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Abstract—In this paper, we consider a simple downlink chan-
nel with a multi-antenna base station and two single-antenna
receivers. We assume that the channel is deterministic and known
to all the nodes. Our contribution is two-fold. First, we show that
linear precoding with private streams can have unbounded gap
to the capacity of the channel. Second, we show that using rate-
splitting with a simple power allocation one can achieve the sum
capacity to within a constant gap for any channel realization.

I. INTRODUCTION

The capacity region of a broadcast channel (BC, also known
as downlink channel) is still unknown in general [1]. In the
particular case of degraded BC, in which the channel can
be somehow ordered, the problem is solved and a simple
superposition coding is capacity achieving [2]. Although the
multi-antenna BC with Gaussian noise is not degraded, its
capacity region has also been found [3], [4] and can be achieved
with dirty paper coding (DPC) [5]. The implementation of
DPC is however not trivial, due to its non-linear nature and the
fact that it is sensitive to the channel state information at the
transmitter side (CSIT) [6]. As such, linear precoding is used
in most practical systems instead. Apart from the simplicity,
it can be shown that linear precoding schemes such as zero-
forcing achieve the maximum degrees of freedom (DoF) of
the system [7], [8].

In this paper, we first show that any linear precoding scheme
can be far from optimal, since the gap between the achievable
sum rate of the best linear scheme and the sum capacity can be
unbounded. Then, we show that by introducing rate-splitting
and a common stream, one can achieve the sum capacity to
within a constant number of bits for any channel realization.
The precoding of both the common and private streams is still
linear.

The idea of using rate-splitting to partially mitigate inter-
ference has been introduced in [9], [10] for the interference
channels. Essentially, each transmitter splits the individual
message into private and common parts, in which the common
parts are decodable by (though not intended to) all receivers.
Decodable interference can therefore be completely “removed”.
It has been shown in [11] that such a scheme achieves the
capacity region of the two-user interference channel to within
one bit. For broadcast channels, rate splitting has been exploited
in [12] in a broadcast channel with imperfect CSIT. Extensions
have been made in later works [13], [14], [15]. In the current

work, our main contribution is to establish the optimality of
linearly precoded rate splitting in the constant gap sense.

The rest of the paper is organized as follows. The problem is
described formally in Section II. The achievable rate of linear
precoding schemes is studied in Section III, whereas that of
rate splitting is derived in Section IV. Finally, we conclude the
paper with some remarks on possible extensions.

II. PROBLEM STATEMENT

Notation: In this paper, we use the following notational
conventions. For random quantities, we use upper case non-
italic letters, e.g., X, for scalars, upper case non-italic bold
letters, e.g., VVV, for vectors, and upper case letter with bold and
sans serif fonts, e.g., MMM, for matrices. Deterministic quantities
are denoted in a rather conventional way with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . Logarithms are
in base 2. The Euclidean norm of a vector and a matrix is
denoted by ‖vvv‖ and ‖MMM‖, respectively.

A. Channel model

We consider a two-user multiple-input single-output (MISO)
broadcast channel (BC). For simplicity, we assume that the
number of transmit antennas is nt = 2. We assume that the
channel matrix is drawn from the set of generic matrices and
is known globally. Let us fix the channel realization to HHH , and
the channel output at time t is Yk[t] = hhhT

kxxx[t]+Zk[t], k = 1, 2,
or in a compact form[

Y1[t]
Y2[t]

]
= HHHxxx[t] + ZZZ[t], t = 1, . . . , n,

where ZZZ[t] ∼ CN (0, III2) is the temporally i.i.d. additive white
Gaussian noise (AWGN) in time. The input sequence is subject
to the power constraint 1

n

∑n
t=1 ‖xxx[t]‖2 ≤ P .

