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Abstract

In this paper our goal is double. First of all we aim to show that there
is a deep link between Bolzano’s notion of exact derivability and Tennant’s
relevant logic CR. Secondly, we aim to argue that Tennant’s relevant logic
CR is an adequate framework for developing interesting grounding rules
for the implication connective.
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1 Introduction

Although neglected for many decades, the great Bohemian thinker Bernard
Bolzano is today the center of a renewed interest and enjoys the respect that
he deeply deserves: he is indeed considered an outstanding mathematician,
an exceptional philosopher and one of the greatest logicians who ever lived
(see Morscher (2012)). This renewed enthusiasm towards Bolzano seems to go
hand in hand with the contemporary attention to the notion of grounding, or
metaphysical explanation (e.g. see Correia and Schnieder (2012); Fine (2010);
Poggiolesi (2016b); Schnieder (2011)); Bernard Bolzano can indeed be seen as
one of the major figures in the history of the philosophy of this notion. His
conception of grounding, together with his attempt at logically characterizing
it, are milestones in the analysis of this concept.

As pointed out in several studies, in Bolzano’s conception of grounding, the
notion of exact derivability (Ableitbarkeit),1 that Bolzano himself introduced

1In some texts (e.g. Roski (2014)) the term Ableitbarkeit is translated with deducibility,
rather than derivability. Since the notion of deducibility involves the requirement of discharge
of assumptions, which is absent in the notion of derivability as well as in the original notion
of Ableitbarkeit, we prefer this second translation.
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(Wissenschaftslehre II, §155), plays a special role. Roughly speaking the general
idea is that the notion of complete grounds2 of some truth A always presupposes
a relation of exact derivability (under certain restrictions) of A from the set of
its complete grounds.

In the first part of this paper the main aim is to have a closer look at
exact derivability and its relations to contemporary logic. More precisely, we
will show that there exists a particular connection between Bolzano’s notion
of exact derivability and the relevant logic CR introduced by Tennant (1984).
These reflections will not only clarify the notion of exact derivability per se, but
also, in virtue of the connection between exact derivability and grounding, shed
further light on the general Bolzanian conception of metaphysical grounding.

In the second part of the paper we will focus on the recent studies on the
logic of grounding and in particular on the grounding rules for implication, a
topic that, as far as we know, has received relatively little treatment. We will
try to argue that the logic CR can again play a role: it is indeed an useful and
interesting framework for formulating the grounding rules for implication.

The paper is organized as follows. In Section 2 we will recall Bolzano’s no-
tions of derivability and exact derivability emphasizing their logical properties.
In Section 3 we will introduce the logic CR, while in Section 4 we will explain
why this is the adequate contemporary counterpart of Bolzano’s notion of exact
derivability. We will use Section 5 to discuss the issue of the grounding rules
for implication. We will show that even in this context the logic CR has a role
to play.

2 Deducibility and exact deducibility

In the Wissenschaftslehre Bolzano famously introduced two concepts that are
now part of the history of logic, namely the notion of derivability and the notion
of exact derivability. Many valuable studies (e.g. Morscher (2012); Sebestik
(1992)) have been dedicated to the analysis and reconstruction of these con-
cepts: amongst other things, they have highlighted some important properties
of derivability and exact derivability.

In this section our aim is double: on the one hand, we will introduce the
concepts of derivability and exact derivability, on the other hand we will try to
summarize the properties and the logical principles that have been associated
with these concepts. In accomplishing these two tasks, we will mainly summarize
some recent studies on Bolzano’s work (e.g. Berg (1962); Morscher (2012);
Rusnock and George (2015)) without however entering into the details of their
different interpretations.

Before starting dealing with our double task, let us underline two points. The
first point concerns Bolzano’s conceptual framework that is behind the notions
of derivability and exact derivability, that is thus useful for understanding them
but which, nonetheless, for reasons of space, we omit to present here. The reader

2For a definition of the notion of complete grounds, as opposed to full grounds, see Poggi-
olesi (2016a).
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who is not acquainted with such a framework is referred to the Introduction of
this volume. The second point concerns the choice of not being entirely faithful
to Bolzano’s original work; in the following aspects we will indeed opt for a more
modern and elegant formulation than the one used by Bolzano. (i) We follow the
standard conception of propositions and not that of Bolzano according to which
all propositions have the form [A has B], see Betti (2012); Casari (1992); (ii) we
work with sets of propositions, while Bolzano uses collections of propositions;
(iii) we allow empty set of premises, while Bolzano doesn’t.

