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Abstract

In this paper, we introduce a new continuous probability distribution with five
parameters called the modified beta Gompertz distribution. It is derived from the
modified beta generator proposed by Nadarajah, Teimouri and Shih (2014) and the
Gompertz distribution. By investigating its mathematical and practical aspects, we
prove that it is quite flexible and can be used effectively in modeling a wide variety
of real phenomenon. Among others, we provide useful expansions of crucial functions,
quantile function, moments, incomplete moments, moment generating function, en-
tropies and order statistics. We discuss the estimation of the model parameters by the
obtained maximum likelihood method. We also present a simulation study in order to
test validity of maximum likelihood estimators. Finally, we illustrate the flexibility of
the distribution by means of two applications to real data.

Keywords: Modified beta generator, Gompertz distribution, Maximum likelihood esti-
mation.
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1. Introduction

The Gompertz distribution was initially introduced by Gompertz (1825) to describe
human mortality and provide actuarial tables. The literature about the use of the
Gompertz distribution in applied areas is enormous. A nice review can be found in
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Tjørve and Tjørve (2017), and the references there in. From a mathematical point of
view, the cumulative probability density function (cdf) of the Gompertz distribution
with parameters λ > 0 and α > 0 is given by

G(x) = 1− e−
λ
α
(eαx−1), x > 0.

The related probability density function (pdf) is given by

g(x) = λeαxe−
λ
α
(eαx−1), x > 0.

It can be viewed as a generalization of the exponential distribution (obtained with
α→ 0) and thus an alternative to the gamma or Weibull distribution. A feature of the
Gompertz distribution is that g(x) is unimodal and has positive skewness whereas the
related hazard rate function (hrf) given by h(x) = g(x)/(1 − G(x)) is increasing. In
order to increase the flexibility of the Gompertz distribution, further extensions have
been proposed. A natural one is the generalized Gompertz distribution introduced by
El-Gohary et al. (2013). By introducing an exponent parameter a > 0, the related cdf
is given by

F (x) =
(

1− e−
λ
α
(eαx−1)

)a
, x > 0.

The related applications show that a plays an important role in term of model flexibility.
This idea was then extended by Jafari et al. (2014) by using the so-called beta generator
introduced by Eugene et al. (2002). The related cdf is given by

F (x) =
1

B(a, b)

∫ 1−e−
λ
α (eαx−1)

0

ta−1(1− t)b−1dt

= I
1−e−

λ
α (eαx−1)(a, b), x > 0. (1)

where a, b > 0, B(a, b) denotes the beta function defined by B(a, b) =
∫ 1

0
ta−1(1 −

t)b−1dt and Ix(a, b) denotes the incomplete beta function ratio defined by Ix(a, b) =
(1/B(a, b))

∫ x
0
ta−1(1− t)b−1dt, x ∈ [0, 1]. This distribution has been recently extended

by Lazhar (2018) with a five parameters distribution. It is based on the beta generator
and the generalized Gompertz distribution.

Motivated by the emergence of complex data from many applied areas, other ex-
tended Gompertz distributions have been proposed in the literature. See for instance,
El-Damcese et al. (2015) who consider the Odd Generalized Exponential generator in-
troduced by Tahir et al. (2015), Roozegar et al. (2017) who use the the McDonald
generator introduced by Alexander et al. (2012), Moniem and Seham (2015) and Khan
et al. (2017) who apply the transmuted generator introduced by Shaw and Buckley
(2007), Lima et al. (2015) and Chukwu and Ogunde (2016) who use the Kumaraswamy
generator, and Lazhar (2017), Yaghoobzadeh (2017) who consider the Marshall-Olkin
generator introduced by Marshall and Olkin (1997) and Shadrokh and Yaghoobzadeh
(2018) who consider the Beta-G and Geometric generators.

In this paper, we present and study a distribution with five parameters extend-
ing the Gompertz distribution. It is based on the modified beta generator developed
by Nadarajah et al. (2014) (which can also be viewed as a modification of the beta

2



Marshall-Olkin generator developed by Alizadeh et al. (2015)). The advantage of this
generator is to nicely combine the advantages of the beta generator of Eugene et al.
(2002) and the Marshall-Olkin generator of Marshall and Olkin (1997). To the best of
our knowledge, its application to the Gompertz distribution has never been considered
before. We provide a comprehensive description of its general mathematical properties
(expansions of the cdf and pdf, quantile function, various kinds of moments, moment
generating function, entropies and order statistics). The estimation of the model pa-
rameters by maximum likelihood is then discussed. Finally, we explore applications to
real data sets that illustrate the usefulness of the proposed model.

