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Abstract

We propose an adaptive numerical solver for the study of viscoelastic 2D
two-phase flows using the volume-of-fluid method. The scheme uses the robust
log conformation tensor technique of Fattal & Kupferman [1, 2] combined with
the time-split scheme proposed by Hao & Pan [3]. The use of such a time-split
scheme has been proven to increase the stability of the numerical computation
of two-phase flows. We show that the adaptive computational technique can be
used to simulate viscoelastic flows efficiently. The solver is coded using the open-
source libraries provided by the Basilisk [4] platform. In particular, the method is
implemented for Oldroyd-B type viscoelastic fluids and related models (FENE-
P and FENE-CR). The numerical scheme is then used to study the splashing of
weakly viscoelastic drops. The solvers and tests of this work are freely available
on the Basilisk [4] web site [5].

1. Introduction

Using numerical solutions for complex rheologies is nowadays a common pre-
dictive tool, since the efficiency of the numerical schemes improves continuously
and the computational cost decreases. Three main schemes have been typically
used in computational fluid dynamics: Finite Differences (FD), Finite Volume
(FV) and finite elements (FE). The presence of interfaces poses additional diffi-
culties. Typical approaches to free surface simulations are the Marker and Cell
(MAC), the Volume of Fluid (VoF) and the Level Set (LS) methods. The MAC
method has been the reference method for numerous works since the pioneer-
ing work of Tomé et al (1996)[6]. Their original version of the MAC scheme is
implemented within the framework of the FD method with the advection term
approximated using the VONOS scheme[7]. The original implementation, con-
ceived for simulating Oldroyd-B fluids, has been adapted to solve viscoelastic
fluids of finite extensity such as FENE-CR fluids [8], using the log conforma-
tion kernel[9] or the square root kernel [10]. Other numerical methods, such as
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the Smoothed-Particle-Hydrodynamics (SPH) method, can also be found in the
literature on computational rheology[11, 12].

The Finite-Element (FE) method applied to viscoelastic flows goes back to
the pioneering work of [13, 14, 15]. Successful implementations of viscoelastic
fluids using FE have recently been conducted [16, 17] and is the basis of commer-
cial codes such as Polyflow R©. The FE implementation of the log conformation
schemes carried out by Hulsen et al. [18] closely follows the publication of the
original scheme. The FE implementation of the log conformation performed by
Hao & Pan [3] is particularly relevant for the present work since the time-split
scheme proposed in that work is applied here.

Most of the numerical simulations loose convergence and destabilize when
the relaxation parameter, or its dimensionless counterpart, the Weissenberg
number, is increased above a threshold value. This behaviour, known as the
High-Weissenberg number problem (HWNP), has been a severe hindrance for
computational rheology. Fortunately the HWNP can be largely avoided using
the technique proposed by Fattal & Kupferman [1, 2]. These authors proposed
formulating the equations in terms of the logarithm of the conformation tensor.
Interestingly, this log conformation (kernel) formulation guarantees the positive
definiteness of the conformation tensor during the entire simulation. The success
of this kernel method has been immediate, and is used in practice as a substitute
for the classical approach in computational rheology. The log conformation
kernel has been implemented within the FD method [1, 2], the FE method [18, 3]
and the FV method [19]. In the same spirit [20] proposed using the square root
of the conformation tensor to preserve the positive definiteness. Although less
common than the log conformation kernel, the square root conformation kernel
has been used recently to analyze the lid cavity problem [21, 10]. Although
other conformation kernels are possible [22, 9], these two seem to be the most
accurate.

FV is, at present, the method of reference in CFD (included commercial
codes). Several reasons support its popularity. Remarkably, the method is in-
trinsically conservative, and the simulation of two-phase flows is straightforward
since it does not require any special treatment. Among the authors contributing
to the development of the FV scheme applied to viscoelastic flows, we can out-
line Alves and co-workers [23, 24]. These authors proposed a scheme consisting
of a modification of the pressure-velocity coupling SIMPLEC algorithm com-
bined with a new flux limiter for the advection term, CUBISTA, better suited
for rheological fluids. Recently it has been shown that a streamfunction–log-
conformation methodology [25, 26] can provide stable numerical simulations
of flows with very high Weissenberg numbers. Figueiredo et al [27] have shown
that the log-conformation formulation can be used together with the Continuum
Surface Force method (CSF) to simulate accurately highly viscoelastic, surface
tension dependent, two phase flows. Some implementations are constructed,
profiting from existing CFD toolboxes, such as OpenFOAM c©[28, 29, 30, 31].
The efforts of some authors who put their codes at the disposal of the scientific
community are worth mentioning. This collaborative spirit allows a continuous
improvement of the codes, as those done by Pimenta & Alves [31].
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Among the most common rheological models, we find the Oldroyd-B[32],
Giesekus[33], FENE-type[34, 35] or Phan-Thien-Tanner (PTT) [36] models.
Each of these models can better suit the particular solvent-polymer solution
or melt employed in a given problem. For example, either the Oldroyd-B or the
FENE-type seems to fit properly the rheological behaviour of aqueous solutions
of polyacrylamide (PAA) [37, 38]. Both the FENE-P and FENE-CR models
correct the more simple Oldroyd-B model by imposing a maximum stretch that
cannot be exceeded (FENE stands for Finitely Extensible Nonlinear Elastic),
with the difference between them being the statistical closure used for the restor-
ing force; P denotes the Peterlin’s closure [34] and CR follows from the closure
proposed by Chilcott & Rallison[35]. However, numerical simulations seldom
match quantitatively the experiments in all of the possible regimes. Note, for
example, that numerical simulations, using the Oldroyd-B model, have been
employed successfully to explain the origin of the “beads on string” structure
appearing in the breakup of weakly viscoelastic droplets [39, 40], but conversely,
overestimate largely the damping factor in slightly vibrating pendant droplets
[41].

We construct the viscoelastic solver using the free toolbox Basilisk developed
by S. Popinet [4]. Among the different solvers available in Basilisk we can find
a library which deals with incompressible fluid problems with a second-order in
space time-splitting projection method. Extra forces in the momentum equation
can be easily included in the solver in a staggered way to avoid parasitic cur-
rents, and facilitate the balance of forces in steady equilibrium situations. The
advection term in the momentum equation is computed using the Bell-Colella-
Glaz (BCG) second order upwind method [42]. The VoF method is used for
two-phase flows with the advection of the interface performed using the conser-
vative scheme of [43]. Surface tension forces are added using Brackbill’s CSF
procedure [44] in a balanced manner [45]. Basilisk also offers tools to easily per-
form on-the-fly adaptation of the grid depending on the particularities of the
flow studied. Adaptation has been used for viscoelastic fluids problems together
with FE schemes [46, 47]. Saramito [46] uses an anisotropic auto-adaptive mesh
library to search efficient unstructured meshes capable to provide accurate sta-
tionary solutions to the lid cavity problem. In the method of Jaensson et al
[47], the grid moves with the fluid. The mesh tends to become highly distorted
and, as a consequence, inaccurate. Jaensson et al tackles the distortion by
performing a periodical framing and remeshing as the computation proceeds.

On this platform we have implemented the classic viscoelastic approach in
which the advancing equation is written in terms of the stress tensor. We have
also implemented kernel conformation approaches, either the log conformation
kernel of Fattal & Kupferman, or the square root kernel of Balci et al. In
all cases a time-split scheme is used with a calculation of the advection term
with the BCG upwind scheme. For the log conformation kernel approach we go
further with the time splitting by adopting the scheme of Hao & Pan (2007).
The constitutive model of reference in this work is Oldroyd-B, although for the
kernel conformation approaches we have implemented also the FENE-P and the
FENE-CR constitutive models for illustrative purpose.
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With these implementations we intend to (i) put at the disposal of the sci-
entific community, a validated, ready-to-use, open-source solver using either the
log conformation or the square root methodologies that can deal with multi-
phase flows and fluids of complex rheology; (ii) gain insight on the advan-
tages/drawbacks of the log conformation compared to the square root kernel
in the case of two-phase flows; (iii) gain insight on the use of the adaptation of
the grid in the resolution of viscoelastic two-phase problems and (iv) report the
results on the simulation of the spreading of a weakly viscoelastic fluid after its
impact on a flat surface that can be either solid or a liquid layer or bath.