In the Wissenschaftslehre §147-168 Bolzano introduces his theory of varia-
tion which is one of its central contributions to the field of logic. The heart of
the theory analyses the semantic links that arise amongst propositions as soon
as certains of their elements are substituted in a homogeneous way. In this
framework Bolzano singles out several relationships, among which the relation
of derivability stands out. He defines this notion in the following way.

Definition 2.1. Propositions A1, ..., An are derivable from propositions B1,
..., Bm with respect to the sequence of components   P1, ..., Pr ¡, which occur
in the propositions A1, ..., An as well as B1, ..., Bm

3, if, and only if:

(1) the premisses B1, ..., Bm are compatible with respect to   P1, ..., Pr ¡,
which is to say that there exists a sequence of components   Q1, ..., Qr ¡
that, if substituted with   P1, ..., Pr ¡, make simultaneously true all the
premisses.

(2) each sequence that, substituted with   P1, ..., Pr ¡, make true all the
premisses, make true all the conclusions too.

Let us make a few comments about this definition. First of all, the definition
is composed of two items: the first expresses the idea of the premisses being
compatible, the second expresses the idea of truth-preservation from premisses
to conclusion. Truth-preservation as well as compatibility are relativized to a
sequence of components of propositions; it is important to underline what kind of
components might be part of that sequence. Translated in contemporary terms
variation can concern the sequence of all individual, functional and predicative
symbols, all molecular terms as well as all subsentences contained in propositions
(in this case we have a notion of logical derivability). Variation can also concern
a proper subsequence of that sequence (and in that case the descriptive symbols
are constants as the logical symbols).4

Let us first give an exemple of a set of propositions which are compatible
with respect to a sequence of components. We use Bolzano’s exemple and we
thus consider the propositions “this flower is red”, “this flower has a pleasant

3As the editors made us notice, although not explicit about this point, it seems that
Bolzano would require the sequence   P1, ..., Pr ¡ to actually occur in the premisses as well
as in the conclusion of the derivability relation.

4We owe to Paoli (1991) the translation in contemporary terms of the Bolzanian domain
of variation. Let us also underline that logical constants do not belong to this domain of
variation. The question is however complex since Bolzano could not decide how to draw the
distinction between logical and not-logical ideas, see Rusnock and George (2015), II, §148.
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fragrance”, and “this flower belongs to the twelfth class of Linne’s system”:
these propositions are compatible with respect to the variable idea “this flower”,
because all three are true if we substitute “this flower” with “this rose”.

Let us now move to propositions which stand in a truth-preserving relation
from premisses to conclusion with respect to a certain sequence of components.
Let us consider the propositions “the triangle ABC is isosceles”, “the triangle
ABC is equilateral”. Each variable idea that, substituted with ABC, makes true
“the triangle ABC is equilateral”, makes true “the triangle ABC is isosceles” as
well. Thus “the triangle ABC is equilateral” is the premiss and “the triangle
ABC is isosceles” the conclusion of a relation which is truth-preserving with
respect to the variable-idea ABC. (The two propositions nevertheless do not
stand in a logical derivability relation.)

As many (e.g. Etchemendy (1990); Sebestik (1999)) have suggested, Bolzano’s
notion of derivability anticipates in many respects the Tarskian notion of logical
consequence: a common idea that underlies both definitions is truth-preservation
from premises to a conclusion under certain variations. While from the Tarskian
perspective, variation concerns all non-logical elements, from the Bolzanian’s
perspective variation might vary and non-logical elements may remain constant.
In this respect Bolzano’s notion is much more general than the Tarski’s idea of
logical consequence. In another respect, however, the notion is narrower. For
contrary to Tarski, Bolzano requires the premises to be compatible with respect
to a certain sequence of components.

From now on we adopt the following notations. Let M, N, ... denote sets of
propositions. We write:

- M |ù P1,...,Pr¡
N to denote that the set N is derivable from the set M

with respect to the sequence of components   P1, ..., Pr ¡.

- M * P1,...,Pr¡
N to denote that the set N is not derivable from the set

M with respect to the sequence of components   P1, ..., Pr ¡.

- M * N to denote that the there exist no sequence of components  
P1, ..., Pr ¡ with respect to which the set M is derivable from the set N .

Let us now move to the main properties that this relation of derivability
satisfies. These properties have been emphasized by (Roski, 2014, Ch. 3.3.4),
Siebel (2002), Stelzner (2002).

