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In this paper, we introduce a new continuous probability distribution with five parameters called the modified beta Gompertz distribution. It is derived from the modified beta generator proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively in modeling a wide variety of real phenomenon. Among others, we provide useful expansions of crucial functions, quantile function, moments, incomplete moments, moment generating function, entropies and order statistics. We discuss the estimation of the model parameters by the obtained maximum likelihood method. We also present a simulation study in order to test validity of maximum likelihood estimators. Finally, we illustrate the flexibility of the distribution by means of two applications to real data.

Introduction

The Gompertz distribution was initially introduced by [START_REF] Gompertz | On the nature of the function expressive of the law of human mortality and on the new mode of determining the value of life contingencies[END_REF] to describe human mortality and provide actuarial tables. The literature about the use of the Gompertz distribution in applied areas is enormous. A nice review can be found in [START_REF] Tjørve | The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family[END_REF], and the references there in. From a mathematical point of view, the cumulative probability density function (cdf) of the Gompertz distribution with parameters λ > 0 and α > 0 is given by G(x) = 1 -e -λ α (e αx -1) , x > 0.

The related probability density function (pdf) is given by g(x) = λe αx e -λ α (e αx -1) , x > 0.

It can be viewed as a generalization of the exponential distribution (obtained with α → 0) and thus an alternative to the gamma or Weibull distribution. A feature of the Gompertz distribution is that g(x) is unimodal and has positive skewness whereas the related hazard rate function (hrf) given by h(x) = g(x)/(1 -G(x)) is increasing. In order to increase the flexibility of the Gompertz distribution, further extensions have been proposed. A natural one is the generalized Gompertz distribution introduced by El- [START_REF] El-Gohary | The generalized Gompertz distribution[END_REF]. By introducing an exponent parameter a > 0, the related cdf is given by

F (x) = 1 -e -λ
α (e αx -1) a , x > 0.

The related applications show that a plays an important role in term of model flexibility. This idea was then extended by [START_REF] Jafari | The beta-Gompertz distribution[END_REF] by using the so-called beta generator introduced by [START_REF] Eugene | Beta-normal distribution and its applications[END_REF]. The related cdf is given by

F (x) = 1 B(a, b)
1-e -λ α (e αx -1) 0 t a-1 (1 -t) b-1 dt = I

1-e -λ α (e αx -1) (a, b), x > 0.

(1)

where a, b > 0, B(a, b) denotes the beta function defined by B(a, b) = 1 0 t a-1 (1t) b-1 dt and I x (a, b) denotes the incomplete beta function ratio defined by I x (a, b) = (1/B(a, b))

x 0 t a-1 (1 -t) b-1 dt, x ∈ [0, 1]. This distribution has been recently extended by Benkhelifa (2017) with a five parameters distribution. It is based on the beta generator and the generalized Gompertz distribution.

Motivated by the emergence of complex data from many applied areas, other extended Gompertz distributions have been proposed in the literature. See for instance, [START_REF] El-Damcese | Generalized Exponential Gompertz Distribution[END_REF] who consider the Odd Generalized Exponential generator introduced by [START_REF] Tahir | The Odd Generalized Exponential Family of Distributions with Applications[END_REF], [START_REF] Roozegar | The McDonald Gompertz distribution: properties and applications[END_REF] who use the the McDonald generator introduced by [START_REF] Alexander | Generalized beta-generated distributions[END_REF], [START_REF] Moniem | Transmuted Gompertz Distribution[END_REF] and [START_REF] Khan | Transmuted Generalized Gompertz distribution with application[END_REF] who apply the transmuted generator introduced by Shaw and [START_REF] Buckley | The alchemy of probability distributions: beyond Gram-Charlier expansions and a skewkurtotic-normal distribution from a rank transmutation map[END_REF], [START_REF] Lima | The Kumaraswamy Gompertz distribution[END_REF] and [START_REF] Chukwu | On kumaraswamy gompertz makeham distribution[END_REF] who use the Kumaraswamy generator, and Benkhelifa (2017), [START_REF] Yaghoobzadeh | A new generalization of the Marshall-Olkin Gompertz distribution[END_REF] who consider the Marshall-Olkin generator introduced by [START_REF] Marshall | A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families[END_REF] and [START_REF] Shadrokh | The Beta Gompertz Geometric Distribution: Mathematical Properties and Applications[END_REF] who consider the Beta-G and Geometric generators.