The impact of liquid droplets onto solid surfaces is present in many applica-
tions. Most of them search for a control of the coating of the solid by the fluid
by managing the dynamics of the impacting droplets. Many investigators have
dedicated their efforts to this area of study when the fluid is Newtonian. A thor-
ough review of the state-of-art research on this issue can be found in [48]. The
addition of very small amounts of polymers to a solvent fluid enables a new de-
gree of freedom for this control. In particular, it has been shown that very dilute
polymeric solutions inhibit the rebound of droplets over hydrophobic surfaces
[49]. In that article the impact dynamics of a droplet of water are compared
with that doped with 200 ppm of Polyethylene Oxide (PEO). The spreading
stage looks very similar for both Newtonian and viscoelastic fluids. The spread-
ing is dominated by inertia, with negligible viscoelastic forces. Therefore, both
droplets reach the same maximum width at the same time. However, the recoil-
ing stage is much slower in the case of the doped droplet. Initially the slowdown
of the receding contact line was attributed to the viscoelastic bulk phenomena
in the vicinity of the contact line, but direct visualization has shown that the
curbing is an interfacial phenomena between the substrate and the drop. The
contact line slows down because the polymer molecules are stretched perpendic-
ularly to the contact line as the drop edge sweeps the substrate [49]. Recently
Izbassarov & Muradoglu (2016) [50] and Wang et al. (2017) [51] have stud-
ied numerically the spreading and receding of impacting viscoelastic droplets.
[50] use a sharp interface scheme (front tracking) and set the contact angle ad
hoc at each computational step with the Kistler correlation. The numerical
work described in [51] is accomplished using the viscoelastic Giesekus model to-
gether with the diffuse-interface Cahn-Hilliard model in which the interfaces are
considered as thin transition regions where the interfacial forces are smoothly
distributed. The objective of this work was to study the dynamic of the contact
line (more precisely the dynamic of the contact angle) when viscoelasticity is
present. Recently, [52] have studied experimentally the dynamics of the splash-
ing of weakly non-Newtonian drops onto a smooth surface. These authors pay
special attention to the transition between different splashing modes (prompt
splash, no splash, or corona splash) due to the addition of the polymer. They
report that visco-elasticity hinders the development of prompt splashing.

The literature on the splashing of viscoelastic fluids on liquid baths is not as
vast as in the case of Newtonian fluids. [53] studied the splashing of viscoelastic
droplets onto either Newtonian or viscoelastic baths. This issue is important,
for example, for the formation of capsules or gelled beads.
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This manuscript is organized as follows. In section 2 the governing equations
of an isothermal and incompressible viscoelastic fluid are described. The log and
the square root kernels are briefly derived. Details on the numerical schemes
are given in section 3. Validation tests of the implemented numerical schemes
are performed in section Appendix C. In section 5 we focus on the problem of
the splash of weakly viscoelastic droplets.

2. Governing equations

The equations governing the problem is the set formed by the mass conser-
vation equation,

∇ · u = 0, (1)

and the momentum conservation,

ρ(∂tu + u · ∇u) = −∇p+∇ · τ + γκnδs + ρg (2)

which relates inertia changes to, respectively, the gradient of pressures, fluid
internal stresses acting against deformation, surface tension forces and gravi-
tational forces. We denote the density, velocity, pressure and surface tension,
curvature by ρ, u, p, γ and κ. δs stands for the Dirac delta being non-zero at
the interface and zero elsewhere. The fluid internal stresses are usually split
into the solvent part, τs, and the polymeric (viscoelastic) contribution τp,

τ = τs + τp, (3)

while the solvent stress part depends on the deformation tensor as expressed for
the usual Newtonian fluid,

τs = 2µsD = µs(∇u +∇uT ) ,

and the polymeric stress, τp, takes into account memory effects of the polymers.
Several constitutive rheological models are available in the literature with poly-
meric stresses τp, which are typically functions fS(·) of the conformation tensor
A,

τp =
µpfS(A)

λ

where λ is the relaxtation parameter of the fluid and µp the polymeric viscosity.
The conformation tensor A can be regarded as an internal state variable mea-
suring the molecular deformation of the polymer chains [54]. The conformation
tensor A is assumed to be always symmetric and positive definite, obeying the
equation

O
A = − fR(A)

λ
(4)

where fR(A) is the relaxation function which is different for each particular
constitutive model. O denotes the operator upper-convected derivative given by

O
A = ∂tA +∇ · (uA)−A · ∇u−∇uT ·A (5)
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Oldroyd B FENE-P FENE-CR linear PTT

fR(A) A− I A
1−tr(A)/L2 − I A−I

1−tr(A)/L2 (1 + ε tr(A− I))(A− I)

fS(A) A− I A
1−tr(A)/L2 − I A−I

1−tr(A)/L2 A− I

Table 1: Strain and relaxation functions, fS(A) and fR(A), for some constitutive models[25].
tr(A) stands for the trace of the tensor A.

with∇u|ij = ∂iuj . T denotes the “transverse” tensor. In table 1 the expressions
of the strain and relaxation functions for some constitutive models are gathered.

Classically, in the case of the Oldroyd-B model, it is usual to skip the use of
A by combining Eqs (2) and (4). Then the constitutive equations in terms of
the viscoelastic stress tensor, τp writes,

λτp +
O
τp = 2µpD (6)

2.1. The kernel conformation transformation

The numerical resolution of viscoelastic problems often fails to converge
when the relaxation parameter, λ, is larger than relatively low values. This in-
stability has been termed in the literature the High-Weissenberg number prob-
lem (HWNP), and it has been a major obstacle in computational rheology.
Fattal & Kupferman [1, 2] identified that the instability was caused by a defec-
tive modelling of the exponential growths of the stresses. When the instability
manifests itself the conformation tensor no longer maintains its property of be-
ing definite positive. To tackle the HWNP matrix kernel-transformations of
the original conformation tensor have been proposed to enforce at every instant
the positive-definite character of the tensor. Two main kernels transformations
have been proposed: the log-conformation of Fattal & Kupferman [1, 2] and the
square-root-conformation of Balci et al. [20].

2.1.1. Log conformation

In this kernel, due to Fattal & Kupferman, rather than advancing the confor-
mation tensor, they suggest to advance in time its logarithm, Ψ = log A. Note
that, since A is symmetric and positive-definite, and it is always diagonalizable,
then,

A = R Λ RT and Ψ = log A = R log Λ RT (7)

where Λ is the diagonal matrix formed with the eigenvalues and R is the tensor
formed by arranging the eigenvectors.

The diagonalization can also be used to decompose the velocity gradient as

(∇u)T = Ω + B + NA−1 (8)

where Ω and N are antisymmetric and B is symmetric, traceless and commutes
with A. Using the above decomposition the equation for Ψ is,

∂tΨ + u · ∇Ψ− 2B− (ΩΨ−ΩΨ) = −e
−Ψ

λ
fR(eΨ) (9)
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with homogeneous Neumann boundary conditions for Ψ by default.
In 2D the decomposition (8) is straightforward. In the case of zero poly-

meric stresses τp = 0, the elements of the decomposition are, Ω = 0 and
B = 1

2 [(∇u)T + (∇u)]. Otherwise, given the diagonalized conformation ten-
sor

A = R

(
Λ1 0
0 Λ2

)
RT (10)

the velocity gradient is written as(
m11 m12

m21 m22

)
= RT (∇u)TR (11)

and the elements of the decomposition as

B = R

(
m11 0

0 m22

)
RT , Ω = R

(
0 ω
−ω 0

)
RT and

N = R

(
0 n
−n 0

)
RT with ω =

Λ2m12 + Λ1m21

Λ2 − Λ1
and n =

m12 +m21

Λ−1
2 − Λ−1

1

.

(12)

Expressions for the 3D case have been derived in [30]. The square root kernel
methodology of Balci et al. [20] as well as details of its numerical time integra-
tion are briefly described in Appendix A while for the classic approach, details
are given in Appendix B.