Restricted Monotonicity For all M, M 1 and N , if M |ù P1,...,Pr¡
N , M �

M 1 and the propositions contained in M 1 are compatible with respect to  
P1, ..., Pr ¡, then M 1 |ù P1,...,Pr¡

N .

The relation of derivability is monotonic up to compatibility; indeed, if
M |ù P1,...,Pr¡

N and the set M is enriched with some propositions A such
that A is not compatible with M with respect to   P1, ..., Pr ¡, then N is not
derivable from M YA with respect to   P1, ..., Pr ¡.

Restricted Cut For all M, N,S, T and A, if M |ù P1,...,Pr¡ N, A and A, S |ù P1,...,Pr¡
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T , and M and S are compatible with respect to  P1, ..., Pr ¡, then M, S |ù P1,...,Pr¡

N, T .

As it was the case for non-monotonicity, even what is known as cut only holds
in a restricted form: one can cut a formula and thus unite two different deriv-
ability relations as long as the new set of premisses still satisfies compatibility
with respect to a certain sequence of components.

Transitivity For all M,N,S, if M |ù P1,...,Pr¡
N and N |ù P1,...,Pr¡

S, then
M |ù P1,...,Pr¡

S.

Bolzano’s derivability relation is transitive without limitation. Let us remind
the reader, since it will be useful in what follows, that transitivity is nothing
but a special case of cut: it indeed amounts to cut with no added premisses in
the middle step.

Let us now move to two logical principles that are associated with the deriv-
ability relation. These logical principles have been investigated by Berg (1962);
George (1983); Siebel (2003); Stelzner (2002). They will be of crucial importance
in the next section.

1. A_B,  A |ù A,B¡ B

2. A,  A * B

The first principle is quite well-known and is standardly called disjunctive
syllogism; it is also a valid principle in classical and intuitionistic logic. It
says that if a disjunction is true and one of its disjunct is false, then the other
disjunct must be true. It is quite straightforward to see its validity according
to Definition 2.1.

Let us analyse the second principle which amounts to the block of famous
Lewis’s first paradox (see Lewis and Langford (1959)); it indeed says that there
exists no sequence of components with respect to which B is derivable from
propositions A and  A. This principle has been the object of debate. Indeed,
although everybody agrees that Bolzano would have never accepted the passage
from A and  A to B as valid, there are two different interpretations concerning
what Bolzano’s reasons might have been. An accurate presentation of these
different interpretations would go beyond the scope of the paper and thus we
leave it aside; let us however underline that it is a very interesting debate (in
particular, see George (1983) and Stelzner (2002) for one interpretation of the
Bolzanian block of Lewis’s first paradox; and Berg (1962) and Siebel (2003) for
the other interpretation).

It is now time to move to the notion of exact derivability. Bolzano introduces
two different notions of exact derivability: one in the Wissenschaftslehre §155.26,
the other in the Von der mathematischen Lehrart, §8. According to (Rusnock
and George, 2015, Vol. II, p. xxxvi), the latter notion of exact derivability is an
improved version of the first: Bolzano spotted a flaw in the definition of exact
derivability given in the Wissenschaftslehre. We thus embrace the definition of
exact derivability given in Von der mathematischen Lehrart.
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Definition 2.2. Propositions A1, ..., An are exactly derivable from propositions
B1, ..., Bm with respect to the sequence of components   P1, ..., Pr ¡, , which
occur in the propositions A1, ..., An as well as B1, ..., Bm, if, and only if:

- A1, ..., An |ù P1,...,Pr¡ B1, ..., Bm

- no Ai, 1 ¤ i ¤ n, may be removed from the set A1, ..., An without the
loss of derivability of B1, ..., Bm from the remainder with respect to  
P1, ..., Pr ¡.

Analogously to our notation for derivability, we write:

- M ( P1,...,Pr¡
N to denote that the set N is exactly derivable from the

set M with respect to the sequence of components   P1, ..., Pr ¡;

- M * P1,...,Pr¡
N to denote that the set N is not exactly derivable from

the set M with respect to the sequence of components   P1, ..., Pr ¡;

- M * N to denote that there is no sequence of components with respect
to which the set N is exactly derivable from the set M .