In this paper, we present and study a distribution with five parameters extending the Gompertz distribution. It is based on the modified beta generator developed by [START_REF] Nadarajah | Modified Beta Distributions[END_REF] (which can also be viewed as a modification of the beta Marshall-Olkin generator developed by [START_REF] Alizadeh | The beta Marshall-Olkin family of distributions[END_REF]). The advantage of this generator is to nicely combine the advantages of the beta generator of [START_REF] Eugene | Beta-normal distribution and its applications[END_REF] and the Marshall-Olkin generator of [START_REF] Marshall | A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families[END_REF]. To the best of our knowledge, its application to the Gompertz distribution has never been considered before. We provide a comprehensive description of its general mathematical properties (expansions of the cdf and pdf, quantile function, various kinds of moments, moment generating function, entropies and order statistics). The estimation of the model parameters by maximum likelihood is then discussed. Finally, we explore applications to real data sets that illustrate the usefulness of the proposed model.

The rest of the paper is organized as follows. Section 2 describes the considered modified beta Gompertz distribution. Some mathematical properties are investigated in Section 3. Section 4 provides the necessary to the estimation of the unknown parameters with the maximum likelihood method. A simulation study is performed in order to test validity of the obtained maximum likelihood estimators. To illustrate the flexibility of the resulting model, applications to two real life data sets are also given.

The Modified Beta Gompertz Distribution

Let c > 0, G(x) be a cdf and g(x) be a related pdf. The modified beta generator introduced by [START_REF] Nadarajah | Modified Beta Distributions[END_REF] is characterized by the cdf given by

F (x) = I cG(x) 1-(1-c)G(x) (a, b), (2) 
By differentiation of F (x), a pdf is given by

f (x) = c a g(x) [G(x)] a-1 [1 -G(x)] b-1 B(a, b) [1 -(1 -c)G(x)] a+b , x ∈ R. ( 3 
)
The hrf is given by

h(x) = c a g(x) [G(x)] a-1 [1 -G(x)] b-1 B(a, b) [1 -(1 -c)G(x)] a+b 1 -I cG(x) 1-(1-c)G(x) (a, b) , x ∈ R.
Let us now present our main distribution of interest. Using the cdf G(x) of the Gompertz distribution with parameters λ > 0 and α > 0 as baseline, the cdf given by (2) becomes

F (x) = I c 1-e -λ α (e αx -1) 1-(1-c) 1-e -λ α (e αx -1) (a, b), x > 0. ( 4 
)
The related distribution will be call the modified beta Gompertz distribution (MBGz distribution for short), also denoted by MBGz(λ, α, a, b, c). The related pdf (3) is given by

f (x) = c a λe αx e -λb α (e αx -1) 1 -e -λ α (e αx -1) a-1 B(a, b) 1 -(1 -c) 1 -e -λ α (e αx -1) a+b , x > 0. ( 5 
)
The hrf is given by

h(x) = c a λe αx e -λb α (e αx -1) 1 -e -λ α (e αx -1) a-1 B(a, b) 1 -(1 -c) 1 -e -λ α (e αx -1) a+b       1 -I c 1-e -λ α (e αx -1) 1-(1-c) 1-e -λ α (e αx -1) (a, b)       , x > 0. ( 6 
)
Figure 1 shows the plots for f (x) and h(x) for selected parameter values λ, α, a, b, c. We observe that these functions can take various curvature forms depending on the parameter values, showing the increasing of the flexibility of the former Gompertz distribution. 

λ = 0.9 α = 1 a = 0.2 b = 1 c = 0.1 λ = 1 α = 0.5 a = 3 b = 0.5 c = 1 λ = 0.1 α = 0.2 a = 0.1 b = 0.2 c = 2 λ = 1 α = 1 a = 0.2 b = 0.2 c = 2
Figure 1: Some plots of the pdf f (x) (a) and some plots for the hrf h(x) (b).

A strong point of the MBGz distribution is to contain different useful distributions in the literature. The most popular of them are listed below.

• When c = 1/(1 -θ) with θ ∈ (0, 1) (θ is a proportion parameter), we obtain the beta Gompertz geometric distribution introduced by Shadrokh and Yaghoobzadeh (2018), i.e. with cdf

F (x) = I 1-e -λ α (e αx -1) 1-θe -λ α (e αx -1) (a, b), x > 0.
However, this distribution excludes the case c ∈ (0, 1) by construction. The importance of small values for c can also be determinant in the applications (see Section 4).

• When c = 1, we get the beta Gompertz distribution with four parameters introduced by [START_REF] Jafari | The beta-Gompertz distribution[END_REF], i.e. with cdf

F (x) = I 1-e -λ
α (e αx -1) (a, b), x > 0.

• When c = b = 1, we get the generalized Gompertz distribution studied by [START_REF] El-Gohary | The generalized Gompertz distribution[END_REF], i.e. with cdf

F (x) = 1 -e -λ
α (e αx -1) a , x > 0.