3. Numerical scheme

We have built the numerical scheme using as a basis the open-source code
Basilisk [4]. Basilisk provides both ready-to-use Finite Volume (FV) solvers for
fluid dynamics problems (shallow-water, compressible, incompressible, multi-
phase...), and an ensemble of useful c-language libraries in order that users can
tailor, with a moderate effort, their own specific code.

The incompressible Basilisk solver uses a second-order in space time-splitting
projection method. The interface is tracked with a color variable, c(x, t), which
represents the volume fraction. c is convected with the fluid,

∂tc+ u · ∇c = 0 . (13)

The above volume fraction equation is solved by successively advecting
(sweeping) c along each of the spatial directions, x and y (or r in cylindrical
coordinates), using a one-dimensional scheme. As depicted in Fig. 1.a, the one-
dimensional flux along the sweeping direction is computed from the local linear
reconstructed equation, m ·x = α, and the face velocities. This one-dimensional
net flux must be corrected in case that the one-dimensional velocity field were
not divergence-free, i.e, ui−1/2,j 6= ui+1/2,j in Fig. 1.a. We use the dilation
correction proposed in [43] which has been proven to be simple, robust and
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completely volume conservative (if the velocity field is divergence-free). The
direction of the first of the one-dimensional sweeps is swapped between x and y
in each computational step to avoid a preferred direction of advection.

The surface tension stresses are added to the momentum equation with the
CSF method [44] in a balanced manner which avoid parasitic currents [45].
The curvature of the interface is computed accurately using the height function
approach. In this method the curvature is calculated using the height functions
in horizontal or vertical direction, x = hx(y) and y = hy(x), with the curvature
κ (say in an almost horizontal interface) given by,

κ =
h′′y√

1 + h′2y

.

If the interface is almost vertical, κ can be calculated similarly with x =
hx(y) instead of y = hy(x). The method allows to obtain second-order accurate
estimates of the curvature. The limits of resolution of the method appear when
the size of the cell ∆ is such that κ∆ ' 1. No special treatment is required
in this method for interfacial cells (cells in which the interface is located) next
of boundaries and walls. A more detailed description of the method as well as
a review of the state of the art in the numerical calculation of surface tension
stresses is available in [45, 55].

The time stepping of the Navier-Stokes equations is as follows

Step 1: The volume fraction is advanced in time using a conservative, non-
diffusive geometric VoF,

cn+1/2 − cn−1/2

∆t
= un · ∇cn (14)

Step 2: Polymeric stresses are advanced to mid-step n+ 1/2, τ
n+1/2
p .

Step 3: Fluid properties are updated,

θn+1/2 = θ1c
n+1/2 + θ2(1− cn+1/2) (15)

where θ stands for any property of the fluid; i.e, ρ, µs, µp and λ with
subscripts 1 and 2 representing the bulk property at each phase.

Step 4: An estimation of the velocity, u∗, is calculated by solving

u∗ − un

∆t
+ un+1/2 · ∇un+1/2 =

1

ρn+1/2

(
−∇pn +∇ · (2µn+1/2D∗) +∇ · τn+1/2

p + γκn+1/2∇cn+1/2
)

(16)

where the advection term is calculated using the Bell-Colella-Glaz sec-
ond order upwind scheme.
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Step 5: The velocity field is projected,

∇ ·
(

∆t

ρn+1/2
∇pn+1

)
= ∇ · u∗ (17)

and updated,
un+1 = u∗ −∇pn+1 ∆t/ρn+1/2 (18)

The time step, ∆t, is determined from two constraints; the stable explicit advec-
tion, which implies that the Courant-Friedrich-Levy (CFL) number is below 0.5,
and the absence of fake capillary waves which obliges it to have ∆t ≤ (ρh3)/(πγ).

3.1. Time integration of the polymeric stresses using the log conform kernel

Although we use the log-conformation approach of Fattal & Kupferman we
still use as a main variable the polymeric stress tensor, τp, as proposed by
Figueiredo et al.[27]. Also, in the present scheme we apply the time-split pro-
cedure of [3] in which Eq. (9) is decomposed as

∂tΨ + u · ∇Ψ = 0 (19)

∂tΨ− 2B− (ΩΨ−ΨΩ) = 0 (20)

∂tΨ =
e−ΨfR(eΨ)

λ
. (21)

Given the polymeric stresses at time n− 1/2, τ
n−1/2
p , and the velocity field at

instant n, un a generic time step proceeds as follows:

Step 1: The corresponding conformation tensor at instant n− 1/2 is calculated
from the relationship,

τn−1/2
p =

λ

µp
fS(An−1/2)

We assume that the stress function, fS(A), and the relaxation function,
fS(A), are linear functions

fS,R(A) = ηS,R(νS,RA− I)

For example, for the FENE-P constitutive model the parameters would
be ηS = ηR = 1 and νS = νR = 1/(1− Tr(An−1/2)/L2).

Step 2: The conformation tensor is diagonalised, A = R Λ RT , to obtain its
eigenvalues and eigenvectors matrix, Λn−1/2 and Rn−1/2.

Step 3: The log of the conformation tensor is calculated,

Ψn−1/2 = R log(Λ) RT
∣∣n−1/2

Step 4: The gradient velocity is decomposed accordingly to Eq. (8) to obtain
Bn and Ωn. Note that for the decomposition we use the eigenvalues
and eigenvectors values at instant (n− 1/2).
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Step 5: The log-conformation tensor is advected using the BCG scheme,

Ψ∗ = Ψn−1/2 −∆t∇ · (unΨn)

Step 6: Eq. (20) can be integrated explicitly,

Ψ∗∗ = Ψ∗ + ∆t(2Bn + ΩnΨn−1/2 −Ψn−1/2Ωn)

or, implicitly,

Ψ∗∗ = Ψ∗ + ∆t(2Bn + ΩnΨ∗∗ −Ψ∗∗Ωn)

Note that an implicit integration could easily be accomplished given
that the resulting equations are linear, and the unknowns at a given
point are uncoupled from the unknowns at neighboring points. It would
consist in solving N times, once per grid point, a linear system of 3
unknowns (in cartesian 2D; Ψxx, Ψyy and Ψxy). Our numerical tests
on this issue suggest that nothing is gained with the implicit integration.

Step 7: The constitutive model Eq. (21) is written in terms of the conformation
tensor,

∂tA = − fR(A)

λ

and later integrated analytically.

(a) Prior to the analytical integration, the log of the conformation
tensor is diagonalised,

Ψ∗∗ = R log(Λ) RT
∣∣∗∗

to obtain Λ∗∗, R∗∗ and the conformation tensor, A∗∗ = R Λ RT
∣∣∗∗.

(b) Then, An+1/2 is calculated with

An+1/2 = A∗∗ e−ηRνR∆t/λ + (1− e−ηRνR∆t/λ)
I

νR

Step 8: Finally,

τn+1/2
p =

µp
λ

fR(An+1/2) =
µp
λ
ηR(νRAn+1/2 − I)

3.2. Spatial discretization and the adaptation algorithm

The open source code Basilisk discretizes the computational domain using
a structured grid of square finite volumes (termed hereafter cells) that can be
either uniform or non-uniform. If a non-uniform grid is preferred, the discretiza-
tion is arranged hierarchically in a quadtree structure[56] (see Fig. 1.b). In this
type of structure, the size of a cell, h, is characterized by its level, `, at which
is located. Hence, the size of the cells at that level h ∝ 2−`. A prototypical cell
of level ` can be parent of 4 children cells (at the level ` + 1). The root cell is
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(b) (c)(a)

Figure 1: (a) Advection scheme of the volume fraction. (b) Quadtree structure (c) Location
of the upsampling and downsampling points for the adaptation.

that corresponding to ` = 0 from which the rest of the cells at a higher level
hang down. A leaf cell is a cell without any child. In the example shown in
Fig. 1.b, the grid would be formed by 16 leaf cells with four of them of level
` = 3, one of level ` = 1 and the rest of level ` = 2. All the main variables,
including the components of the polymeric stress tensor τp, are defined at the
cell centers. However, the stresses on the right side of the momentum equation
(16) are computed at the cell faces to avoid any spurious current that could
result from the imbalance between pressure and elastic stresses.