The idea behind the notion of exact derivability is rather simple: exact
derivability is derivability plus the condition that no premiss can be omitted
without losing derivability itself. On the one hand, exact derivability keeps the
most salient ingredients of derivability, namely compatibility of premisses and
preservation of truth both relative to a sequence of components. On the other
hand, all the properties of derivability discussed above are lost. As is easily seen,
exact derivability does not enjoy monotonicity nor restricted monotonicity; it
does not enjoy cut5 and thus, since transitivity is a special case of cut, as we
have said above, it is not even a transitive relation.

As for the logical principles associated with exact derivability, they include
the following three:

1. A_B,  A ( A,B¡ B

2. A,  A * B

3. B * A_ A

The first two principles are those that were associated with derivability.
Principle 1, namely disjunctive syllogism, still holds: both  A and A _ B are
indispensable premisses to derive B. As for principle 2, namely the block of
Lewis’s first paradox, since exact derivability is a special case of derivability, it
obviously still holds. Principle 3 is new and amounts to the block of Lewis’s
second paradox (see Lewis and Langford (1959)); it can be thought of as the
direct consequence of the second item of Definition 2.2.

5Let us underline that Bolzano himself realized that cut is not valid for exact derivability,
see (Rusnock and George, 2015, II, §155.32).
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We have thus finished our summary of the two Bolzanian notions of deriv-
ability and exact derivability, that are milestones in the history of logic. In what
follows we will only focus on the notion of exact derivability. In particular we
will try to answer the following question: which modern notion of derivability
best approximates Bolzano’s notion of exact derivability?

Of course we are not the first to be intrigued by this issue, e.g. see George
(1983); Siebel (2003); Stelzner (2002); several parallels have been drawn between
the notion of exact derivability and the relavant logic R introduced by Anderson
and Belnap (1975). In the following section we will show that, although the
parallel between relevant logic and Bolzano is appropriate, there is another
relavant logic that matches the properties of the notion of exact derivability far
better than Anderson and Belnap’s: it is the logic CR introduced by Tennant
(1984). As we will show, the resemblance between Tennant’s approach and
Bolzano’s approach is so striking that it is actually astonishing that nobody has
noticed it before.

3 Tennant’s relevant logic

Let us start with classical logic, probably the best known of all logics, character-
ized by a classical logical consequence relation and the corresponding material
implication connective. Classical logic has been the object of several criticisms
and revisions occasioned by the so-called fallacies of relevance. These fallacies
can be expressed either in an implicational form or in a deductive form. Lewis’s
first paradox can thus either be expressed as the theorem pA^ Aq Ñ B, or as
the fact that B is deducible from the premisses A and  A. Analogously, Lewis’s
second paradox can either be expressed as the theorem B Ñ pA _  Aq or as
the fact that pA_ Aq is deducible from the premise B.

By the term relevant logics one generally indicates those substructural logics
that attempt to block the fallacies of relevance. This has been done in two
different ways. Relevant logic in the tradition of Anderson and Belnap attacks
the problem of relevance from an implication point of view: their main concern
is to describe a relevant conditional. Relevant logic in the tradition of Tennant
attacks the problem of relevance from a deductive point of view: his main
concern is indeed to describe a relevant deduction. Let us note that:

Solving the problem of relevance in the deductive form is arguably
a precondition for solving it for the conditional, if we suppose (as
is reasonable) that the relevant conditional is to be governed by
anything like the rule of conditional proof. To assert the conditional
A Ñ B, one will have to be able relevantly to prove B from A;
and characterizing the notion of relevant deduction appealed to here
is no more than what I have called the problem of relevance in its
deductive form. (Tennant, 1987, p. 665)

As emphasized above, a parallel has already been drawn between Bolzano’s
notion of exact derivability and relevant logic; in particular, it has been said
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Figure 1: Classical Natural Deduction Calculus
Introduction Rules Elimination Rules

��rAs
...
K
 A

 I

���r As

...
K
A

 E

...
A

...
B

A^B
^I

...
A^B

A
^E

...
A^B

A
^E

...
A

A_B
_I

...
B

A_B
_I

...
A_B

��rAs
...
C

��rBs
...
C

C
_E

��rAs
...
B

A Ñ B
ÑI

...
A Ñ B

...
A

B
ÑE

that Bolzano’s notion of exact derivability captures an idea remarkably similar
to the one that motivates the relevant logic R of Anderson and Belnap. But
in view of what has been said in the paragraph above, we can already see that
this is quite imprecise. Exact derivability is indeed a relation, Anderson and
Belnap are mainly concerned with conditionals and it is Tennant who focuses on
relevant derivation. Thus, if an analogy is to be drawn, it is far more appropriate
to compare Tennant and Bolzano. As far as we know, this has never been done,
but seems to be the correct direction to look at. Let us continue to explore this
parallel and discover whether it is really appropriate.