• When a = b = 1 and c = 1 θ with θ > 1 we get the a particular case of the Marshall-Olkin extended generalized Gompertz distribution introduced by Benkhelifa (2017), i.e. with cdf

F (x) = 1 -e -λ α (e αx -1) θ + (1 -θ) 1 -e -λ
α (e αx -1)

, x > 0.

• When a = b = c = 1, we get the Gompertz distribution introduced by Gompertz (1825), i.e. with cdf

F (x) = 1 -e -λ
α (e αx -1) , x > 0.

• When c = 1 and α → 0, we get beta Exponential distribution studied by Nadarajah and Kotz (2006), i.e. with cdf

F (x) = I 1-e -λx (a, b), x > 0.
• When b = c = 1 and α → 0, we get the generalized exponential distribution studied by [START_REF] Gupta | Generalized Exponential Distributions[END_REF], i.e. with cdf

F (x) = 1 -e -λx a , x > 0.
• When a = b = c = 1 and α → 0 we get the exponential distribution, i.e. with cdf

F (x) = 1 -e -λx , x > 0.
3. Some mathematical properties

On the shapes of the pdf

The shapes of f (x) given by (5) can be described analytically. As usual, the critical points x * of the pdf f (x) satisfies ∂ ∂x ln(f (x * )) = 0, with

∂ ∂x ln(f (x)) = α -bλe αx + (a -1) λe αx e -λ α (e αx -1)
1 -e -λ α (e αx -1)

+ (a + b)(1 -c) λe αx e -λ α (e αx -1) c + (1 -c)e -λ α (e αx -1) . A point x * corresponds to a local maximum if ∂ 2 ∂x 2 ln(f (x * )) < 0, a local minimum if ∂ 2 ∂x 2 ln(f (x * )) > 0 and a point of inflection if ∂ 2 ∂x 2 ln(f (x * )) = 0.
Let us now study the asymptotic properties of f (x). We have

f (x) ∼ c a B(a, b) λ a x a-1 , x → 0.
So, for a ∈ (0, 1), we have lim x→0 f (x) = +∞, for a = 1, we have lim x→0 f (x) = bcλ and for a > 1, we have lim x→0 f (x) = 0. We have

f (x) ∼ 1 c b B(a, b)
λe αx e λb α e -λb α e αx , x → +∞.

Thus lim x→+∞ f (x) = 0 in all cases. Figure 1 (a) illustrates these points for selected parameters.

On the shapes of the hrf

Similarly to the pdf, the critical points x * of the hrf h(x) given by ( 6) satisfies

∂ ∂x ln(h(x * )) = 0, with ∂ ∂x ln(h(x)) = α -bλe αx + (a -1) λe αx e -λ α (e αx -1)
1 -e -λ α (e αx -1)

+ (a + b)(1 -c) λe αx e -λ α (e αx -1) c + (1 -c)e -λ α (e αx -1) + c a λe αx e -λb α (e αx -1) 1 -e -λ α (e αx -1) a-1 B(a, b) 1 -(1 -c) 1 -e -λ α (e αx -1) a+b       1 -I c 1-e -λ α (e αx -1) 1-(1-c) 1-e -λ α (e αx -1) (a, b)       . A point x * corresponds to a local maximum if ∂ 2 ∂x 2 ln(h(x * )) < 0, a local minimum if ∂ 2 ∂x 2 ln(h(x * )) > 0 and a point of inflection if ∂ 2 ∂x 2 ln(h(x * )) = 0. We also have h(x) ∼ c a B(a, b) λ a x a-1 , x → 0.
So, for a ∈ (0, 1), we have lim x→0 h(x) = +∞, for a = 1, we have lim x→0 h(x) = bcλ and for a > 1, we have lim x→0 h(x) = 0. We have

h(x) ∼ bλe αx , x → +∞.
Thus lim x→+∞ h(x) = +∞ in all cases. Figure 1 (b) illustrates these points for selected parameters.

Linear representation

Let us determine useful linear representations for F (x) given by (4) and f (x) given by ( 5). First of all, let us suppose that c ∈ (0, 1). It follows from the generalized binomial formula, i.e. (1

+ z) γ = +∞ k=0 γ k z k for |z| < 1 and γ ∈ R, with γ k = γ(γ -1) . . . (γ -k + 1) k! , that F (x) = 1 B(a, b) cG(x) 1-(1-c)G(x) 0 t a-1 (1 -t) b-1 dt = 1 B(a, b) +∞ k=0 b -1 k (-1) k cG(x) 1-(1-c)G(x) 0 t a+k-1 dt = 1 B(a, b) +∞ k=0 b -1 k (-1) k a + k cG(x) 1 -(1 -c)G(x) a+k .
On the other hand, using again the generalized binomial formula, we obtain

cG(x) 1 -(1 -c)G(x) a+k = c a+k +∞ =0 -(a + k) (-1) (1 -c) [G(x)] +a+k . (7) 
In a similar manner, we have