This tree-type grid structure allows a fast and efficient do-loop across the
grid nodes. Besides, adding a few constraints in the growth of the tree branches,
as for example that the maximum jump of level between neighbouring leaf cells
is one, the grid can be refined and coarsened dynamically (adapted) as the
simulation proceeds at an affordable computational cost. The adaptation is
based on a multi-resolution analysis of selected scalar fields. Consider a control
scalar field discretized at grid level `, f`. This scalar field can be coarsened to
the lower level by means of a downsampling operation denominated restriction,

f`−1 = restriction(f`) . (22)

This coarser field distribution, f`−1, can be upsampled (or prolongated) to the
original level,

g` = prolongation(f`−1) , (23)

and compared to the original distribution to provide an estimation of the error,
ξ` = ||f` − g`||. Given a particular cell i of level ` in which the error is ξi`, then
that cell will be,

• Refined if ξi` > ζ,

• Coarsened if ξi` < 2ζ/3,

• Remain unchanged otherwise.

where ζ is the error threshold set. The prolongation procedure is second-order
accurate and involves additional upsampling points in cells contiguous to the
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Figure 2: Sketch of the problem. The green square denotes the computational domain.

finer ones (see Fig. 1.c). A more detailed explanation of the adaptation algo-
rithm can be found in [57]. Observe that to fill the new refined and coarsened
cells with proper values for each variable can be done with inter/extrapolations
that could differ from the prolongation and restriction operators used to decide
adaptation regions. In our experience, it is better to use as control adaptation
variables the velocity components and the volume fraction. The values of τp
in the newly refined cells are computed with a bilinear interpolation while the
coarser values are calculated by averaging.

As a result of the hyperbolic nature of the equations for A, boundary con-
ditions ought to be only considered at inflows [58] where we impose by default
homogeneous Neumann boundary conditions for tensors, Ψ, b and τp. However,
since in our numerical scheme all the viscoelastic stress components are defined
at the center of each cell, care must be taken in order to suitably model the
presence of walls and symmetries in the momentum equation (16). Note that
the viscoelastic force density applies in our scheme at cell faces and requires to
set values at ghost cells since the force density is calculated using central differ-
ences. The values at the ghost cells follow the expressions derived in section 3
and 4 of [59]. In the case of a rigid wall of orientation n , the normal component,
τp,nn, would be zero. Note that τp,nn = 0 is only valid for certain constitutive
models. For the axisymmetric case, the boundary condition, τp,θθ = 0 must be
added at the wall. Also, on the axis of symmetry the conditions

∂rτp,θθ = ∂rτp,rr = ∂rτp,zz = 0, and τp,rz = 0 .

must be imposed.
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4. Tests

We have performed various tests of the numerical scheme presented in this
work in order to verify some aspects of its performance such as the time inte-
gration or the correct treatment of the interaction of the viscoelastic fluid with
walls and interfaces. Those tests unrelated to the specific splashing problem are
gathered in Appendix C.

4.1. Splashing of a viscoelastic droplet

This test case is intended to validate the code for axisymmetric two-phase
flows in the absence of surface tension. Additionally, some insight on adaptation
is gained. The study deals with the time evolution of a viscoelastic Oldroyd-B
droplet of density ρ, relaxation parameter λ, solvent and polymeric viscosity µs
and µp, and diameter D launched from a height H at a velocity Uo as sketched
in Fig. 2. The surrounding atmosphere is assumed to be dynamically negligible,
i.e. ρa → 0 and µa → 0. The scaling of the equations of motion will be carried
out with the liquid density ρ, the droplet diameter D and the fall velocity Uo
to give a Froude number Fr = gD/U2

o , a dimensionless height h = H/D, a
Reynolds number Re = ρDUo/(µp + µs), a Deborah number De = λUo/D, the
ratio of solvent to total viscosity β = µs/(µs+µp), and the ratio of the outer to
inner density and viscosity, ρr = ρa/ρ and µr = µa/µo, respectively. This test
case has been used by diverse authors with very different schemes [27, 12]. As in
the previous work of [27] the dimensionless parameters were fixed to: Fr = 2.26,
h = 2, De = 1, Re = 5 and β = 0.1. [27] do not report values for the outer
medium; in the present work we set either µr and ρr to 10−3. In what follows
the dimensional variables are denoted by an asterisk.

We have simulated these tests using the log kernel, the square root kernel and
the classic methodology. The computational domain in the present simulations
is also shown in Fig. 2. It consists of a square of dimensionless size 2.6 × 2.6.
We use axisymmetric equations with the left boundary as the axis of symmetry.
The mesh in the simulations is adapted depending on the components of the
dimensionless velocity ux, uy and volume fraction f . We have set two ensemble
of threshold values; εthf = εthux

= εthuy
= 10−3 (adaptation A1) and εthf = 10−3

and εthux
= εthuy

= 10−2 (adaptation A2). The simulations performed by [27] were
made with uniform meshes ranging from ∆r = ∆r∗/D = ∆z = ∆z∗/D = 2.5 ×
10−2 up to ∆r = ∆z = 1.25× 10−2. Since in [27] negligible differences between
meshes are shown, for both adaptation strategies, A1 and A2, the cell widths are
comprised between ∆r = ∆z = 2.03 × 10−2 and ∆r = ∆z = 8.12 × 10−2. The
maximum timestep has been fixed in all simulations to ∆t = Uo∆t

∗/D = 10−3.
Fig. 3 shows the dimensionless width of the droplet, w = W/D versus the

dimensionless time t = t∗Uo/D. We compare our results with the different
methodologies against those found in [27] with the adaptation strategy A1. All
three methodologies give very consistent results and are in very good agreement
with the results of [27].
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Figure 3: Time evolution of the dimensionless width of the droplet, w. Numerical simulation
using adaptation strategy A1: (i) Eq. (9) (ii) Eq. (A.1) and (iii) Eq. (6). The numerical
simulation of [27] is also shown (continuous red line). The results with the adaptation strategy
A2 and the log kernel methodology are also shown.

5. Splash of weakly viscoelastic drops

In this section we investigate the splash of a viscoelastic drop onto flat sub-
strates. The substrate can be either solid or a viscoelastic liquid film/bath. The
properties of the viscoelastic fluid used in the simulations correspond to those
of mixtures of pure distilled water with small quantities (around 0.01 wt%) of
polymeric solutions of polyacrylamide (PAA), as in the experiments of Vega &
Castrejon-Pita [52]. Table 2 shows the dependence of the viscoelastic proper-
ties, µp and λ, on the solution concentration. The solvent properties are those
of distilled water, µs = 10−3 Pa s and ρ = 998 Kg/m3. The surface tension is
unaffected by the polymeric additives, and is therefore equal to σ = 0.072 N/m.
As in subsection 4.1 we use as scaling magnitudes the liquid density ρ, the
droplet impact velocity Uo and the droplet diameter D (we set D = 3.28 mm
as in the experiments of [52]). Therefore, a particular splashing is characterized
by the following dimensionless quantities:

• A global Reynolds number, Re = ρDUo/(µs + µp).

• A Weber number, We = ρDU2
o /σ. Sometimes, in the literature, instead

of We the splashing parameter, K = We
√
Re is used.

• A Deborah number De = λUo/D and a ratio of solvent to total viscosity
β = µs/(µs + µp).

• The ambient to solvent properties ratios, µr = µa/µs and ρr = ρa/ρ.

14



t = 1.7

t = 2.2

t = 3.5

t = 5.0

A1 A2

Figure 4: Snapshots at instant t =1.7, 2.2, 3.5 and 5 with adaptation A1 and A2. Each
snapshot shows the mesh, the interface position and the spatial distribution of the component
of the stress tensor, τp,θθ
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• The dimensionless height at which the droplet is released, H/D.

• Finally, if the substrate is a liquid film of width L∗, its relative depth
L = L∗/D.

Note that in the above list of parameters the Froude number, Fr = Uo/
√
gD,

is absent because it is irrelevant in the splashing phenomena (Fr � 1) despite
the fact that gravity plays a crucial role for accelerating the droplet up to the
impact velocity Uo. Also other parameters that can be relevant, such as the
contact angle or the aspect ratio of the droplet before the impact, are not
explored.