In order to accomplish our task, let us consider the proof of Lewis’s first
paradox in its deductive form. We follow Tennant in first presenting it in an
informal way and then turn to its natural deduction tree presentation. We want
to show that from A and  A, B can be deduced. Thus we accomplish the
following four steps:

1. Assume A

2. By introduction of disjunction, obtain A_B

3. Assume  A

4. By disjunctive syllogism, obtain B

Let us now present the inference from A and  A to B by using the rules of
the classical natural deduction calculus as well as the properties of the classical
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derivability relation. For doing this, let us first of all introduce the language
of classical logic and then the classical calculus of natural deduction which is
formulated in that language.

Definition 3.1. The classical language Lc is composed of a denumerable stock
of propositional atoms (p, q, r, . . . ), the logical operators  , ^, _ and Ñ, the
parentheses (, ) and the square brackets [, ]. The connective Ø is defined as
usual; the symbol K stands for the absurd and is defined as A^ A. Proposi-
tional formulas are standardly constructed.

Definition 3.2. The classical calculus of natural deduction C, formulated in
the language Lc, is composed of the rules of Figure 1. We write M $C A
to denote that the formula A is derivable in the classical calculus of natural
deduction C from the set of premisses M .

Let us underline a couple of things relative to the calculus C and the corre-
sponding derivability relation. First of all, since we have assumed the symbol
K to be defined as a conjunction of two contradictory formulas, in order to
introduce it, we will use the rule ^I, e.g.

A  A
K

^I

Secondly, in the rules  I, _E and Ñ I we have used the notation ��rAs. This
notation means that all (for this stand the square brackets) occurrences of the
formula A are discharged (for this stands the bar), once the rule is used. If
there is no occurrence of the formula A to discharge, each of the rules above
can be used anyway: it is an application of the rule with vacuous discharge of
assumptions. For the sake of clarity, let us make some examples of application
of the rules  I, _E and Ñ I with vacuous discharges.
Exemple 1

B
A Ñ B

ÑI

In this application of the rule Ñ I there is no discharge of assumptions: in
the implication that occurs as conclusion of the rule the antecedent A is not
previously used as a premise.
Exemple 2

A, A

K
^I

B
 E

In this derivation, let us call it d, first we introduce the absurd by means of the
rule ^I and afterwards we introduce the formula B by means of the rule  E:
in this application of the rule  E no assumption is discharged since the formula
 B does not occur previously in the derivation.
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We close this paragraph by making a third and final remark about the deriv-
ability relation of the classical calculus: this relation is notoriously transitive
and enjoys cut.

We now have all the elements to clearly present the inference from A and
 A to B by using the rules of the classical natural deduction calculus as well
as one property of the classical derivability relation. First of all, we consider an
application of the rule introducing disjunction, namely the rule _I:

A
A_B

_I

Secondly, using the rules ^I,  E (with vacuous discharge, as illustrated in the
previous page) and _E, from A_B and  A, we infer B by disjunctive syllogism:

A_B

�A, A

K
^E

B
 E

��B
B

_E

Finally, by cut applied on the previous two derivations, we obtain the desired
result. We call this derivation d1:

A
A_B

_I

�A, A

K
^I

B
 E

��B
B

_E

Let us assume that we accept the rule that introduces disjunction since it is
clearly not problematic. Then, in order to block the paradox, only two strategies
are available: either disjunctive syllogism is rejected or cut is rejected. While
Anderson and Belnap’s relevant logic is based on the rejection of disjunctive
syllogism, Tennant’s logic leads to the rejection of cut. Since Tennant’s rejection
of cut is elegant and subtle, let us better explain it.

In proof theory particular attention is and has always been devoted to redun-
dancies in derivations. A formula occurring in a derivation (in natural deduction
calculi) is said to be redundant, or more technically maximal, when it is both
a conclusion of an introduction rule and a major premise of the correspond-
ing elimination rule (e.g. see Prawitz (1965)). So for example in the following
derivation d

A, B

A^B
^I

A
^E

the formula A ^ B is redundant because it is at the same time the conclusion
of the rule ^I and the major premise of the rule ^E. A derivation containing
at least one maximal formula is said to be not-normal ; a derivation containing
no maximal formula is said to be normal. Normal derivations are particularly
attractive because they are derivations where each formula is relevant to derive
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the conclusion (e.g. see Tennant (1984)). In the example d above, the formula
A^B is clearly not relevant to derive the conclusion A (from the assumptions A
and B). In order to conclude A, we could have just stopped to the assumptions
A and B. Thus d is not a normal derivation.