[G(x)] +a+k = 1 -e -λ
α (e αx -1)

+a+k = +∞ m=0 + a + k m (-1) m (1 -H m (x)),
where H m (x) = 1 -e -mλ α (e αx -1) is the cdf of a Gompertz distribution with parameters mλ and α. Combining these equalities, we obtain the following series expansion:

F (x) = +∞ m=0 v m (1 -H m (x)), (8) 
where

v m = (-1) m B(a, b) +∞ k=0 +∞ =0 + a + k m -(a + k) b -1 k c a+k (-1) k+ (1 -c) 1 a + k .
By derivation of F (x), f (x) can be expressed as

f (x) = +∞ m=0 w m h m (x), (9) 
where w m = -v m and h m (x) is the pdf of a Gompertz distribution with parameters mλ and α.

For the case c > 1, we must do some transformation for the equation ( 7) in order to apply the generalized binomial formula. We can write

cG(x) 1 -(1 -c)G(x) a+k = G(x) 1 -(1 -1 c )(1 -G(x)) a+k = [G(x)] a+k +∞ =0 -(a + k) (-1) (c -1) c -[1 -G(x)] = +∞ =0 q=0 -(a + k) q (-1) +q (c -1) c -[G(x)] q+a+k .
On the other hand, we have

[G(x)] q+a+k = +∞ m=0 q + a + k m (-1) m (1 -H m (x)).
Therefore, we can write F (x) as ( 8) with

v * m = (-1) m B(a, b) +∞ k=0 +∞ =0 q=0 -(a + k) q q + a + k m b -1 k (-1) +q+k (c -1) c -1 a + k ,
and f (x) as ( 9) with w m = -v * m (and still h m (x) is the pdf of a Gompertz distribution with parameters mλ and α). For the sake of simplicity, we shall refer to the form (9) far all series representation of f (x), whatever c ∈ (0, 1) or c > 1.

Hereafter, we denote by X a random variable having the cdf F (x) given by (4) (and the pdf f (x) given by ( 5)) and by Y m a random variable following the Gompertz distribution with parameters mλ and α, i.e. having the cdf H m (x) (and the pdf h m (x)).

Quantile function

The quantile function of X is given by

Q(u) = 1 α ln 1 - α λ ln 1 - I -1 u (a, b) c + (1 -c)I -1 u (a, b)
, u ∈ (0, 1),

where

I -1 u (a, b) denotes the inverse of I u (a, b). It satisfies F (Q(u)) = Q(F (u)) = u. Using Nadarajah et al. (2014), one can show that Q(u) ∼ 1 λc a 1 a B(a, b) 1 a u 1 a , u → 0.
From Q(u), we can simulate the MBGz distribution. Indeed, let U be a random variable following the uniform distribution over (0, 1). Then the random variable X = Q(U ) follows the MBGz distribution.

The median of X is given by M = Q(1/2). We can also use Q(u) to define skewness measures. Let us just introduce the Bowley skewness based on quartiles and the Moors kurtosis respectively defined by

B = Q(3/4) + Q(1/4) -2Q(1/2) Q(3/4) -Q(1/4) , M o = Q(7/8) -Q(5/8) + Q(3/8) -Q(1/8) Q(6/8) -Q(2/8
) .

Contrary to γ 1 and γ 2 , these quantities have the advantage to be always defined. We refer to [START_REF] Kenney | Mathematics of Statistics[END_REF] and [START_REF] Moors | A quantile alternative for kurtosis[END_REF].

Moments

Let r be a positive integer. The r-th ordinary moment of X is defined by µ

r = E (X r ) = +∞ -∞ x r f (x)dx.
Using the linear representation given by ( 9), we can express µ r as

µ r = +∞ m=0 w m +∞ -∞ x r h m (x)dx = +∞ m=0 w m E(Y r m ).
By doing the change of variables u = e αx , we obtain

E(Y r m ) = mλ α r+1 e mλ α +∞ 1 (ln u) r e -mλ α u du.
This integral has connections with the so-called generalized integro-exponential function. Further developments can be found in [START_REF] Milgram | The generalized integro-exponential function[END_REF] and [START_REF] Lenart | The moments of the Gompertz distribution and maximum likelihood estimation of its parameters[END_REF]. Therefore we have

µ r = +∞ m=0 w m mλ α r+1 e mλ α +∞ 1 (ln u) r e -mλ α u du.
Obviously, the mean of X is given by E(X) = µ 1 and the variance of X is given by V(X) = µ 2 -(µ 1 ) 2 .