The rest of the paper is organized as follows. Section 2 describes the considered
modified beta Gompertz distribution. Some mathematical properties are investigated
in Section 3. Section 4 provides the necessary to the estimation of the unknown pa-
rameters with the maximum likelihood method. A simulation study is performed in
order to test validity of the obtained maximum likelihood estimators. To illustrate the
flexibility of the resulting model, applications to two real life data sets are also given.

2. The Modified Beta Gompertz Distribution

Let c > 0, G(x) be a cdf and g(x) be a related pdf. The modified beta generator
introduced by Nadarajah et al. (2014) is characterized by the cdf given by

F (x) = I cG(x)
1−(1−c)G(x)

(a, b), (2)

By differentiation of F (x), a pdf is given by

f(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
, x ∈ R. (3)

The hrf is given by

h(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
(

1− I cG(x)
1−(1−c)G(x)

(a, b)

) , x ∈ R.

Let us now present our main distribution of interest. Using the cdf G(x) of the Gom-
pertz distribution with parameters λ > 0 and α > 0 as baseline, the cdf given by (2)
becomes

F (x) = I
c

(
1−e−

λ
α (eαx−1)

)

1−(1−c)
(
1−e−

λ
α (eαx−1)

)
(a, b), x > 0. (4)

The related distribution will be call the modified beta Gompertz distribution (MBGz
distribution for short), also denoted by MBGz(λ, α, a, b, c). The related pdf (3) is
given by

f(x) =
caλeαxe−

λb
α
(eαx−1)

(
1− e− λα (eαx−1)

)a−1
B(a, b)

[
1− (1− c)

(
1− e− λα (eαx−1)

)]a+b , x > 0. (5)
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The hrf is given by

h(x) =

caλeαxe−
λb
α
(eαx−1)

(
1− e− λα (eαx−1)

)a−1

B(a, b)
[
1− (1− c)

(
1− e− λα (eαx−1)

)]a+b
1− I

c

(
1−e−

λ
α (eαx−1)

)

1−(1−c)
(
1−e−

λ
α (eαx−1)

)
(a, b)


,

x > 0. (6)

Figure 1 shows the plots for f(x) and h(x) for selected parameter values λ, α, a, b, c.
We observe that these functions can take various curvature forms depending on the
parameter values, showing the increasing of the flexibility of the former Gompertz
distribution.
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Figure 1: Some plots of the pdf f(x) (a) and some plots for the hrf h(x) (b).

A strong point of the MBGz distribution is to contain different useful distributions
in the literature. The most popular of them are listed below.

• When c = 1/(1 − θ) with θ ∈ (0, 1) (θ is a proportion parameter), we ob-
tain the beta Gompertz geometric distribution introduced by Shadrokh and
Yaghoobzadeh (2018), i.e. with cdf

F (x) = I
1−e−

λ
α (eαx−1)

1−θe−
λ
α (eαx−1)

(a, b), x > 0.

However, this distribution excludes the case c ∈ (0, 1) by construction. The
importance of small values for c can also be determinant in the applications (see
Section 4).
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• When c = 1, we get the beta Gompertz distribution with four parameters intro-
duced by Jafari et al. (2014), i.e. with cdf

F (x) = I
1−e−

λ
α (eαx−1)(a, b), x > 0.

• When c = b = 1, we get the generalized Gompertz distribution studied by El-
Gohary et al. (2013), i.e. with cdf

F (x) =
(

1− e−
λ
α
(eαx−1)

)a
, x > 0.

• When a = b = 1 and c = 1
θ

with θ > 1 we get the a particular case of the Marshall-
Olkin extended generalized Gompertz distribution introduced by Lazhar (2017),
i.e. with cdf

F (x) =
1− e− λα (eαx−1)

θ + (1− θ)
(

1− e− λα (eαx−1)
) , x > 0.

• When a = b = c = 1, we get the Gompertz distribution introduced by Gompertz
(1825), i.e. with cdf

F (x) = 1− e−
λ
α
(eαx−1), x > 0.

• When c = 1 and α→ 0, we get beta Exponential distribution studied by Nadara-
jah and Kotz (2006), i.e. with cdf

F (x) = I1−e−λx(a, b), x > 0.

• When b = c = 1 and α → 0, we get the generalized exponential distribution
studied by Gupta and Kundu (1999), i.e. with cdf

F (x) =
(
1− e−λx

)a
, x > 0.

• When a = b = c = 1 and α→ 0 we get the exponential distribution, i.e. with cdf

F (x) = 1− e−λx, x > 0.