The numerical simulation is performed using axisymmetric equations in a
square domain similar to the one depicted in Fig. 2. Adaptation is performed
at each timestep according to the velocity field and the interface position. The
simulations have been carried out with different degrees of grid refinement. Most
simulations have been carried out with a grid as fine as 5461 cells per diameter
in the adapted region, while far away of that area the grid is coarsened to an
equivalent of 21 cells per droplet diameter. Occasionally, for the largest falling
velocities, the finest grid reached an equivalent of 10922 cells per diameter. In
a few selected cases, the simulations have been performed on parallel machines.

5.1. Solid substrate

When the substrate is a solid, the simulation can be started shortly after
the impact of the droplet. As shown by [60], the computed dynamics of the
spreading of the droplet, using a slightly truncated landed sphere as initial
geometry, is entirely similar to the one obtained while releasing the droplet
in the air. While an air dimple can be created when releasing the droplet in
air, it does not affect the dynamics of the spreading lamella [60]. We have
selected to initiate the simulations with the the center of the sphere located
at a dimensionless distance H/D = (1 − 5 × 10−5) above the substrate with
a uniform downward dimensionless velocity of the viscoelastic fluid equal to
uz = −1. The rest of the variables are set to zero.

To explore the influence of viscoelasticity on the overall dynamics, we focus
on the splash of a 1000 ppm solution droplet at an impact velocity Uo = 4.09
m/s, that corresponds toWe = 760. For this concentration the other parameters
take the following values; Re = 576.33, De = 174.51 and β = 0.043. We impose
the ratios values, µr = 0.018 and ρr = 0.001. For comparison purposes we also
simulate the Newtonian case of a pure solvent (0 ppm).

Fig. 5 and 6 show details of the droplet splashing for both 0 and 1000 ppm
in concentration. In order to investigate the effect of the wall-fluid interaction
we have set a different boundary condition for the volume fraction c, at the wall.
The effect of wall-fluid interaction is shown in Fig. 5 where we plot the shape
of the lamella at instant t = 0.18. The sliding lamella (red and blue lines) is
obtained with the default boundary condition of zero normal derivative: ∂nc =
0. This condition corresponds to a contact angle of π/2. The same condition,
∂nc = 0, has been used in Fig. 6 The levitating sheet is obtained by imposing

16



0

0.05

0.1

0.15

0.2

0.45 0.5 0.55 0.6 0.65 0.7 0.75

z

r

1000 ppm
1000 ppm

0 ppm
0 ppm

Figure 5: Detail of the shape and position of the splash sheet and lamella at t = 0.18 for
solutions 0 ppm (Newtonian) and 1000 ppm. In the case of the levitated sheet, the boundary
condition at the wall for the volume concentration c, is c = 1. For the sliding lamella the
normal derivative of c at the wall is zero: ∂nc = 0. The viscoelastic fluid is modelled using
the Oldroyd-B formulation.
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Figure 6: Time evolution of the spreading of the droplet after splashing. The dimensionless
lamella tip radius rb, is plotted versus the dimensionless time for 1000 ppm and 0 ppm
concentrations at We = 760 (continuous lines). The experimental points of Fig. 9 in Vega
& Castrejon-Pita [52] are also shown. The radial position of the turning point ra, is shown

in the inner figure and compared with Wagner’s analytical solution ra =
√

3t/2 and the
experimental results of [52]. The numerical simulations use the boundary condition: ∂nc = 0.
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Solution concentration (ppm) µp (Pa s) λ (s)
10 2.22 × 10−4 0.00076
250 5.55 × 10−3 0.0196
1000 2.22 × 10−2 0.14

Table 2: Polymeric viscosity µp, and relaxation time λ, in S.I units for different diluted
PAA-water solutions [52].

the Dirichlet condition c = 1 i.e. a non-wetting boundary (green and cyan
lines). Interestingly, the elastic effects are negligible for these very low polymer
concentrations as can be observed in Fig. 5 and 6. The mechanism of the
splashing is unaffected by the viscoelastic character of the fluid, at least for the
very small concentrations cases. It is appealing that the experiments performed
by Jung et al.[61] on the splashing of droplets of solutions of polystyrene in
diethyl phthalate over highly wettable solid exhibit the same irrelevance of the
polymer concentration in the dynamic of the splashing. Note that both the
lamella tip radius, rb, and the radial position of the turning point, ra, are not
affected by the viscoelastic stresses in the numerical simulations. Furthermore,
the calculated position ra fits well with the analytical Wagner solution obtained
using potential theory [60], similarly to the experiments of Vega & Castrejon-
Pita [52]. This matching suggests that, in the bulk of the fluid, either viscous
and viscoelastic stresses are unimportant during the first stages of impingement.
Viscous and viscoelastic effects are confined to the wall boundary layer and
along the contact line. Our numerical results upholds that viscoelasticity could
alter the contact line equilibrium that, in turn, affects the dynamics of the
lamella. This hypothesis is supported by the experimental results of [61] where
the wettability of the fluids (with and without polymers) is so high that the
contact angle is not longer a relevant parameter and the addition of polymers
only could be translated into extra bulk elastic stresses. Since the spreading
of their droplet is unaffected by the presence of polymers, we might conclude
that the bulk elastic stresses have a negligible effect. This is not the general
case since the substrate will play a relevant (complicated) role in the spreading
and receding stages as the dynamic contact angle will vary during the process
[51, 50]. To summarize, we postulate that viscoelasticity could play a subtle role
in the droplet splashing of low-polymer-concentration solutions. The polymer
concentration would be too low to promote relevant bulk elastic stresses during
the splashing (the elastic stresses would be negligible in the bulk) but sufficient
to alter the equilibrium of the contact line and thus cause a distinct behaviour
when compared to the Newtonian (zero-concentration) splashing.

5.2. Liquid substrate

When the substrate is liquid, the droplet is released at a height equal to
H/D = 1.05 setting the dimensionless velocity uz = −1 as an initial condition
to all the fluid in the droplet. The other variables are initially zero. The
thickness of the film layer has been set to L = 0.3, which seems to be enough
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Figure 7: Interface evolution in the splashing of a droplet of diameter equal to 3.28 mm of a
1000 ppm solution in a deep pool at falling velocities; left: 4.09 m/s (We = 760, Re = 1.06,
De = 174.51 and β = 7.94 × 10−5) and right: 1.05 m/s (We = 50, Re = 0.27, De = 44.76
and β = 7.94 × 10−5). The initial instant is t = 0.02 and the timestep is ∆t = 0.06 in both
graphs.

to simulate splashing in a deep pool, since simulations done with thicker film
layers than L = 0.3 do not show any difference in the mechanism and shape of
the splashing. We have simulated splashing with We ranging from 50 up to 760
that correspond to falling velocities of 1.05 m/s up to 4.09 m/s for a droplet
diameter of 3.28 mm, respectively.

Fig. 7 depicts the interface evolution of the splashing of a 1000 ppm solution
when the impacts are at We = 50 (right) and We = 760 (left). The initial
instant is t = 0.02 and the timestep is ∆t = 0.06 for both cases. For the most
violent impact (We = 760) an ejecta sheet rapidly develops and creates (after
t = 0.14) a well-established corolla. The impact at We = 50 is completely
different. The ejecta sheet is absent and it is replaced by an advancing radial
front whose width increases with time (see also the movie in the supplementary
material). At a certain time (about t ' 0.20) the front advances quicker that
the fluid bulk and as a consequence the dome formed by the falling droplet
becomes surrounded by a kind of toroidal hump instead of a corolla.