Another excellent example of a not-normal derivation is represented by the
derivation d1 from A and  A to B that we have seen above. Let us consider
this derivation again:

A
A_B

_I

�A, A

K
^I

B
 E

��B
B

_E

The derivation contains a redundancy, namely the (maximal) formula A _ B
which is at the same time the conclusion of the rule _I and the major premise
of the rule _E. The formula A _ B has no relevant role to play in deriving
the conclusion B. B could have been derived from the premisses A and  A by
means of the derivation d, that we have seen before, where there is no occurrence
of the formula A_B.6

Now that we have clarified what normal derivations are, we can explain
Tennant’s strategy for eliminating cut. Tennant’s idea is indeed very simple:
in his logic CR only derivations that are in normal form, i.e. that do not
contain redundancies (or equivalently maximal formulas), are allowed. As a
direct consequence, only a cut amongst derivations that do not create non-
normal derivations is allowed. To see this, consider again the derivation from
A and  A to B that contains the maximal formula A _ B. Such a maximal
formula has been created by applying cut to the derivation from A to A_B and
the derivation from A _ B, A to B. This application of cut is not permitted
in CR since it creates a maximal formula, i.e. a non-normal derivation, and, as
already explained, only normal derivations are allowed.

The insistence on normality of proofs together with the consequent failure of
unrestricted cut is thus the first characteristic of Tennant’s logic CR; there are
two more properties that need to be mentioned in order to fully understand this
logic. First of all, in the logic CR, in all applications of rules in which discharge
is indicated, discharge is obligatory. In other terms, no vacuous discharge is
allowed.

[...] there must be an undischarged occurrence of the assumption
of the indicated form on which the subordinate conclusion depends.
Upon application of the rule all such occurrences must be discharged.
(Tennant, 1987, p. 672)

For illustrating the point, let us consider again the Examples 1 and 2 above
where applications of rules with vacuous discharge occurred. Let us start with
Example 2. In this case the inference from A and  A to B was obtained by

6Thus, d and d1 are two different derivations from the formulas A and  A to the formula
B; d is normal, while d1 is not-normal.
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applying first the rule ^I and secondly the rule  E. In Tennant’s logic this
passage is no longer valid because it involves an application of the rule  E with
vacuous discharge.7 Let us now move to Exemple 1 where we examined the
inference from B to A Ñ B. Once again in Tennant’s logic this inference is
no longer valid because it involves an application of the rule Ñ I with vacuous
discharge of assumptions.

Note that by preventing the possibility of vacuous discharge in the rule that
introduces the implication connective, i.e. rule Ñ I, Tennant’s logic straightfor-
wardly contains a relevant implication rather than the material one of classical
logic. Indeed as Dunn and Restall observe:

In the rule for introducing implication, a proviso has been attached
which has the effect of requiring that the hypothesis A was actually
used in obtaining B. This is precisely what makes the implication
relevant. Dunn and Restall (1996)

Let us finally move to the third characteristic of Tennant’s logic; the rule
that eliminates disjunction has the following form:

...
A_B

��rAs
...

K{C

�
�rBs
...

K{C

K{C
_E1

where the slash notation K{C is to be understood as follows: we allow a sub-
ordinate conclusion of either one of the cases to be brought down as the main
conclusion, if the other subordinate conclusion is K. If both subordinate con-
clusions are of the same form, the main conclusion has the same form. Also, in
line with what has been said before, no vacuous discharge is allowed.

It is interesting to see why Tennant replaces the old rule _E of elimination of
disjunction with the new rule _E1. The rule _E in a calculus where no vacuous
discharge is allowed does not permit derivation of disjunctive syllogism. Indeed,
as we have seen above, disjunctive syllogism can be proved to be derivable in
classical logic by means of the following derivation:

A_B

�A, A

K
^I

B
 E

��B
B

_E

But because of the conclusion B in the application of the rule E, this derivation
is no longer valid in the logic CR: vacuous discharge is indeed no longer allowed
and B is a vacuous discharge. The new rule _E1 easily solves this problem in
the following way:

7Once more the derivation from A and  A to B is blocked in the logic CR.
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Figure 2: CR Natural Deduction Calculus
Introduction Rules Elimination Rules
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A Ñ B
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A Ñ B

...
A

B
ÑE

The overall restrictions are two: (i) every natural deduction is in normal form,

(ii) no deduction contains vacuous discharge.