3. Some mathematical properties

3.1. On the shapes of the pdf

The shapes of f(x) given by (5) can be described analytically. As usual, the critical
points x∗ of the pdf f(x) satisfies ∂

∂x
ln(f(x∗)) = 0, with

∂

∂x
ln(f(x)) = α− bλeαx + (a− 1)

λeαxe−
λ
α
(eαx−1)

1− e− λα (eαx−1)
+ (a+ b)(1− c) λeαxe−

λ
α
(eαx−1)

c+ (1− c)e− λα (eαx−1)
.
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A point x∗ corresponds to a local maximum if ∂2

∂x2
ln(f(x∗)) < 0, a local minimum if

∂2

∂x2
ln(f(x∗)) > 0 and a point of inflection if ∂2

∂x2
ln(f(x∗)) = 0.

Let us now study the asymptotic properties of f(x). We have

f(x) ∼ ca

B(a, b)
λaxa−1, x→ 0.

So, for a ∈ (0, 1), we have limx→0 f(x) = +∞, for a = 1, we have limx→0 f(x) = bcλ
and for a > 1, we have limx→0 f(x) = 0. We have

f(x) ∼ 1

cbB(a, b)
λeαxe

λb
α e−

λb
α
eαx , x→ +∞.

Thus limx→+∞ f(x) = 0 in all cases. Figure 1 (a) illustrates these points for selected
parameters.

3.2. On the shapes of the hrf

Similarly to the pdf, the critical points x∗ of the hrf h(x) given by (6) satisfies
∂
∂x

ln(h(x∗)) = 0, with

∂

∂x
ln(h(x)) = α− bλeαx + (a− 1)

λeαxe−
λ
α
(eαx−1)

1− e− λα (eαx−1)
+ (a+ b)(1− c) λeαxe−

λ
α
(eαx−1)

c+ (1− c)e− λα (eαx−1)

+
caλeαxe−

λb
α
(eαx−1)

(
1− e− λα (eαx−1)

)a−1

B(a, b)
[
1− (1− c)

(
1− e− λα (eαx−1)

)]a+b
1− I

c

(
1−e−

λ
α (eαx−1)

)

1−(1−c)
(
1−e−

λ
α (eαx−1)

)
(a, b)


.

A point x∗ corresponds to a local maximum if ∂2

∂x2
ln(h(x∗)) < 0, a local minimum if

∂2

∂x2
ln(h(x∗)) > 0 and a point of inflection if ∂2

∂x2
ln(h(x∗)) = 0.

We also have

h(x) ∼ ca

B(a, b)
λaxa−1, x→ 0.

So, for a ∈ (0, 1), we have limx→0 h(x) = +∞, for a = 1, we have limx→0 h(x) = bcλ
and for a > 1, we have limx→0 h(x) = 0. We have

h(x) ∼ bλeαx, x→ +∞.

Thus limx→+∞ h(x) = +∞ in all cases. Figure 1 (b) illustrates these points for selected
parameters.
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3.3. Linear representation

Let us determine useful linear representations for F (x) given by (4) and f(x) given
by (5). First of all, let us suppose that c ∈ (0, 1). It follows from the generalized

binomial formula, i.e. (1 + z)γ =
+∞∑
k=0

(
γ

k

)
zk for |z| < 1 and γ ∈ R, with

(
γ

k

)
=

γ(γ − 1) . . . (γ − k + 1)

k!
, that

F (x) =
1

B(a, b)

∫ cG(x)
1−(1−c)G(x)

0

ta−1(1− t)b−1dt

=
1

B(a, b)

+∞∑
k=0

(
b− 1

k

)
(−1)k

∫ cG(x)
1−(1−c)G(x)

0

ta+k−1dt

=
1

B(a, b)

+∞∑
k=0

(
b− 1

k

)
(−1)k

a+ k

[
cG(x)

1− (1− c)G(x)

]a+k
.

On the other hand, using again the generalized binomial formula, we obtain[
cG(x)

1− (1− c)G(x)

]a+k
= ca+k

+∞∑
`=0

(
−(a+ k)

`

)
(−1)`(1− c)`[G(x)]`+a+k. (7)

In a similar manner, we have

[G(x)]`+a+k =
[
1− e−

λ
α
(eαx−1)

]`+a+k
=

+∞∑
m=0

(
`+ a+ k

m

)
(−1)m(1−Hm(x)),

where Hm(x) = 1− e−mλα (eαx−1) is the cdf of a Gompertz distribution with parameters
mλ and α. Combining these equalities, we obtain the following series expansion:

F (x) =
+∞∑
m=0

vm(1−Hm(x)), (8)

where

vm =
(−1)m

B(a, b)

+∞∑
k=0

+∞∑
`=0

(
`+ a+ k

m

)(
−(a+ k)

`

)(
b− 1

k

)
ca+k(−1)k+`(1− c)` 1

a+ k
.