B. Sum capacity

The capacity region of this channel is well known and can be
achieved with dirty paper coding. The capacity region can also
be characterized with the dual multiple access channel (MAC)
with sum power constraint. In particular, the sum capacity is

Csum = max
tr(ΛΛΛ)≤P

log det(III +HHHHΛΛΛHHH), (1)

where ΛΛΛ is diagonal. Since we have

log det(III + PHHHHHHH)− 2 ≤ Csum ≤ log det(III + PHHHHHHH),



for our purpose, it is without loss of optimality to consider the
quantity log det(III + PHHHHHHH) as the capacity as we are only
interested in capacity to within a constant gap. Further,

log det(III + PHHHHHHH)

= log
(
1 + P‖hhh1‖2 + P‖hhh2‖2 + P 2det(HHHHHHH)

)
,

which is within log 3 bits/s/Hz to

max
{

log(1 + P‖hhh1‖2), log(1 + P‖hhh2‖2),

log(1 + P 2det(HHHHHHH))
}
. (2)

Note that the first two terms in (2) can be achieved with single-
user transmission, by choosing the stronger user. Therefore,
the only non-trivial case is when log(1 +P 2det(HHHHHHH)) is the
dominating term in (2).

III. LINEAR PRECODING

Now let us restrict ourselves to linear precoding schemes at
the transmitter and treating interference as noise at the receivers.
In particular, we let XXX = XXX1 +XXX2 such that E [XXX1XXXH

1] = AAA and
E [XXX2XXXH

2] = BBB with the following eigenvalue decompositions

AAA =

[
uA vA
ṽA ũA

] [
λA

µA

] [
u∗A ṽ∗A
v∗A ũ∗A

]
,

BBB =

[
uB vB
ṽB ũB

] [
λB

µB

] [
u∗B ṽ∗B
v∗B ũ∗B

]
, (3)

where |ũA|2 = |uA|2 = 1−|ṽA|2 = 1−|vA|2 and λA ≥ µA ≥
0 without loss of generality; same convention is applied for BBB.

While the general case shall be considered later, let us first
assume that the channel matrix has the following triangular
form

HHH =

[
1 0
f g

]
, (4)

where the normalization can be done by scaling the transmit
power; hence, hhh1 = [1 0]T and hhh2 = [f g]T. In this case,
the sum rate (2) becomes

Csum ≈ max
{

log(1 + P ), log(1 + P |f |2 + P |g|2),

log(1 + P 2|g|2)
}
, (5)

where we use “≈” for constant-gap approximation.
Assuming Gaussian signaling for the linearly precoded

signals XXX1 and XXX2, we have

R1 = log

(
1 +

‖hhh1‖2AAA
1 + ‖hhh1‖2BBB

)
= log

(
1 +

A11

1 +B11

)
,

R2 = log

(
1 +

‖hhh2‖2BBB
1 + ‖hhh2‖2AAA

)
, (6)

where we use the notation ‖hhhk‖2AAA = hhhT

kAAAhhh
∗
k and ‖hhhk‖2BBB =

hhhT

kBBBhhh
∗
k. Note that we are only interested in the case with

A11

1 +B11
≥ 1 and

‖hhh2‖2BBB
1 + ‖hhh2‖2AAA

≥ 1, (7)

for otherwise it is equivalent to the single user case to within a
constant gap. In this case, the achievable sum rate with linear
precoding can be written as

R1 +R2 ≈ log

(
A11

1 +B11

)
+ log

(
‖hhh2‖2BBB

1 + ‖hhh2‖2AAA

)
= log

(
A11

1 + ‖hhh2‖2AAA

)
+ log

(
‖hhh2‖2BBB

1 +B11

)
. (8)

We can now maximize over AAA and over BBB separately. In fact,
one can show the following lemma.

Lemma 1. For any AAA and BBB in (3), we can show that

A11

1 + ‖hhh2‖2AAA
≤ 2 min

{
2

|f |2
+ 2
|g|2

|f |2
λA, λA

}
,

‖hhh2‖2BBB
1 +B11

≤ 2|f |2 + 2|g|2λB .

Proof. Let us first consider the part with AAA.

A11

1 + ‖hhh2‖2AAA
=

|uA|2λA + |vA|2µA
|fuA + gṽA|2λA + |fvA + gũA|2µA + 1

.