Skewness

The r-th central moment of X is given by µ r = E [(X -µ 1 ) r ]. It follows from the binomial formula that

µ r = r k=0 r k (-1) k (µ 1 ) k µ r-k .
On the other side, the r-th cumulants of X can be obtained via the equation:

κ r = µ r - r-1 k=1 r -1 k -1 κ k µ r-k , with κ 1 = µ 1 . The skewness of X is given by γ 1 = κ 3 /κ 3/2 2
and the kurtosis of X is given by γ 2 = κ 4 /κ 2 2 . One can also introduce the MacGillivray skewness given by

ρ(u) = Q(1 -u) + Q(u) -2Q(1/2) Q(1 -u) -Q(u) , u ∈ (0, 1).
It illustrates the effects of the parameters a, b, α and λ on the skewness. Further details can be found in MacGillivray (1986).

Moment generating function

The moment generating function of X is given by M X (t) = E e tX = +∞ -∞ e tx f (x)dx. Using (9), we have

M X (t) = +∞ m=0 w m +∞ -∞ e tx h m (x)dx = +∞ m=0 w m M Ym (t),
where M Ym (t) = E(e tYm ), the moment generating function of Y m . Doing successively the change of variables u = e αx and the change of variable v = mλ α u, we obtain

M Ym (t) = mλ α e mλ α +∞ 1 u t α e -mλ α u du = e mλ α α mλ t α +∞ mλ α v t α e -v dv = e mλ α α mλ t α Γ t α + 1, mλ α ,
where Γ(d, x) denotes the complementary incomplete gamma function defined by Γ(d, x) = +∞ x t d-1 e -t dt. Therefore we can write

M X (t) = +∞ m=0 w m e mλ α α mλ t α Γ t α + 1, mλ α .
Alternatively, using the moments of X, one can write

M X (t) = +∞ r=0 t r r! µ r = +∞ r=0 +∞ m=0 t r r! w m mλ α r+1 e mλ α
+∞ 1 (ln u) r e -mλ α u du.

Incomplete moments and mean deviations

The r-th incomplete moment of X is defined by m r (t) = E X r 1 {X≤t} = t -∞ x r f (x)dx. Using (9), we can express m r (t) as

m r (t) = +∞ m=0 w m t -∞ x r h m (x)dx.
Doing successively the change of variables u = e αx , we obtain

t -∞ x r h m (x)dx = mλ α r+1 e mλ α
e αt 1 (ln u) r e -mλ α u du.

The mean deviation of X about the mean is given by

δ 1 = E(|X -µ 1 |) = 2µ 1 F (µ 1 ) -2m 1 (µ 1 ),
where m 1 (t) denote the first incomplete moment. The mean deviation of X about the median M = Q(1/2) is given by

δ 2 = E(|X -M |) = µ 1 -2m 1 (M ).

Entropies

Let us now investigate different kinds of entropy measures. The Rényi entropy of X is defined by a+b) .

I γ (X) = 1 1 -γ ln +∞ -∞ [f (x)] γ dx , with γ > 0 and γ = 1. It follows from (3) that [f (x)] γ = c aγ [g(x)] γ [G(x)] γ(a-1) [1 -G(x)] γ(b-1) B(a, b) γ [1 -(1 -c)G(x)] γ(
The generalized binomial formula implies that -1) .

[G(x)] γ(a-1) [1 -(1 -c)G(x)] γ(a+b) = +∞ k=0 -γ(a + b) k (-1) k (1 -c) k [G(x)] k+γ(a
Similarly, we have

[G(x)] k+γ(a-1) = +∞ =0 k + γ(a -1) (-1) [1 -G(x)] . Therefore [f (x)] γ = c aγ B(a, b) γ +∞ k=0 +∞ =0 -γ(a + b) k k + γ(a -1) (-1) k+ (1 -c) k [1 -G(x)] +γ(b-1) [g(x)] γ .
By doing the change of variable u = e αx and the change of variable v = ( + γb) λ α u, we get

+∞ -∞ [1 -G(x)] +γ(b-1) [g(x)] γ dx = +∞ 0 e -( +γb) λ α (e αx -1) λ γ e αγx dx = λ γ 1 α e ( +γb) λ α +∞ 1 u γ-1 e -( +γb) λ α u du = α γ-1 ( + γb) γ e ( +γb) λ α +∞ ( +γb) λ α v γ-1 e -v dv = α γ-1 ( + γb) γ e ( +γb) λ α Γ γ, ( + γb) λ α .
By putting the above equalities together, we have

I γ (X) = 1 1 -γ αγ ln(c) -γ ln(B(a, b)) + (γ -1) ln(α) + γbλ α + ln +∞ k=0 +∞ =0 -γ(a + b) k k + γ(a -1) (-1) k+ (1 -c) k e λ α ( + γb) γ Γ γ, ( + γb) λ α .
The Shannon entropy of X is defined by S(X) = E(-ln[f (X)]) is a particular case of the Rényi entropy when γ tends to 1 + . The γ-entropy is defined by

H γ (X) = 1 γ -1 ln 1 - +∞ -∞ [f (x)] γ dx .
Using the expansion above, we obtain

H γ (X) = 1 γ -1 ln 1 - c aγ α γ-1 e γb λ α B(a, b) γ × +∞ k=0 +∞ =0 -γ(a + b) k k + γ(a -1) (-1) k+ (1 -c) k e λ α ( + γb) γ Γ γ, ( + γb) λ α .