By derivation of F (x), f(x) can be expressed as

f(x) =
+∞∑
m=0

wmhm(x), (9)

where wm = −vm and hm(x) is the pdf of a Gompertz distribution with parameters
mλ and α.
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For the case c > 1, we must do some transformation for the equation (7) in order
to apply the generalized binomial formula. We can write

[
cG(x)

1− (1− c)G(x)

]a+k
=

[
G(x)

1− (1− 1
c
)(1−G(x))

]a+k
= [G(x)]a+k

+∞∑
`=0

(
−(a+ k)

`

)
(−1)`(c− 1)`c−`[1−G(x)]`

=
+∞∑
`=0

∑̀
q=0

(
−(a+ k)

`

)(
`

q

)
(−1)`+q(c− 1)`c−`[G(x)]q+a+k.

On the other hand, we have

[G(x)]q+a+k =
+∞∑
m=0

(
q + a+ k

m

)
(−1)m(1−Hm(x)).

Therefore, we can write F (x) as (8) with

v∗m =

(−1)m

B(a, b)

+∞∑
k=0

+∞∑
`=0

∑̀
q=0

(
−(a+ k)

`

)(
`

q

)(
q + a+ k

m

)(
b− 1

k

)
(−1)`+q+k(c− 1)`c−`

1

a+ k
,

and f(x) as (9) with wm = −v∗m (and still hm(x) is the pdf of a Gompertz distribution
with parameters mλ and α). For the sake of simplicity, we shall refer to the form (9)
far all series representation of f(x), whatever c ∈ (0, 1) or c > 1.

Hereafter, we denote by X a random variable having the cdf F (x) given by (4)
(and the pdf f(x) given by (5)) and by Ym a random variable following the Gompertz
distribution with parameters mλ and α, i.e. having the cdf Hm(x) (and the pdf hm(x)).

3.4. Quantile function

The quantile function of X is given by

Q(u) =
1

α
ln

(
1− α

λ
ln

(
1− I−1u (a, b)

c+ (1− c)I−1u (a, b)

))
, u ∈ (0, 1),

where I−1u (a, b) denotes the inverse of Iu(a, b). It satisfies F (Q(u)) = Q(F (u)) = u.
Using Nadarajah et al. (2014), one can show that

Q(u) ∼ 1

λc
a

1
aB(a, b)

1
au

1
a , u→ 0.

From Q(u), we can simulate the MBGz distribution. Indeed, let U be a random
variable following the uniform distribution over (0, 1). Then the random variable X =
Q(U) follows the MBGz distribution.
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The median of X is given by M = Q(1/2). We can also use Q(u) to define skewness
measures. Let us just introduce the Bowley skewness based on quartiles and the Moors
kurtosis respectively defined by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
, Mo =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

Contrary to γ1 and γ2, these quantities have the advantage to be always defined. We
refer to Kenney and Keeping (1962) and Moors (1988).

3.5. Moments

Let r be a positive integer. The r-th ordinary moment of X is defined by µ′r =
E (Xr) =

∫ +∞
−∞ xrf(x)dx. Using the linear representation given by (9), we can express

µ′r as

µ′r =
+∞∑
m=0

wm

∫ +∞

−∞
xrhm(x)dx =

+∞∑
m=0

wmE(Y r
m).

By doing the change of variables u = eαx, we obtain

E(Y r
m) =

mλ

αr+1
e
mλ
α

∫ +∞

1

(lnu)re−
mλ
α
udu.

This integral has connections with the so-called generalized integro-exponential func-
tion. Further developments can be found in Milgram (1985) and Lenart (2014). There-
fore we have

µ′r =
+∞∑
m=0

wm
mλ

αr+1
e
mλ
α

∫ +∞

1

(lnu)re−
mλ
α
udu.

Obviously, the mean of X is given by E(X) = µ′1 and the variance of X is given by
V(X) = µ′2 − (µ′1)

2.

3.6. Skewness

The r-th central moment of X is given by µr = E [(X − µ′1)r]. It follows from the
binomial formula that

µr =
r∑

k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k.

On the other side, the r-th cumulants of X can be obtained via the equation:

κr = µ′r −
r−1∑
k=1

(
r − 1

k − 1

)
κkµ

′
r−k,

with κ1 = µ′1. The skewness of X is given by γ1 = κ3/κ
3/2
2 and the kurtosis of X is

given by γ2 = κ4/κ
2
2. One can also introduce the MacGillivray skewness given by

ρ(u) =
Q(1− u) +Q(u)− 2Q(1/2)

Q(1− u)−Q(u)
, u ∈ (0, 1).

It illustrates the effects of the parameters a, b, α and λ on the skewness. Further details
can be found in MacGillivray (1986).
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3.7. Moment generating function

The moment generating function ofX is given byMX(t) = E
(
etX
)

=
∫ +∞
−∞ etxf(x)dx.