Fig. 8 shows the first stages of the splashing for We = 50 for the pure
Newtonian case of 0 ppm and the slightly viscoelastic fluid case of 1000 ppm.
In the figure we plot the vorticity distribution ω given by

ω =
∂ur
∂z
− ∂uz

∂r
. (24)

Fig. 8 also shows the `2-norm of the conformation tensor Ψ,

||Ψ||2 =
√

Ψ2
rr + Ψ2

zz + Ψ2
θθ + 2Ψ2

rz . (25)

||Ψ||2 is used to visualize where the viscoelastic stresses are more intense. As can
be seen in the Fig. 8, and the supplementary material, as the drop squeezes the
film, the junction front between the drop and film advances and thickens rapidly.
In its advance the front flaps, as a consequence of the vortex shedding, creating
a Von Kármán-type vortex street, as was already pointed out by Thoraval et al.
[62] and confirmed experimentally by [63]. At the same time the gas entrapped
in the dimple, formed between the droplet and film, rapidly retracts to form
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Figure 8: Snapshots of the splashing of a droplet with We = 50. From top to bottom at
instants t = 0.02 to t = 0.12 in steps of ∆t = 0.02. Column A shows the vorticity distribution,
ω, for 0 ppm (Re = 3432, De = 0 and β = 0). Column B shows the vorticity distribution for
1000 ppm (Re = 0.27, De = 44.76 and β = 7.94 × 10−5). Column C shows the distribution
of the `2 norm ||Ψ||2 (Eq. (25)) for 1000 ppm.

a bubble. At the first stages (snapshots t = 0.02 and t = 0.04) no apparent
difference exists in the vorticity distribution between the 0 and the 1000 ppm
mixtures. However, in subsequent stages it can be observed that the vortex
pairs are more distant for the case of a viscoelastic drop (column B) compared
to the Newtonian one (column A), since the viscoelastic stresses slightly drag
out the shedding of vortices.

The evolution of these vortical structures is more interesting. In the case of
a Newtonian fluid the vortical structures can only decay by viscous diffusion of
the momentum. Since splashing characteristic times are short, and the Reynolds
number is large (Re = 3432 for the Newtonian fluid of Fig. 8), the vorticity
distribution within the bulk of the liquid is practically the same in snapshot t =
0.06 and subsequent ones. In the case of the mixture of 1000 ppm, the picture is
altered by the viscoelastic stresses. Generally speaking, the viscoelastic stresses
disrupt this vortical structure as time goes by. Between the spots of positive-
negative vorticity, which form the paired vortex, a trail of alternated micro-
vortices appears (shown by the black arrow in the fifth snapshot of column B).
Note that, in this case, the spots of vorticity rapidly loose their homogeneity
decaying in a turbulent-like mixing.
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Figure 9: Figures A and B correspond to a 1000 ppm fluid falling with We = 300 (Re = 0.67,
De = 109.64 and β = 7.94×10−5). A and B show ω and ||Ψ||2 distributions at instant t = 0.2,
respectively. Figure C shows the process of entrapment of a ring bubble and the subsequent
roll up of viscoelastic stresses for a 1000 ppm liquid with We = 760 (Re = 1.06, De = 174.51
and β = 7.94×10−5). Figure D shows the details of the structure of the roll up of viscoelastic
stresses around ring bubbles.

Viscoelastic stresses are concentrated on the fluid surface separating the fluid
of the drop from the fluid of the pool, since it is there that larger deformation
and strain occur during the splashing process. As can be observed in Fig.
9A, in the lamella, a central core sheet of viscoelastic stresses acts against its
spreading and development. In some cases, particularly for violent, high We
number splashes, the viscoelastic stresses tend to bend the incipient lamella,
making the first stages of the splashing highly chaotic, as can been seen in
sequence 9C. Interestingly, the vortices roll up the viscoelastic stresses resulting
in a sort of toroidal spring that delays the advance of the lamella (see Fig. 9A,B
and D). These structures are particularly intense when generated around ring
bubbles. A sequence of the nucleation of a toroidal spring around a bubble is
shown by the green arrow in Fig. 9C. In the first snapshot we can see how the
flapping lamella entraps a bag of air by hitting the falling droplet. This bag of
air, already has a bubble ring, and is rotating, straining the fluid, and rolling up
this strained viscoelastic fluid (second snapshot). Finally, a toroidal spring-like
structure is the result. Details of this structure are shown in Fig. 9D.
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5.2.1. Effects of Re and β in the first stages of the splashing.

In this section the Weber and Deborah numbers, We and De are fixed to
300 and 175, respectively, since we intend to explore the role played by Re
and β in the first stages of the splashing. We focus on the position of point
C that corresponds to the highest position reached by the fluid pertaining to
the liquid substrate; the fluid part of the droplet is enclosed by a red line (see
the insert in top plot of Fig. 10). In Fig. 10 we explore the role of β on the
trajectory of point C for two values of the Reynolds numbers Re = 5 (top)
and Re = 500 (bottom). Interestingly, as can be observed in Fig. 10 top,
viscoelasticity plays a relevant role for viscous fluids. The imprint caused by
the droplet onto the liquid substrate is smaller as the the viscoelastic stresses
are more significant (lower values of β). In addition, the splash goes higher
for the lower values of β. For a larger Reynolds number, Re = 500, (bottom
plot) little effect of viscoelastic stresses is observed in the imprint caused by
the droplet (note that the curves depart roughly from the the same position,
rC ∼ 0.14). The effect of viscoelaticity on the trajectory of point C is subtle.
The trajectory is roughly similar and independent of β but the more important
the viscoelasticity (the smaller β), the larger the randomness of the trajectory.
Note that the trajectory for β = 0.7 and 0.9 is almost identical and laminar.
The effect of a liquid substrate on the spread of the droplet is observed in Fig.
11 where we plot the radial position of point C as a function of time. As can
be observed in the bottom plot, viscoelasticity plays a significant role on the
size of the dimple imprint at the very beginning of the splashing (roughly for
dimensionless times t < 0.07) but once the spreading is launched very little
influence on the velocity of the spreading is observed. On the contrary, the
overall effect of viscosity is more relevant as can be observed in the top figure.
The larger the viscosity of the fluids, the slower the spreading.

6. Conclusions

In this article we have shown how the time-splitting scheme proposed by
Hao & Pan [3] can be used together with the classical log conformation tensor
of Fattal & Kupferman [2], or the square-root conformation of Balci et al. [20],
to provide stable numerical simulations of two-phase viscoelastic flows. It is also
shown that the time-splitting scheme simplifies the extension of the numerical
scheme to different constitutive laws with a moderate effort. Many of the nu-
merical results presented here have been obtained using adaptivity, which can
be applied straightforwardly to viscoelastic simulations. The solvers, and most
of the tests performed in the present study, are freely available on the Basilisk
web page [5].

The numerical scheme has been used to investigate numerically the splash-
ing of weakly viscoelastic droplets onto solid flat substrates and pools of the
same fluid, taking as reference the experimental conditions of the work of Vega
& Castrejon-Pita [52]. We observe no difference in the splashing process onto
hard substrate between pure solvent droplets and slightly viscoelastic droplets
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Figure 10: Trajectory of point C for different values of β. Top: Re = 5; Bottom: Re = 500.
The insert in the top plot shows the imprint caused in the liquid substrate (blue line) by the
droplet (red line).
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because the viscoelastic bulk effects are negligible for the polymer concentra-
tion used. Therefore, we hypothesize that the differences observed by Vega &
Castrejon-Pita are due to alterations of the contact line equilibrium because of
viscoelasticity and that, in turn, affects the advance of the lamella.

In contrast, the splashing of a slightly viscoelastic droplet onto a pool ex-
hibits a phenomena that has not already been observed in Newtonian fluids.
We have observed that the viscoelastic stresses alter the vortex shedding, re-
ported by Thoraval et al. [62]. Also, as the splashing proceeds a trail of al-
ternated micro-vortices appears. The viscoelastic stresses are responsible for
the disruption of these vortices. The shedding vortices strain the fluid with its
rotation, and rolls up this strained viscoelastic fluid to form a kind of toroidal
spring. These toroidal springs can nucleate around trapped bubble rings similar
to those reported by [62]. The size of the dimple imprint on the liquid sub-
strate due to the approaching droplet is affected by viscoelasticity provided the
Reynolds number is low enough. The higher the viscoelastic stresses are, the
smaller the dimple becomes. Moreover, viscoelasticity causes the a disturbance
on the free surface, around the contact line between the drop and the pool, of
higher height at low Reynolds number and promotes a random evolution of the
lamella at higher Reynolds numbers. The radial velocity of spreading depends
solely on the Reynolds number (provided the Deborah and Weber number are
fixed).
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Appendix A. Square-Root conformation

Appendix A.1. Equations

Balci et al.[20] propose to formulate the constitutive differential models in
terms of the (unique) positive symmetric square root b(x, t) of the conformation
tensor A(x, t),

A = bbT

that, substituted in Eq. (4), results in the following time evolution equation for
b,

∂tb +∇ · (ub) = b · ∇u + ab− b−1 fR(bbT )

λ
(A.1)

where a is an antisymmetric tensor in which off-axis values result from the
enforcement of the symmetric character of b. In 2D this would be

a =

(
0 a12

−a12 0

)
being a12 =

b12∂xux − b11∂xuy + b22∂yux − b12∂yuy
b11 + b22

Balci et al. [20] provide expressions for the 3D case.

