of
CKMS for the advanced metering infrastructure,” in 8th Cyber Security
and Information Intelligence Research Workshop, Tennessee, USA, 2013.

[24] M. Merabti, M. Kennedy, and W. Hurst, “Critical infrastructure pro-
tection: A 21st century challenge,” in International Conference on
Communications and Information Technology , Aqaba, Jordan, 2011.

[25] J. Jurjens, “UMLsec : extending UML for secure systems development,”
Fifth International Conference on The Unified Modeling Language,
Model Engineering, Languages Concepts and Tools, London, UK, 2002.

[26] T. Lodderstedt, D. Basin, and J. Doser, “SecuretUML : A UML-
Based Modeling Language for Model-Driven Security,” International
Conference Unified Modeling Language, Model Engineering, Languages
Concepts and Tools, Dresden, Germany, 2002.

[27] G. Elahi and E. Yu, “A goal oriented approach for modeling and
analyzing security trade-offs,” International Conference on Conceptual
Modeling, ER, Auckland, New Zealand, 2007.

[28] D. Arzapalo, L. Gallon, and P. Aniorte, “MoDELO: a MOdel-Driven
sEcurity poLicy approach based on Orbac,” 8eme conférence sur la
Sécurité des Architectures Réseaux et des Systemes d’Information, Mont
de Marsan, France, 2013.

[29] L. Apvrille and Y. Roudier, “Towards the model-driven engineering
of secure yet safe embedded systems,” Ist International Workshop on
Graphical Models for Security, Grenoble, France, 2014.

[30] A. Vallecillo, On the Combination of Domain Specific Modeling Lan-
guages. Springer Berlin Heidelberg, 2010, pp. 305-320.

[31] D. Rumsfeld, Known and Unknown: a memoir. Penguin group, 2011.

[32] A. Rashid, S. Nakvi, R. Ramdhany, M. Edwards, R. Chitchyan, and
M. Babar, “Discovering unknown known security requirements,” In the
38th International Conference on Software Engineering, New York, USA,
2016.

[33] R. Anderson, “Security engineering: a guide to building dependable
distributed systems,” Wiley, 2001.

[34] A. Babar, “Smart cities: Socio-technical innovation for empowering
citizens,” Australian Quarterly, 2016.

[35] G. S. M. Association, “Smart cities, developing collaborative mobile-
based city solutions for smart cities,” Shanghai, Tech. Rep., 2013.