Using (9), we have

MX(t) =
+∞∑
m=0

wm

∫ +∞

−∞
etxhm(x)dx =

+∞∑
m=0

wmMYm(t),

where MYm(t) = E(etYm), the moment generating function of Ym. Doing successively
the change of variables u = eαx and the change of variable v = mλ

α
u, we obtain

MYm(t) =
mλ

α
e
mλ
α

∫ +∞

1

u
t
α e−

mλ
α
udu = e

mλ
α

( α

mλ

) t
α

∫ +∞

mλ
α

v
t
α e−vdv

= e
mλ
α

( α

mλ

) t
α

Γ

(
t

α
+ 1,

mλ

α

)
,

where Γ(d, x) denotes the complementary incomplete gamma function defined by Γ(d, x) =∫ +∞
x

td−1e−tdt. Therefore we can write

MX(t) =
+∞∑
m=0

wme
mλ
α

( α

mλ

) t
α

Γ

(
t

α
+ 1,

mλ

α

)
.

Alternatively, using the moments of X, one can write

MX(t) =
+∞∑
r=0

tr

r!
µ′r =

+∞∑
r=0

+∞∑
m=0

tr

r!
wm

mλ

αr+1
e
mλ
α

∫ +∞

1

(lnu)re−
mλ
α
udu.

3.8. Incomplete moments and mean deviations

The r-th incomplete moment ofX is defined bymr(t) = E
(
Xr1{X≤t}

)
=
∫ t
−∞ x

rf(x)dx.
Using (9), we can express mr(t) as

mr(t) =
+∞∑
m=0

wm

∫ t

−∞
xrhm(x)dx.

Doing successively the change of variables u = eαx, we obtain∫ t

−∞
xrhm(x)dx =

mλ

αr+1
e
mλ
α

∫ eαt

1

(lnu)re−
mλ
α
udu.

The mean deviation of X about the mean is given by

δ1 = E(|X − µ′1|) = 2µ′1F (µ′1)− 2m1(µ
′
1),

where m1(t) denote the first incomplete moment. The mean deviation of X about the
median M = Q(1/2) is given by

δ2 = E(|X −M |) = µ′1 − 2m1(M).

10



3.9. Entropies

Let us now investigate different kinds of entropy measures. The Rényi entropy of
X is defined by

Iγ(X) =
1

1− γ
ln

[∫ +∞

−∞
[f(x)]γ dx

]
,

with γ > 0 and γ 6= 1. It follows from (3) that

[f(x)]γ =
caγ[g(x)]γ [G(x)]γ(a−1) [1−G(x)]γ(b−1)

B(a, b)γ [1− (1− c)G(x)]γ(a+b)
.

The generalized binomial formula implies that

[G(x)]γ(a−1)

[1− (1− c)G(x)]γ(a+b)
=

+∞∑
k=0

(
−γ(a+ b)

k

)
(−1)k(1− c)k[G(x)]k+γ(a−1).

Similarly, we have

[G(x)]k+γ(a−1) =
+∞∑
`=0

(
k + γ(a− 1)

`

)
(−1)`[1−G(x)]`.

Therefore

[f(x)]γ =

caγ

B(a, b)γ

+∞∑
k=0

+∞∑
`=0

(
−γ(a+ b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k[1−G(x)]`+γ(b−1)[g(x)]γ.

By doing the change of variable u = eαx and the change of variable v = (`+ γb)λ
α
u, we

get ∫ +∞

−∞
[1−G(x)]`+γ(b−1)[g(x)]γdx =

∫ +∞

0

e−(`+γb)
λ
α
(eαx−1)λγeαγxdx

= λγ
1

α
e(`+γb)

λ
α

∫ +∞

1

uγ−1e−(`+γb)
λ
α
udu

=
αγ−1

(`+ γb)γ
e(`+γb)

λ
α

∫ +∞

(`+γb) λ
α

vγ−1e−vdv

=
αγ−1

(`+ γb)γ
e(`+γb)

λ
αΓ

(
γ, (`+ γb)

λ

α

)
.

By putting the above equalities together, we have

Iγ(X) =

1

1− γ

[
αγ ln(c)− γ ln(B(a, b)) + (γ − 1) ln(α) +

γbλ

α

+ ln

[ +∞∑
k=0

+∞∑
`=0

(
−γ(a+ b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k e`

λ
α

(`+ γb)γ
Γ

(
γ, (`+ γb)

λ

α

)]]
.
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The γ-entropy is defined by

Hγ(X) =
1

γ − 1
ln

[
1−

∫ +∞

−∞
[f(x)]γ dx

]
.

Using the expansion above, we obtain

Hγ(X) =
1

γ − 1
ln

[
1− caγαγ−1eγb

λ
α

B(a, b)γ
×

+∞∑
k=0

+∞∑
`=0

(
−γ(a+ b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k e`

λ
α

(`+ γb)γ
Γ

(
γ, (`+ γb)

λ

α

)]
.