Order statistics

Let X 1 , . . . , X n be the random sample from X and X i:n be the i-th order statistic. Then the pdf of X i:n is given by

f i:n (x) = n! (i -1)!(n -i)! f (x)[F (x)] i-1 [1 -F (x)] n-i = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j f (x)[F (x)] j+i-1 .
It follows from ( 8) and ( 9) that

f i:n (x) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 w m h m (x) +∞ k=0 v k (1 -H k (x)) j+i-1
.

Using a result from [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF], power series raised to a positive power as follows

+∞ k=0 a k x k n = +∞ k=0 d n,k x k ,
where the coefficients (d n,k ) k∈N are determined from the recurrence equation:

d n,0 = a n 0 and, for any m ≥ 1, d n,m = (1/(ma 0 )) m k=1 (k(n + 1) -m)a k d n,m-k . Therefore, noticing that 1 -H k (x) = e -λ α (e αx -1) k , we have +∞ k=0 v k (1 -H k (x)) j+i-1 = +∞ k=0 d j+i-1,k (1 -H k (x)), 0 and, for any m ≥ 1, d j+i-1,m = 1 mv 0 m k=1 (k(j+i)-m)v k d j+i-1,m-k .
By combining the equalities above, we obtain

f i:n (x) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 +∞ k=0 w m d j+i-1,k h m (x)(1 -H k (x)).
Finally, one can observe that h m (x)(1 -H k (x)) = mλe αx e -(m+k)λ α (e αx -1) = m m+k u m+k (x), where u m+k (x) denotes the pdf of the Gompertz distribution with parameters (m + k)λ and α. So the pdf of i-th order statistic of the MBGz distribution can be expressed as a linear combination of Gompertz pdfs, i.e.

f i:n (x) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 +∞ k=0 w m d j+i-1,k m m + k u m+k (x).
Let r be a positive integer. Then the r-th ordinary moment of X i:n can be expressed as

E(X r i:n ) = +∞ -∞ x r f i:n (x)dx = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 +∞ k=0 w m d j+i-1,k mλ α r+1 e (m+k)λ α +∞ 1 (ln u) r e -(m+k)λ α u du.

Statistical inference

Maximum likelihood estimation

We now investigate the estimation of the parameters of the MBGz distribution. Let x 1 , . . . , x n be n observed values from the MBGz distribution and ξ = (λ, α, a, b, c) be the vector of unknown parameters. The log likelihood function is given by

(ξ) = an ln(c) + n ln(λ) + α n i=1 x i - λb α n i=1 (e αx i -1) + (a -1) n i=1 ln 1 -e -λ α (e αx i -1) -n ln(B(a, b)) -(a + b) n i=1 ln 1 -(1 -c) 1 -e -λ α (e αx i -1)
.

The maximum likelihood estimators of the parameters are obtained by maximizing the log likelihood function. They can be obtained by solving the non-linear equations:

∂ ∂λ (ξ) = 0, ∂ ∂α (ξ) = 0, ∂ ∂a (ξ) = 0, ∂ ∂b (ξ) = 0, ∂ ∂c (ξ) = 0 with ∂ (ξ) ∂λ = n λ - b α n i=1 (e αx i -1) + (a -1) n i=1 1 α (e αx i -1)e -λ α (e αx i -1)
1 -e -λ α (e αx i -1)

+ (a + b) n i=1 (1 -c) 1 α (e αx i -1)e -λ α (e αx i -1) 1 -(1 -c) 1 -e -λ α (e αx i -1) , ∂ (ξ) ∂α = n i=1 x i - λb α n i=1
x i e αx i -1 α (e αx i -1)

+ (a -1) n i=1 λ α e -λ α (e αx i -1) x i e αx i -1 α (e αx i -1) 1 -e -λ α (e αx i -1) + (a + b) n i=1 (1 -c)e -λ α (e αx i -1) x i e αx i -1 α (e αx i -1) 1 -(1 -c) 1 -e -λ α (e αx i -1) , by setting B (1,0) (a, b) = ∂ ∂a B(a, b) and B (0,1) (a, b) = ∂ ∂b B(a, b) (one can remark that B (1,0) (a, b) = ψ(a) -ψ(a + b) and B (0,1) (a, b) = ψ(b) -ψ(a + b)
, where ψ(x) denotes the so called digamma function),