Since |fuA+gṽA|2+|fvA+gũA|2 = |f |2+|g|2, we use a ≤ b
to denote the ordered version of |fuA+gṽA|2 and |fvA+gũA|2
and have a ≥ (|fuA| − |gṽA|)2 and 2b ≥ |f |2 + |g|2. Using
the fact that λA ≥ µA, we have the following upper bound

A11

1 + ‖hhh2‖2AAA

≤ |uA|
2λA + |vA|2µA

aλA + bµA + 1

≤ |uA|
2λA

aλA + 1
+
|vA|2µA
bµA + 1

≤ |uA|2λA
(|fuA| − |gṽA|)2λA + 1

+
µA

|f |2+|g|2
2 µA + 1

≤ max
uA: |fuA|≥|gṽA|

|uA|2λA
(|fuA| − |gṽA|)2λA + 1

+ min

{(
|f |2 + |g|2

2

)−1

, µA

}
(9)

≤ max
uA: |fuA|≥|gṽA|

min

{
|uA|2

(|fuA| − |gṽA|)2
, |uA|2λA

}
+ min

{(
|f |2 + |g|2

2

)−1

, µA

}
(10)

≤ min

{(
1√
λA

+ |g|
)2

λA
|f |2

, λA

}

+ min

{(
|f |2 + |g|2

2

)−1

, µA

}
(11)

≤ min

{
2

|f |2
+ 2
|g|2

|f |2
λA, λA

}
+ min

{(
|f |2 + |g|2

2

)−1

, µA

}

≤ 2 min

{
2

|f |2
+ 2
|g|2

|f |2
λA, λA

}
, (12)



where (9) is from the fact that the objective function is
increasing with |fuA| when |fuA| ≤ |gṽA|; since in (10),

|uA|2
(|fuA|−|gṽA|)2 is decreasing with |uA| and |uA|2λA is increas-
ing with |uA|, the max-min is attained when both terms are
equalized or when |uA| = 1; (11) is indeed an upper bound
of (10). The second part can be shown as follows.

‖hhh2‖2BBB
1 +B11

=
|fuB + gṽB |2λB + |fvB + gũB |2µB

|uB |2λB + |vB |2µB + 1

≤ 2
|f |2(|uB |2λB + |vB |2µB) + |g|2(|ṽB |2λB + |ũB |2µB)

|uB |2λB + |vB |2µB + 1

≤ 2|f |2 |uB |2λB + |vB |2µB
|uB |2λB + |vB |2µB + 1

+ 2|g|2 λB
|uB |2λB + |vB |2µB + 1

≤ 2|f |2 + 2|g|2λB . (13)

We are now ready to provide our first main result.

Proposition 1. The gap between the achievable rate by linear
precoding (LP) and the capacity is not bounded.

Proof. We prove the statement with a specific example. We
consider high SNR P and let the channel coefficients scale
with P as f = Pαf and g = Pαg for some αf , αg ∈ R. It
follows that the achievable sum rate also scales with P as
dLP(αf , αg) logP +O(1). Similarly, the sum capacity scales
as dDPC(αf , αg) logP + O(1). In the literature, the pre-log
factor is known as the generalized degree of freedom (GDoF).
If we can show that dLP(αf , αg) < dDPC(αf , αg) for some
(αf , αg), then the rate gap is necessarily unbounded when
P →∞.

To that end, we let αf > αg > αf − 1
2 ≥ 0. With this

setting, (12) scales as P 1+2αg−2αf and (13) scales as P 1+2αg .
It follows that dLP ≤ 2 + 4αg − 2αf . From (5), we verify that
dDPC = max {1, 1 + 2αf , 1 + 2αg, 2 + 2αg} = 2 + 2αg.
Thus, we have shown that dDPC > dLP for such (αf , αg).

Remark III.1. When the channel matrix HHH is bounded, the
linear precoding schemes do achieve the optimal DoF as shown
in [7], [8]. However, DoF is a coarse measure that only
characterizes the prelog of the channel capacity when the
channel gains are bounded. If one allows the channel gains to
grow with the transmit power polynomially, then we obtain a
finer measure from the prelog of the channel capacity, which
is known as the generalized DoF (GDoF). The constant-gap
optimality is stronger than GDoF and DoF since we allow
arbitrary channel gains without any constraint. As revealed in
the above example, although even ZF precoding can achieve the
optimal DoF, no linear precoding schemes can be constant-gap
optimal.

Now, let us consider the general case with non-triangular
channel matrix. We can transform the channel as follows.
Assuming hhh1 6= 0, we use the LQ decomposition

HHH = LLLQQQ =

[
‖hhh1‖ 0
f‖hhh1‖ g‖hhh1‖

]
QQQ, (14)

where QQQ is unitary and (|f |2 + |g|2)‖hhh1‖2 = ‖hhh2‖2. Then, the
received signal becomes

HHHxxx =

[
1 0
f g

]
‖hhh1‖QQQxxx =

[
1 0
f g

]
x̃xx, (15)

where we define x̃xx := ‖hhh1‖QQQxxx. Note that the original channel
is equivalent to the new one from x̃xx to yyy, since QQQ is unitary and
‖hhh1‖ 6= 0 and both are known globally. The only difference is
now the sum power constraint becomes P̃ = P‖hhh1‖2. Same
arguments apply if we swap the roles of user 1 and user 2. We
can obtain the following results.