The Shannon entropy of X is defined by S(X) = E(− ln[f(X)]) is a particular case of
the Rényi entropy when γ tends to 1+.

3.10. Order statistics

Let X1, . . . , Xn be the random sample from X and Xi:n be the i-th order statistic.
Then the pdf of Xi:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)[F (x)]i−1 [1− F (x)]n−i

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)jf(x)[F (x)]j+i−1.

It follows from (8) and (9) that

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

wmhm(x)

[
+∞∑
k=0

vk(1−Hk(x))

]j+i−1
.

Using a result from Gradshteyn and Ryzhik (2000), power series raised to a positive
power as follows (

+∞∑
k=0

akx
k

)n

=
+∞∑
k=0

dn,kx
k,

where the coefficients (dn,k)k∈N are determined from the recurrence equation: dn,0 = an0

and, for any m ≥ 1, dn,m = (1/(ma0))
m∑
k=1

(k(n + 1)−m)akdn,m−k. Therefore, noticing

that 1−Hk(x) =
(
e−

λ
α
(eαx−1)

)k
, we have

[
+∞∑
k=0

vk(1−Hk(x))

]j+i−1
=

+∞∑
k=0

dj+i−1,k(1−Hk(x)),
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where dj+i−1,0 = vj+i−10 and, for anym ≥ 1, dj+i−1,m = 1
mv0

m∑
k=1

(k(j+i)−m)vkdj+i−1,m−k.

By combining the equalities above, we obtain

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

+∞∑
k=0

wmdj+i−1,khm(x)(1−Hk(x)).

Finally, one can observe that hm(x)(1−Hk(x)) = mλeαxe−
(m+k)λ

α
(eαx−1) = m

m+k
um+k(x),

where um+k(x) denotes the pdf of the Gompertz distribution with parameters (m+k)λ
and α. So the pdf of i-th order statistic of the MBGz distribution can be expressed as
a linear combination of Gompertz pdfs, i.e.

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

+∞∑
k=0

wmdj+i−1,k
m

m+ k
um+k(x).

Let r be a positive integer. Then the r-th ordinary moment of Xi:n can be expressed
as

E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

+∞∑
k=0

wmdj+i−1,k
mλ

αr+1
e

(m+k)λ
α

∫ +∞

1

(lnu)re−
(m+k)λ

α
udu.

4. Statistical inference

4.1. Maximum likelihood estimation

We now investigate the estimation of the parameters of the MBGz distribution. Let
x1, . . . , xn be n observed values from the MBGz distribution and ξ = (λ, α, a, b, c) be
the vector of unknown parameters. The log likelihood function is given by

`(ξ) = an ln(c) + n ln(λ) + α
n∑
i=1

xi −
λb

α

n∑
i=1

(eαxi − 1) + (a− 1)
n∑
i=1

ln
(

1− e−
λ
α
(eαxi−1)

)
− n ln(B(a, b))− (a+ b)

n∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α
(eαxi−1)

)]
.

The maximum likelihood estimators of the parameters are obtained by maximizing
the log likelihood function. They can be obtained by solving the non-linear equations:
∂
∂λ
`(ξ) = 0, ∂

∂α
`(ξ) = 0, ∂

∂a
`(ξ) = 0, ∂

∂b
`(ξ) = 0, ∂

∂c
`(ξ) = 0 with

∂`(ξ)

∂λ
=
n

λ
− b

α

n∑
i=1

(eαxi − 1) + (a− 1)
n∑
i=1

1
α

(eαxi − 1)e−
λ
α
(eαxi−1)

1− e− λα (eαxi−1)

+ (a+ b)
n∑
i=1

(1− c) 1
α

(eαxi − 1)e−
λ
α
(eαxi−1)

1− (1− c)
(

1− e− λα (eαxi−1)
) ,
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∂`(ξ)

∂α
=

n∑
i=1

xi −
λb

α

n∑
i=1

[
xie

αxi − 1

α
(eαxi − 1)

]

+ (a− 1)
n∑
i=1

λ
α
e−

λ
α
(eαxi−1) [xieαxi − 1

α
(eαxi − 1)

]
1− e− λα (eαxi−1)

+ (a+ b)
n∑
i=1

(1− c)e− λα (eαxi−1)
[
xie

αxi − 1
α

(eαxi − 1)
]

1− (1− c)
(

1− e− λα (eαxi−1)
) ,

by setting B(1,0)(a, b) = ∂
∂a
B(a, b) and B(0,1)(a, b) = ∂

∂b
B(a, b) (one can remark that

B(1,0)(a, b) = ψ(a) − ψ(a + b) and B(0,1)(a, b) = ψ(b) − ψ(a + b), where ψ(x) denotes
the so called digamma function),

∂`(ξ)

∂a
= n ln c+

n∑
i=1

ln
(

1− e−
λ
α
(eαxi−1)

)
− nB

(1,0)(a, b)

B(a, b)

−
n∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α
(eαxi−1)

)]
,

∂`(ξ)

∂b
= −λ

α

n∑
i=1

(eαxi − 1)− nB
(0,1)(a, b)

B(a, b)
−

n∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α
(eαxi−1)

)]
and

∂`(ξ)

∂c
=
an

c
− (a+ b)

n∑
i=1

1− e− λα (eαxi−1)

1 + (1− c)
(

1− e− λα (eαxi−1)
) .