Appendix A.1.1. Numerical scheme

As for the case of the log kernel the numerical scheme is a time splitting
procedure of Eq. (A.1). Therefore, a time step can be decomposed in the
following substeps.

Step 1: The square root tensor is advected explicitly with the BCG scheme,

b∗ = bn−1/2 + ∆t∇ · (bnun)

Step 2: The rest of Eq. (A.1) is linearized and solved implicitly. Assuming a
linear relationship for the relaxation function, the system to be solved
would be,

bn+1/2

∆t
−bn+1/2∇un−an ·bn+1/2+

ηRνR
λ

bn+1/2 =
b∗

∆t
+
ηR
λ

(b−1)n−1/2

Step 3: Finally the polymeric stress is computed from bn+1/2

An+1/2 = bn+1/2bT,n+1/2 and τn+1/2
p =

µp
λ

fS(An+1/2)
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Figure C.12: Sketch of the transient onset planar Poiseuille flow for a viscoelastic fluid. The
simulation domain is depicted in green.

Appendix B. Numerical scheme for the classic approach

In this scheme we solve Eq. (6) by time splitting. The step procedure is as
follows.

Step 1: The stress components are advected explicitly with the BCG scheme,

τ ∗p = τn−1/2
p + ∆t∇ · (τnp un)

Step 2: The upper convective derivative is solved implicitly,(
1 +

λ

∆t

)
τn+1/2
p − (∇uT )n τn+1/2

p + τn+1/2
p ∇un = 2µpD + λ

τ ∗p
∆t

Appendix C. Additional tests

Appendix C.1. Transient planar Poiseuille flow for a viscoelastic fluid

The problem is sketched on Fig. C.12. A viscoelastic fluid of density ρ,
solvent and polymeric viscosity, µs and µp, and relaxation time λ, is trapped in
the gap of width 2H formed by two parallel infinite plates. The fluid, initially at
rest, is set in motion by the sudden application of a constant pressure gradient.
The steady planar parabolic Poiseuille flow is reached after a transient period if
the viscoelastic fluid is an Oldroyd-B or a FENE-CR. For a FENE-P the profile
departs slightly from a strict parabola [64]. The transient for a Newtonian fluid
is characterized by an exponential increase of the axial velocity. However, in the
case of a viscoelastic fluid its elastic nature gives a different behaviour, since an
oscillation is superposed to the exponential increase. For an Oldroyd-B fluid,
an analytical solution due to Waters & King [65] is available,

u(y, t) = 1.5(1− y2)− 48

∞∑
k=1

sin((1 + t)n/2)

n3
eαnt/2G(t) (C.1)
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Figure C.13: Subplot (A): Time evolution of axial velocity u(0, t). Comparison between the
analytical solution given by Eq. (C.1) and the numerical solution with a uniform grid of
16×16 and a timestep ∆t = 10−3. Subplot (B): Error evolution for three different grids. The
continuous line is obtained with a timestep ∆t = 10−5 while the dash-point line is obtained
with ∆t = 10−3.

with n = (2k − 1)π, αn = 1 + β E n2/4 and

G(t) = sinh(θnt/2) +
γn
θn

cosh(θnt/2)

with

θn =
√
α2
n − E n2 and γn = 1− 2− β

4
E n2

where E is the elastic number given by E = λµo/(ρH
2) and β is the ratio of the

solvent to total viscosity, β = µs/µo = µs/(µs+µp). In the analytical expression
(C.1), the time t and the position y are dimensionless magnitudes. They result,
after the time is made dimensionless in λ, t = t∗/λ, the y-coordinate with H,
y = y∗/H and the velocity with the average steady velocity,

u(y, t) =
u∗(y∗, t∗)

ū∗∞
being ū∗∞ = −∆p∗

∆x∗
H2

3µo
.

where the superscript ∗ denotes the dimensional counterpart.
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Using the scaling described above, i.e. H, λ, and ū∗∞ for lengths, times and
velocities, respectively, the problem is characterized only by the dimensionless
magnitudes E and β being the dimensionless drop of pressure given by,

∆p

∆x
=

λ

ρū∗∞

∆p∗

∆x∗
= −3E .

Therefore, the numerical simulation domain is a square box of dimensionless
size 1× 1. At the top boundary we set a no-slip condition, while for the bottom
symmetry conditions apply. For the left and right boundaries periodic boundary
conditions are used for all variables except for the pressure, which is set to 3E
at the left side and to 0 at the right side.

We have simulated, using the log kernel approach, the case corresponding
to E = 1 and β = 1/9 with three uniform grids with a dimensionless cell size
of h = 0.0625 (16× 16 grid), 0.03125 (32× 32) and 0.015625 (64× 64) using a
constant time step of value ∆t = 0.001. To use a larger time step compromises
the convergence. Subplot A of Fig. C.13 illustrates a comparison between
the analytical solution given by Eq. (C.1) with the numerical results obtained
with the coarsest grid. As can be observed, the agreement is very good and
comparable to similar schemes [30], although the time step in the aforementioned
work seems to be smaller. Subplot B illustrates the difference between the theory
and the numerical simulation as time proceeds, ε(t) = u(0, t)|theo − u(0, t)|sim
for the three grids reported and two different timesteps; ∆t = 10−5 (continuous
line) and ∆t = 10−3 (dash-point line). The refinement of the grid becomes
apparent for ∆t = 10−3 when the stationary solution is reached. For t = 15
the error with the coarsest grid is 2.82 × 10−3 dropping to 8.98 × 10−4, and
to 2.78 × 10−4, after each doubling of the spatial resolution. As expected, the
error drops with the grid size accordingly to a second-order relation.

The dependence on the viscoelastic model can be observed in Fig. C.14.
Subplot A illustrates the temporal evolution of the axial velocity on the axis
u(0, t) For two values of the parameter L2, L2 = 10 and L2 = 1000. For each
value of the parameter L calculations has been carried out with the FENE-P and
the FENE-CR model. The analytical solution for Oldroyd-B, Eq. (C.1), is also
shown. Subplot B illustrates the almost stationary velocity profiles for FENE-P
with L2 = 10, 50 and 1000. As expected the stationary profiles of FENE-CR
coincide with the Newtonian parabolic profile. In contrast, the same pressure
gradient creates in a FENE-P fluid a larger average velocity (or flowrate) [64].
For L2 →∞ both FENE-CR and FENE-P coincide with Oldroyd-B. However,
the plots in Fig. C.14 show that, in practice, a value L2 = 1000 suffices.

Appendix C.2. 2D viscoelastic Oldroyd-B droplet immersed in a Couette flow

With this test we wish to validate our scheme using the log kernel method-
ology when an interface, separating a Newtonian fluid from a viscoelastic one,
exists in the presence of surface tension. A sketch of the problem is shown in
Fig. C.15. A drop of radius a of the viscoelastic fluid (whose properties we
label with the subscript 1) is surrounded by a Newtonian fluid of density and
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Figure C.14: Subplot A: Time evolution of the velocity on the axis for FENE-P and FENE-
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Figure C.15: Sketch of the benchmark problem of a viscoelastic 2D droplet immersed in a
Newtonian fluid undergoing a Couette flow.

viscosity, ρ2 and µ2, respectively. The interfacial surface tension is σ. Both
fluids are trapped, as shown, in a planar gap of a width equal to eight times the
droplet radius H = 8a, and a length approximately sixteen times the droplet
radius L = 16a. Suddenly a Couette flow is imposed to both fluids,

u∗x(x∗, y∗; t∗ = 0) = γ̇ y∗ being γ̇ = 2U/H .

where the superscript ∗ denotes dimensional variables. The other variables are
zero initially. Usually equations are made dimensionless with the outer density,
ρ2, the droplet radius, a, and the shear rate, γ̇. With this nondimensionalization,
the governing parameters of the problem are: the Weber number We, the outer
Reynolds number, Re, the ratio of viscosities and densities, µr and ρr, the
Deborah number De, and the ratio of solvent to the total viscosity β given by
the following expressions,.