Proposition 2. The achievable rate of linear precoding is
upper bounded, to within a constant gap, by

max
{

log(1 + P‖hhh1‖2), log(1 + P‖hhh2‖2),

log(1 + βρP
2det(HHHHHHH))

}
,

where βρ := min
{

1−ρ2
ρ2 , 1

}
with ρ :=

∣∣ hhhH
1hhh2

‖hhh1‖ ‖hhh2‖
∣∣.

Proof. First, let us apply (14) and (15), and we obtain the
trangular form (4) with a new power constraint P̃ = P‖hhh1‖2.
It can be verified that

|f | = ‖h
hh2‖
‖hhh1‖

ρ, |g| = ‖h
hh2‖
‖hhh1‖

√
1− ρ2,

where ρ :=
∣∣ hhhH

1hhh2

‖hhh1‖ ‖hhh2‖
∣∣. Let us define S as the set of AAA and BBB

such that (7) is satisfied, and S̄ the complementary set. Then,
applying Lemma 1 on (8), we have

max
(AAA,BBB)∈S

R1 +R2

/ log

(
4 min

{
2 + 2P̃

(
|g|2 +

|g|2

|f |2
)

+ 2P̃ 2 |g|4

|f |2
,

P̃ |f |2 + P̃ 2|g|2
})

= log

(
4 min

{
2 + 2P (1− ρ2)

(
‖hhh2‖2 +

‖hhh1‖2

ρ2

)
+ 2P 2 1− ρ2

ρ2
det(HHHHHHH), Pρ2‖hhh2‖2 + P 2det(HHHHHHH)

})
≤ log

(
4

{
2 + 2P

(
‖hhh2‖2 + ‖hhh1‖2

)
+ 2P 2βρdet(HHHHHHH)

})
(16)

≈ max

{
log(1 + P‖hhh1‖2), log(1 + P‖hhh2‖2),

log(1 + βρP
2det(HHHHHHH))

}
, (17)

where in the first inequality we used λA, λB ≤ P̃ := P‖hhh1‖2;
(16) can be verified by looking at both cases 1−ρ2

ρ2 ≷ 1. For
the set of AAA and BBB that do not satisfy (7), we have, from (6)

max
(AAA,BBB)∈S̄

R1 +R2



≤ max
{

1 + log(1 + P‖hhh1‖2), 1 + log(1 + P‖hhh2‖2)
}

≈ max
{

log(1 + P‖hhh1‖2), log(1 + P‖hhh2‖2)
}
. (18)

The proof is complete by combining both (17) and (18).

IV. RATE SPLITTING

Instead of sending only private messages, the transmitter
can send both common and private messages and let the
users “share” the common message. In this way, the potential
interference in the previous case can be converted to common
message that is decoded by both users. Intuitively, we somehow
let each user decode the interference and remove it to improve
the achievable rate. In the following, we show that a simple
precoding scheme combined with rate splitting can achieve the
capacity to within a constant gap.

Specifically, we let XXX = XXX0+XXX1+XXX2 such that E [XXXkXXX
H

k] =
QQQk, k = 0, 1, 2, with

QQQ1 = P1

(
III− hhh∗2hhh

T

2

‖hhh2‖2

)
, QQQ2 = P2

(
III− hhh∗1hhh

T

1

‖hhh1‖2

)
. (19)

In other words, the private streams XXX1 and XXX2 are precoded
with zero-forcing. At the receiver side, each user decodes jointly
its private stream and the common stream as in a two-user MAC
channel. It readily follows that the rate triple (Rc, Rp1, Rp2)
is achievable if

Rp1 ≤ log
(
1 + hhhT

1QQQ1hhh
∗
1

)
Rp2 ≤ log

(
1 + hhhT

2QQQ2hhh
∗
2

)
Rc +Rp1 ≤ log

(
1 + hhhT

1(QQQ1 +QQQ0)hhh∗1
)

Rc +Rp2 ≤ log
(
1 + hhhT

2(QQQ2 +QQQ0)hhh∗2
)

Rc ≤ min
{

log
(
1 + hhhT

1QQQ0hhh
∗
1

)
, log

(
1 + hhhT

2QQQ0hhh
∗
2

)}
.