We can solve the above non-linear equations simultaneously. Mathematical package can
be used to get the maximum likelihood estimators of the unknown parameters. Also,
all the second order derivatives exist. As usual, the normal approximation for the
maximum likelihood estimators can be used for constructing approximate confidence
intervals, confidence regions and testing hypotheses of λ, α, a, b, c.

4.2. Simulation

It is very difficult to compare the theoretical performances of the different maxi-
mum likelihood estimates (MLEs) for the MBGz distribution. Therefore, simulation
is needed to compare the performances of the MLE mainly with respect to their mean
square errors for different sample sizes. A numerical study is performed using Mathe-
matica 9 software. Different sample sizes are considered through the experiments at size
n = 50, 100 and 150. The experiment will be repeated 3000 times. In each experiment,
the estimates of the parameters will be obtained by maximum likelihood methods of
estimation. The means and MSEs for the different estimators will be reported from
these experiments. We can see from Table 1 when n is increase MSE is decrease.
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Table 1: The MLEs and MSEs of MBGz distribution.

n Parameters Initial MLE MSE Initial MLE MSE
50 a 3.0 3.0024 0.5057 2.5 2.6424 0.1737

b 1.5 1.6409 0.1499 1.5 1.5219 0.0400
c 0.5 0.4941 0.0008 0.5 0.5050 0.0004
α 0.5 0.5422 0.0198 0.5 0.5291 0.0116
λ 0.5 0.5241 0.0387 0.5 0.5235 0.0122

100 a 3.0 3.0778 0.2458 2.5 2.5060 0.0754
b 1.5 1.6083 0.0779 1.5 1.5373 0.0291
c 0.5 0.4986 0.0003 0.5 0.4991 0.0003
α 0.5 0.5572 0.0147 0.5 0.5123 0.0029
λ 0.5 0.4926 0.0126 0.5 0.5035 0.0070

150 a 3.0 2.9041 0.1015 2.5 2.5125 0.0284
b 1.5 1.6159 0.0485 1.5 1.5232 0.0088
c 0.5 0.4940 0.0002 0.5 0.5002 0.0001
α 0.5 0.5477 0.0094 0.5 0.5137 0.0015
λ 0.5 0.4694 0.0072 0.5 0.4968 0.0015

50 a 1.5 1.4706 0.0325 1.5 1.5435 0.0641
b 1.8 1.7764 0.0639 1.8 1.7838 0.0955
c 0.5 0.5054 0.0013 1.5 1.5285 0.0203
α 0.5 0.4833 0.0029 0.5 0.4895 0.0008
λ 0.5 0.5488 0.0160 0.5 0.5364 0.0118

100 a 1.5 1.5138 0.0201 1.5 1.5194 0.0224
b 1.8 1.8177 0.0380 1.8 1.8309 0.0451
c 0.5 0.5004 0.0007 1.5 1.5010 0.0047
α 0.5 0.5007 0.0023 0.5 0.5011 0.0005
λ 0.5 0.5106 0.0059 0.5 0.5036 0.0028

150 a 1.5 1.5313 0.0102 1.5 1.4690 0.0094
b 1.8 1.8152 0.0194 1.8 1.8396 0.0258
c 0.5 0.5055 0.0003 1.5 1.4864 0.0017
α 0.5 0.5173 0.0022 0.5 0.5007 0.0004
λ 0.5 0.5044 0.0034 0.5 0.4943 0.0009
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4.3. Applications

This section provides an application to show how the MBGz distribution can be ap-
plied in practice. We compare MBGz to Exponentaited Generalized Weibull-Gompertz
distribution (EGWGz) by El-Bassiouny et al. (2017) and other well known distributions
in literature, Kumaraswamy-Gompertz (Kw-Gz), beta Gompertz(BGz) and Gompertz
(Gz) models. The MLEs are computed using Quasi-Newton Code for Bound Con-
strained Optimization and the log-likelihood function evaluated. The goodness-of-fit
measures, Anderson-Darling (A*), Cramer-von Mises (W*), Akaike Information Cri-
terion (AIC), Bayesian Information Criterion (BIC), and log-likelihood (ˆ̀) values are
computed. The lower the values of these criteria, the better the fit. The value for the
Kolmogorov Smirnov (KS) statistic and its p-value are also provided. The required
computations are carried out in the R software.