We =
ρ2a

3γ̇2

σ
, Re =

ρ2a
2γ̇

µ2
, µr =

µ1

µ2
, ρr =

ρ1

ρ2
, De = γ̇ λ and β =

µs
µ1

.

Note that the polymer viscosity is, µp = µ1−µs and λ is the relaxation param-
eter. Also, the dimensionless time is, t = γ̇ t∗.

This problem was first investigated by [66] and used as a test problem by
many others, see for example [27, 67, 68, 11]. In Chinyoka et al. [66] diverse
configurations are explored related to the viscoelastic/Newtonian nature of the
outer/inner fluid. Since our objective here is to check how our implementation of
the log conformation kernel performs in the presence of a fluid interface, we focus
on the configuration with an outer Newtonian fluid surrounded by a viscoelastic
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Figure C.16: Plot (A): Deformation Φ versus the dimensionless time t. Plot (B): deformation
of the droplet at time t = 10. Dimensionless values of the tested case: Re = 0.3, We = 0.18,
µr = ρr = 1, De = 0.4 and β = 0.5. In both plots the results of the proposed scheme
are shown with a continuous black line labelled with the name ’Basilisk’. The numerical
simulation has been performed with the log kernel methodology. The open circles correspond
to the results of [27].

Oldroyd-B drop. Other configurations have not been considered. In this test
we will compare it with the recent results of Figueiredo et al. [27]. Therefore,
the following characteristic values are set; Re = 0.3, We = 0.18, µr = ρr = 1,
De = 0.4 and β = 0.5. An uniform grid with cells of width h/a = 3.125 × 10−2

has been used, while Figueiredo et al. used two grids which are not uniform,
with a minimum size h/a = 4.6876 × 10−2 (M1) and h/a = 2.3438 × 10−2

(M2).
To compare the time evolution of the interface, Chinyoka et al. proposed,

as a measuring parameter of the deformation, Φ, the following ratio

Φ =
Rmax −Rmin
Rmax +Rmin

where Rmin and Rmax are, respectively, the minimum and maximum distance
between the interface and the droplet center (the origin in our case). This pa-
rameter is also known as the Taylor deformation parameter being denoted by
D. Fig. C.16A shows how this parameter evolves in our simulation (black con-
tinuous line labelled as ’Basilisk’) compared with Figueiredo et al. [27] (open
circles). Also, Fig. C.16B shows the position of the interface for both simula-
tions. As expected, the agreement between both simulations is excellent.

Appendix C.3. lid cavity flow

This test deals with the movement of a viscoelastic Oldroyd-B fluid of density
ρ, relaxation parameter λ, and solvent and polymeric viscosities, µs and µp,
respectively. As shown in the insert of Fig. C.17, the fluid is confined in
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Figure C.17: Time evolution of the dimensionless kinetic energy for Wi = 1, β = 0.5 and Re =
0.01. The simulations have been performed with two uniform grids; M1 and M2 (64×64 and
128×128, respectively) and an adapted grid. Numerical results with (i) the log-conformation
kernel and (ii) the square root kernel are shown. Results of Fattal & Kupferman (2005) are
also shown (red circles). Insert: Sketch of the lid cavity problem.

Figure C.18: Spatial distribution of Ψxy at instant t = 3. The adapted grid at that instant
is also shown.
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Figure C.19: Subplot A: Profile of the x-component of the velocity, ux, at position x = 0.5.
Subplot B: Profile of the y-component of the velocity, uy , at position y = 0.75. The profiles
correspond to instant t = 8 and the fluid parameters are Wi = 1, β = 0.5 and Re = 0.01.
The legend of the curves is the same as that in subplot A.
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a square cavity of size L, bounded by walls, except on the top side where a
time-dependent tangential velocity is imposed. Using as scaling magnitudes
the density ρ, the largest stationary velocity Uo and the width of the cavity
L, we form a Weissenberg number, Wi, a Reynolds number, Re, and a solvent
viscosity ratio, β, given by

Wi =
λL

Uo
, Re =

ρUoL

µo
and β =

µs
µo

where µo = µp + µs .

The standard problem relies on the following regularized dimensionless parabolic
profile for the top lid

ux(x, t) = 8 [1 + tanh (8t− 4)]x2(1− x)2

where x = x∗/L, t = Uot
∗/L and ux = u∗x/Uo are the corresponding dimen-

sionless variables. The remaining cavity walls are stationary and the no-slip
boundary condition is imposed on the four walls. We assume the Stokes limit
for the momentum equation. In the simulation, we have set Re = 0.01, β = 0.5
and Wi = 1. This test case has become a classical benchmark problem in com-
putational rheology since the HPWN manifests itself with these values of the
dimensionless parameters. In Table 1 of [69] are gathered previous numerical
studies concerned with a lid-driven cavity flow of constant viscosity viscoelastic
fluids. We have solved this test case with a uniform grid of 64 × 64 (grid M1)
and with a grid of 128×128 (grid M2) equivalent to a level ` = 6 and 7, respec-
tively. The maximum timestep for the M1 grid is ∆t = 5 × 10−5, while for M2
we had to set ∆t = 10−5. Numerical simulations with an adapted grid have also
been carried out. The adaptation is applied every 50 timesteps by controlling
the error on the components of the dimensionless velocity. The threshold value
for both components is 5 × 10−4 with the maximum and minimum levels of
refinement/coarsening, ` = 7 and 5, respectively. Fig. C.17 shows the time
evolution of the total dimensionless kinetic energy in the cavity,

1

2

∫ 1

0

∫ 1

0

(u2
x + u2

y) dx dy

The simulation obtained with the log-conformation kernel, the square root ker-
nel, and the results of Fattal & Kupferman (2005) are shown. The dashed line
indicates that the results were obtained with grid M1. A continuous line cor-
responds to grid M2. The results of Fattal & Kupferman were obtained with a
grid of 256×256. We also plot in Fig. C.19 velocity profiles at instant t = 8.
In subplot A we show the profile ux at the position x = 0.5, while in subplot
B is shown the profile uy at the height x = 0.75. As in Fig. C.17B we show
either the simulations performed with the log conformation kernel, the square
root kernel and the results of Fattal & Kupferman.

The agreement in the velocity profiles between the different methodologies,
and the previous work shown in Fig. C.19, is excellent, although, this is a
common result in other schemes. The agreement in the kinetic energy is also
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very good. In particular, the agreement with the position (t ∼ 0.8) and intensity
(equal to approx. 0.0178) of the peak of kinetic energy is excellent. However,
the square root kernel has a stationary value (∼ 0.011022) below that obtained
with the log kernel (∼ 0.011337) for the M1 grid. When the grid is doubled, i.e.
grid M2, the result for the square root kernel increases to ∼ 0.011282 and the
log kernel to ∼ 0.011429, closer to the value extracted from [2] (∼ 0.011572).
Adaptation allows the grid to be refined where needed. In the lid cavity problem,
as can be observed in Fig. C.18, refinement is located close to the moving wall.
Since the velocity is almost established at instant t = 3 the grid distribution
shown in Fig. C.18 changes little in later instants. It seems that the log kernel
gives a slightly more accurate result than the square root kernel. Interestingly, a
similar trend can be observed in Fig. 4.b of [10]. It is worth mentioning that for
the calculation of the lid cavity problems, Figueiredo et al. [27] report timesteps
of 10−4, about an order of magnitude larger than ours.
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