A_B

A, A

K
^I

��B
B

_E1

Let us sum up what we have said up to now in the following definition.

Definition 3.3. The calculus of natural deduction CR, formulated in the lan-
guage Lc, is composed of the rules of Figure 2 (the notation used for discharged
assumptions is to be read in the same way as in the classical calculus, except
that, as remarked in point (ii), no vacuous discharge is allowed). We write
M $CR A to denote that the formula A is derivable in the calculus CR from
the set of premisses M .

As it has been proved by Tennant (1984) and as it has been (at least par-
tially) explained in this section, in CR the following logical principles hold:

1. A_B,  A $CR B

2. A,  A &CR B
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3. B &CR A_ A

There also exists a sequent calculus for the logic CR, that we do not intro-
duce for a question of space. Tennant has proved the equivalence between the
sequent calculus and the natural deduction calculus for the logic CR.

4 R, CR and exact derivability

We will use this section to list all the common points between the logic CR
introduced by Tennant and Bolzano’s notion of exact derivability. Moreover we
will show the differences with respect to Anderson and Belnap’s relevant logic.

As already emphasized at the beginning of the previous section, the first
analogy between Bolzano’s and Tennant’s results consists in the fact that both
philosophers focus their attention on the relevance of a derivability relation.8

Thus, while Anderson and Belnap are mainly concerned in identifying a relevant
conditional, Tennant, just like Bolzano, wants to characterize a particular type
of derivability relation. This difference is actually quite significant and, as far
as we know, has never been highlighted before.

Secondly, Bolzano’s notion of exact derivability is non-monotonic (and thus
is associated with principle 3. above), avoids Lewis’s first paradox (see principle
2.) and does not enjoy cut (nor, as a special case, transitivity). Both Tennant’s
logic CR and Anderson and Belnap’s logic R are non-monotonic and avoid
Lewis’s first paradox; but while the latter allows unrestricted cut, the former
characterizes itself precisely for the lack of a relation enjoying a full cut. Given
that derivability relations which do not enjoy full cut9 are quite rare in the
history of logic, this is a second important common point between Bolzano and
Tennant.

Let us move to the third point. It concerns disjunctive syllogism (see prin-
ciple 1.); this inference is indeed considered as valid by Tennant, as well as by
Bolzano, while it is not valid in Anderson and Belnap’s logic. Therefore this
is another aspect that unites the two approaches and distinguishes them from
Anderson and Belnap’s.

For the sake of clarity, let us remark that there is a notion of exact deriv-
ability introduced by Bolzano in the Wissenschaftslehre §155 (we mentioned it
above), for which disjunctive syllogism is not a valid inference. This notion,
that from now on we call ED2, is basically a special case of the notion of exact
derivability introduced in Definition 2.2. Indeed it is obtained by adding to Def-
inition 2.2 the following clause: no part of any premiss of an exact derivability
relation can be deleted without losing derivability itself. Now, if one considers
the premisses of disjunctive syllogism, namely  A and A _ B, one quickly re-
alizes that A_ can be deleted by these premisses whilst preserving derivability.

8In Tennant (2015) the reader can find a very accurate analysis of the relevance of the
derivability relation. This analysis is carried out in the so-called core logic, a refined version
of the logic CR mentioned in this article.

9On this point see also Tennant (2016).
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Figure 3: Summary
Relation/ Non-monotonicity No Lewis’s Cut Disjunctive Insistance on
Connective paradoxes syllogism normality/

subformula property

Anderson Connective X X X x x
and Belnap

Bolzano Relation X X x X X

Tennant Relation X X x X X

From B and  A one can indeed still derive B. Thus disjunctive syllogism is not
an exact inference according to ED2.10

As remarked by Rusnock and George (2015) and as already emphasized be-
fore, Bolzano preferred the notion of exact derivability as defined in Definition
2.2 over the ED2 notion. Let us illustrate whether, beyond Bolzano’s prefer-
ences, there are good reasons for choosing one notion over the other. First of
all, let us note that ED2 is, just like the relation of exact derivability introduced
in Definition 2.2, a relation that does not enjoy cut. But then, if ED2 does
not enjoy cut, it makes little sense for it not to enjoy disjunctive syllogism as
well: Lewis’s first paradox is already blocked by the lack of transitivity and thus
there is no need to add a further restriction. Moreover, a derivability relation
that enjoys neither cut nor disjunctive syllogism is a quite narrow relation and
several doubts can be cast against its conceptual utility. Finally, and perhaps
most importantly, disjunctive syllogism is to be counted as a relevant inference:
indeed both its premisses  A and A_B are relevant to derive B.11 Thus, it is
the notion of exact derivability introduced in Definition 2.2 the one that should
be taken into account.