Data set 1

The second data set represents the time to failure(103 h) of turbocharger of one
type of engine given in Xu et al. (2003). The data is as follows: 0.0312, 0.314, 0.479,
0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.977, 1.006, 1.021, 1.027, 1.055,
1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359,
1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570,
1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818,
1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585,
2.585

Data set 2

The data Set (of size 69) by Badar and Priest (1982) correspond to a single fiber
with 20 and 101 mm of gauge length, respectively. The data is as follows: 1.6, 2.0, 2.6,
3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0,
7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0
Tables 2 and 4 list the maximum likelihood estimates (and the corresponding standard
errors in parentheses) of the unknown parameters of the MBGz distribution for Data
Set 1 and Data Set 2 respectively. Tables 3 and 5 show the statistics AIC, BIC, W*,
A*, KS, P-Value values for all the considered models. We then see that the proposed
MBGz model fits these data better than the other models. The MBGz model may
be an interesting alternative to other models available in the literature for modeling
positive real data. To complete this fact, PP, QQ, epdf and ecdf plots of the MBGz
distribution given in Figures 2 and 3 for Data Set 1 and Data Set 2 respectively.
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Table 2: MLEs (standard errors in parentheses) for Data Set 1.

Distribution Estimates
MBGz(λ, α, a, b, c) 0.0085 2.5537 1.0737 1.3153 5.0687

(0.0067) (0.5727) (0.3197) (0.8933) (3.3003)
EGWGz(λ, a, b, c, β) 3.2078 2.4598 0.0203 1.8974 0.5460

(1.2099) (0.6498) (0.0531) (1.8193) (0.2430)
KwGz(a, b, c, d, θ) 0.1861 1.4948 1.4909 0.9811

(0.3130) (0.5076) (0.4735) (2.4368)
BGz(a, b, θ, v) 0.3144 1.5591 1.4798 0.4966

(0.4283) (0.3658) (0.4543) (0.8692)
Gz(λ, α) 0.0841 1.8811

(0.0268) (0.2043)

Table 3: The AIC, BIC, W*, A*, KS, P-Value values for Data Set 1.

Dist ˆ̀ AIC BIC W* A* KS P-Value
MBGz 50.0387 110.0776 118.2481 0.0328 0.2745 0.0539 0.9889

EGWGz 52.6888 115.3776 126.5482 0.0706 0.5341 0.0785 0.7885
KwGz 51.2042 110.4084 119.3448 0.0529 0.4125 0.0640 0.9396
BGz 51.1518 110.3026 119.2399 0.0518 0.4057 0.0627 0.9484
Gz 53.9686 111.9374 122.4056 0.0819 0.5921 0.0810 0.7547

Table 4: MLEs (standard errors in parentheses) for Data Set 2.

Distribution Estimates
MBGz(λ, α, a, b, c) 0.0098 0.5270 0.8768 4.5635 0.1561

(0.0116) (0.1599) (0.3893) (0.8862) (0.2442)
EGWGz(λ, a, b, c, β) 0.0101 0.6077 0.1078 1.6929 0.6613

(0.0141) (0.1506) (0.3427) (1.2539) (0.3379)
KwGz(a, b, θ, v) 0.0133 0.2923 2.0164 13.7085

(0.0120) (0.1641) (0.7880) (7.0208)
BGz(a, b, c, d, θ) 0.0125 0.1856 3.7622 2.0116

(0.0100) (0.1601) (2.5635) (3.3802)
Gz(λ, α) 0.0074) (0.6243)

(0.0035) (0.0748)

Table 5: The AIC, BIC, W*, A*, KS, P-Value values for Data Set 2.

Dist ˆ̀ AIC BIC W* A* KS P-Value
MBGz 78.2184 168.1770 176.0214 0.0222 0.1840 0.0707 0.9888

EGWGz 79.3744 168.5489 178.5933 0.0479 0.2922 0.0821 0.9623
KwGz 80.7197 169.4395 176.1950 0.0430 0.3326 0.0966 0.8489
BGz 82.9924 173.9849 180.7404 0.0922 0.6736 0.1080 0.7389
Gz 80.9566 168.9234 177.2911 0.0359 0.2335 0.0903 0.8299

17



Empirical and theoretical dens.

Data

D
en

si
ty

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

empirical
theoretical

0.5 1.0 1.5 2.0 2.5

0.
0

1.
0

2.
0

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Figure 2: PP, QQ, epdf and ecdf plots of the MBGz distribution for Data Set 1.
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Figure 3: PP, QQ, epdf and ecdf plots of the MBGz distribution for Data Set 2.
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