∂ (ξ) ∂a = n ln c + n i=1 ln 1 -e -λ α (e αx i -1) -n B (1,0) (a, b) B(a, b) - n i=1 ln 1 -(1 -c) 1 -e -λ α (e αx i -1) , ∂ (ξ) ∂b = - λ α n i=1 (e αx i -1) -n B (0,1) (a, b) B(a, b) - n i=1 ln 1 -(1 -c) 1 -e -λ α (e αx i -1)
and

∂ (ξ) ∂c = an c -(a + b) n i=1 1 -e -λ
α (e αx i -1)

1 + (1 -c) 1 -e -λ
α (e αx i -1)

.

We can solve the above non-linear equations simultaneously. Mathematical package can be used to get the maximum likelihood estimators of the unknown parameters. Also, all the second order derivatives exist. As usual, the normal approximation for the maximum likelihood estimators can be used for constructing approximate confidence intervals, confidence regions and testing hypotheses of λ, α, a, b, c.

Simulation

It is very difficult to compare the theoretical performances of the different maximum likelihood estimates (MLEs) for the MBGz distribution. Therefore, simulation is needed to compare the performances of the MLE mainly with respect to their mean square errors for different sample sizes. A numerical study is performed using Mathematica 9 software. Different sample sizes are considered through the experiments at size n = 50, 100 and 150. The experiment will be repeated 3000 times. In each experiment, the estimates of the parameters will be obtained by maximum likelihood methods of estimation. The means and MSEs for the different estimators will be reported from these experiments. We can see from Table 1 when n is increase MSE is decrease. 

Applications

This section provides an application to show how the MBGz distribution can be applied in practice. We compare MBGz to Exponentaited Generalized Weibull-Gompertz distribution (EGWGz) by [START_REF] El-Bassiouny | Exponentiated Generalized Weibull-Gompertz Distribution with Application in Survival Analysis[END_REF] and other well known distributions in literature, Kumaraswamy-Gompertz (Kw-Gz), beta Gompertz(BGz) and Gompertz (Gz) models. The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimization and the log-likelihood function evaluated. The goodness-of-fit measures, Anderson-Darling (A*), Cramer-von Mises (W*), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and log-likelihood ( ˆ ) values are computed. The lower the values of these criteria, the better the fit. The value for the Kolmogorov Smirnov (KS) statistic and its p-value are also provided. The required computations are carried out in the R software.

Data set 1

The first data set represents the time to failure(103 h) of turbocharger of one type of engine given in [START_REF] Xu | Application of Neural Networks in forecasting Engine Systems Reliability[END_REF]. The data set is as follows: 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585 

Data set 2

The second data set was given by [START_REF] Badar | Statistical aspects of fiber and bundle strength in hybrid composites[END_REF]. It corresponds to a single fiber with 20 and 101 mm of gauge length, respectively. The data set is as follows: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0 Tables 2 and4 list the maximum likelihood estimates (and the corresponding standard errors in parentheses) of the unknown parameters of the MBGz distribution for Data Set 1 and Data Set 2 respectively. Tables 3 and5 show the statistics AIC, BIC, W*, A*, KS, P-Value values for all the considered models. We then see that the proposed MBGz model fits these data better than the other models. The MBGz model may be an interesting alternative to other models available in the literature for modeling positive real data. To complete this fact, PP, QQ, epdf and ecdf plots of the MBGz distribution given in Figures 2 and3 for Data Set 1 and Data Set 2 respectively. 
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 23 Figure 2: PP, QQ, epdf and ecdf plots of the MBGz distribution for Data Set 1.

Table 1 :