Let Rc = Rc1+Rc2 and R1 = Rp1+Rc1 and R2 = Rp2+Rc2.
We can use Fourier-Motzkin elimination [16] to obtain the
following region on (R1, R2).

R1 ≤ min
{

log
(
1 + hhhT

1QQQ1hhh
∗
1

)
+ log

(
1 + hhhT

2QQQ0hhh
∗
2

)
,

log
(
1 + hhhT

1(QQQ1 +QQQ0)hhh∗1
)}

(20)

R2 ≤ min
{

log
(
1 + hhhT

2QQQ2hhh
∗
2

)
+ log

(
1 + hhhT

1QQQ0hhh
∗
1

)
,

log
(
1 + hhhT

2(QQQ2 +QQQ0)hhh∗2
)}

(21)

R1 +R2 ≤ min
{

log
(
1 + hhhT

2QQQ2hhh
∗
2

)
+ log

(
1 + hhhT

1(QQQ1 +QQQ0)hhh∗1
)
,

log
(
1 + hhhT

1QQQ1hhh
∗
1

)
+ log

(
1 + hhhT

2(QQQ2 +QQQ0)hhh∗2
)}
.

(22)

From the above region, it is not hard to verify that (22) provides
the achievable sum rate RRS

sum := R1 +R2 since it dominates
the sum of (20) and (21). Let P1 = P2 = P

3 and QQQ0 = P
3 III2,

we have

RRS
sum

= min

{
log
(
1 + hhhT

1QQQ1hhh
∗
1

)
+ log

(
1 +

P

3
‖hhh2‖2 + hhhT

2QQQ2hhh
∗
2

)
,

log
(
1 + hhhT

2QQQ2hhh
∗
2

)
+ log

(
1 +

P

3
‖hhh1‖2 + hhhT

1QQQ1hhh
∗
1

)}
. (23)

Finally, we can prove the second main result of our paper.

Proposition 3. The selection between single-user transmission
and the proposed rate splitting (RS) scheme achieves the sum-
capacity (1) to within a constant gap.

Proof. With single-user transmission, one can achieve the first
two terms in (2). It is enough to show that the proposed rate
splitting scheme achieves the third term in (2). Indeed, it is
easy to verify that

log
(
1 + hhhT

1QQQ1hhh
∗
1

)
+ log

(
1 +

P

3
‖hhh2‖2 + hhhT

2QQQ2hhh
∗
2

)
≥ log

(
1 +

P

3
hhhT

1QQQ1hhh
∗
1‖hhh2‖2

)
= log

(
1 +

P 2

9
det(HHHHHHH)

)
(24)

log
(
1 + hhhT

2QQQ2hhh
∗
2

)
+ log

(
1 +

P

3
‖hhh1‖2 + hhhT

1QQQ1hhh
∗
1

)
≥ log

(
1 +

P

3
hhhT

2QQQ2hhh
∗
2‖hhh1‖2

)
= log

(
1 +

P 2

9
det(HHHHHHH)

)
, (25)

where (24) and (25) are from the choices of QQQ1 and QQQ2 in
(19). Therefore, plugging the above individual terms back to
(23), we have

RRS
sum ≥ log

(
1 +

P 2

9
det(HHHHHHH)

)
≥ log

(
1 + P 2det(HHHHHHH)

)
− log 9,

which completes the proof.

V. CONCLUSION

We have investigated the two-user multiple-input single-
output broadcast channel. We have shown that, using rate
splitting combined with linear precoding, the sum capacity can
be achieved to within a constant gap. Remarkably, using linear
precoding alone can be far from optimal, with an unbounded
gap to the capacity.

Although it is not considered in the current paper, we believe
that the constant gap result holds for the whole capacity region.
One should be able to prove the result using the dual MAC
region, instead of the dual MAC sum rate (1). Another possible
extension is for the case with multi-antenna receivers, for which
we believe that the constant gap result continues to hold. Finally,
it would be interesting to extend the result to the general multi-
user MIMO case, which seems to be highly non-trivial with
the increasing number of messages in the system.
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