 1 The MLEs and MSEs of MBGz distribution.

	n	Parameters Initial	MLE	MSE	Initial	MLE	MSE
	50	a	3.0	3.0024 0.5057	2.5	2.6424 0.1737
		b	1.5	1.6409 0.1499	1.5	1.5219 0.0400
		c	0.5	0.4941 0.0008	0.5	0.5050 0.0004
		α	0.5	0.5422 0.0198	0.5	0.5291 0.0116
		λ	0.5	0.5241 0.0387	0.5	0.5235 0.0122
	100	a	3.0	3.0778 0.2458	2.5	2.5060 0.0754
		b	1.5	1.6083 0.0779	1.5	1.5373 0.0291
		c	0.5	0.4986 0.0003	0.5	0.4991 0.0003
		α	0.5	0.5572 0.0147	0.5	0.5123 0.0029
		λ	0.5	0.4926 0.0126	0.5	0.5035 0.0070
	150	a	3.0	2.9041 0.1015	2.5	2.5125 0.0284
		b	1.5	1.6159 0.0485	1.5	1.5232 0.0088
		c	0.5	0.4940 0.0002	0.5	0.5002 0.0001
		α	0.5	0.5477 0.0094	0.5	0.5137 0.0015
		λ	0.5	0.4694 0.0072	0.5	0.4968 0.0015
	50	a	1.5	1.4706 0.0325	1.5	1.5435 0.0641
		b	1.8	1.7764 0.0639	1.8	1.7838 0.0955
		c	0.5	0.5054 0.0013	1.5	1.5285 0.0203
		α	0.5	0.4833 0.0029	0.5	0.4895 0.0008
		λ	0.5	0.5488 0.0160	0.5	0.5364 0.0118
	100	a	1.5	1.5138 0.0201	1.5	1.5194 0.0224
		b	1.8	1.8177 0.0380	1.8	1.8309 0.0451
		c	0.5	0.5004 0.0007	1.5	1.5010 0.0047
		α	0.5	0.5007 0.0023	0.5	0.5011 0.0005
		λ	0.5	0.5106 0.0059	0.5	0.5036 0.0028
	150	a	1.5	1.5313 0.0102	1.5	1.4690 0.0094
		b	1.8	1.8152 0.0194	1.8	1.8396 0.0258
		c	0.5	0.5055 0.0003	1.5	1.4864 0.0017
		α	0.5	0.5173 0.0022	0.5	0.5007 0.0004
		λ	0.5	0.5044 0.0034	0.5	0.4943 0.0009

Table 2 :

 2 MLEs (standard errors in parentheses) for Data Set 1.

	Distribution			Estimates		
	MBGz(λ, α, a, b, c)	0.0085	2.5537	1.0737	1.3153	5.0687
		(0.0067) (0.5727)	(0.3197)	(0.8933) (3.3003)
	EGWGz(λ, a, b, c, β)	3.2078	2.4598	0.0203	1.8974	0.5460
		(1.2099) (0.6498)	(0.0531)	(1.8193) (0.2430)
	KwGz(a, b, c, d, θ)	0.1861	1.4948	1.4909	0.9811	
		(0.3130) (0.5076)	(0.4735)	(2.4368)	
	BGz(a, b, θ, v)	0.3144	1.5591	1.4798	0.4966	
		(0.4283) (0.3658)	(0.4543)	(0.8692)	
	Gz(λ, α)	0.0841	1.8811			
		(0.0268) (0.2043)			

Table 3 :

 3 The AIC, BIC, W*, A*, KS, P-Value values for Data Set 1. Value MBGz 50.0387 110.0776 118.2481 0.0328 0.2745 0.0539 0.9889 EGWGz 52.6888 115.3776 126.5482 0.0706 0.5341 0.0785 0.7885 KwGz 51.2042 110.4084 119.3448 0.0529 0.4125 0.0640 0.9396 BGz 51.1518 110.3026 119.2399 0.0518 0.4057 0.0627 0.9484 Gz 53.9686 111.9374 122.4056 0.0819 0.5921 0.0810 0.7547

	Dist	ˆ	AIC	BIC	W*	A*	KS	P-

Table 4 :

 4 MLEs (standard errors in parentheses) for Data Set 2.

	Distribution			Estimates		
	MBGz(λ, α, a, b, c)	0.0098	0.5270	0.8768	4.5635	0.1561
		(0.0116) (0.1599)	(0.3893)	(0.8862) (0.2442)
	EGWGz(λ, a, b, c, β)	0.0101	0.6077	0.1078	1.6929	0.6613
		(0.0141) (0.1506)	(0.3427)	(1.2539) (0.3379)
	KwGz(a, b, θ, v)	0.0133	0.2923	2.0164	13.7085	
		(0.0120) (0.1641)	(0.7880)	(7.0208)	
	BGz(a, b, c, d, θ)	0.0125	0.1856	3.7622	2.0116	
		(0.0100) (0.1601)	(2.5635)	(3.3802)	
	Gz(λ, α)	0.0074)	(0.6243)			
		(0.0035) (0.0748)			

Table 5 :

 5 The AIC, BIC, W*, A*, KS, P-Value values for Data Set 2.

	Dist	ˆ	AIC	BIC	W*	A*	KS	P-Value
	MBGz 78.2184 168.1770 176.0214 0.0222 0.1840 0.0707 0.9888
	EGWGz 79.3744 168.5489 178.5933 0.0479 0.2922 0.0821 0.9623
	KwGz 80.7197 169.4395 176.1950 0.0430 0.3326 0.0966 0.8489
	BGz	82.9924 173.9849 180.7404 0.0922 0.6736 0.1080 0.7389
	Gz	80.9566 168.9234 177.2911 0.0359 0.2335 0.0903 0.8299

Empirical and theoretical dens.