Let us pass to the fourth common point between Bolzano and Tennant. As
we have seen in the previous section, Tennant insists on and defends the nor-
mality of derivations. In an analogous way, Bolzano (see (Rusnock and George,
2015, §378 and §609)) states principles that are very close to the subformula
property.12 But the subformula property is precisely the property enjoyed by
normal derivations (see Poggiolesi (2010)). Hence, once more, the two philoso-
phers seem to share the same point of view.

We have summed up in Figure 3 analogies and differences between the notion
of exact derivability, the logic CR and the logic R. The relevant logic R and
the notion of exact derivability share some important features: they both are
non-monotonic and they both block Lewis’s paradoxes. This is the reason why
– we believe - several scholars have drawn a parallel between the two. However,
as soon as other properties are taken into account such as disjunctive syllogism,
cut or normality (subformula property), it is CR the logic that best matches
the notion of exact derivability.

10For a precise analysis of this point see (Rusnock and George, 2015, p. xxxvi, II volume).
11This, we think, is Tennant’s central insight.
12Note that many scholars have investigated the importance of the subformula property for

Bolzano’s grounding proofs, see in particular Rumberg (2013) (Roski, 2014, Ch. 5.2.3) and
the chapter of A. Tatzel contained in this volume.
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5 Some reflections about grounding rules for im-
plication

As already emphasized, in the last ten years the notion of grounding has become
a vibrant area of research. Amongst the several different approaches to this
concept, one of the most interesting concerns the logics of grounding: several
different logics of grounding have indeed been proposed, e.g. see Correia (2014);
Fine (2012); Poggiolesi (2017); Schnieder (2011). Most of them are characterized
by grounding rules for the classical connectives: these rules give us the grounds
of classical conjunction, disjunction and negation. Perhaps unsurprisingly, little
has been said about the connective of implication. More precisely, Schnieder
(2011) is the only author who have explicitly formulated the grounding rules for
implication, which are the following ones:

B
A Ñ B because B

Ñ1
 A

A Ñ B because  A
Ñ2

These rules should be read in the following way. Suppose that B is true, then
B is the ground of A Ñ B; suppose that  A is true, then  A is the ground of
A Ñ B. Thus the grounds of A Ñ B are either  A or B.

Our aim in this section is to further discuss the case of the implication
connective in the framework of grounding, which in our opinion deserves further
reflection. It will turn out that the reflections about grounds for implication are
linked to the previous investigations on exact derivability.

Let us start by considering ordinary-language conditionals and the grounding
intuitions concerning them. Let us for example consider the following three
sentences:

1. “If it rains, then the road will be wet”

2. “If the ball is thrown, then it rolls”

3. “If the snow is white, then it is not black”

The question that we aim at answering concerns the grounds of 1-3. What are
the reasons for the truth of these sentences that all have the form “if A, then
B”? For each of the conditionals 1-3, the answer seems to be the same: the
ground is a sentence C such that from A and C, B can be derived. Thus, more
precisely

- Ground For 1: “Water makes things wet”

- Ground For 2: “The ball is a sphere”

- Ground For 3: “Snow only has one color”
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In each case from the ground and the antecedent, one can derive the consequent.
Consider for example the case 2. Why is it true that “if the ball is thrown, then
it rolls”? Because “the ball is a sphere.” Indeed if the ball is a sphere and
spheres if thrown, roll, then if the ball is thrown, then it rolls.

Let us make three remarks about what has just been said. First of all,
these intuitions formulated in a completely non-formal way seem to be both
natural and reasonable. Secondly, they only apply to a certain type of con-
ditional, namely indicative conditionals characterized by a connection between
antecedent and consequent. This connection is very important since it precisely
represents that which is grounded. Thirdly, these intuitions seem to be quite
distant from those that are behind Schnieder’s rules: according to them, the
grounds of an implication are basically its truth-conditions, while, according to
the intuitions presented above, the grounds of an implication is a sentence C
such that from the antecedent (of the implication) and C one can derive the
consequent.

In front of these two divergent approaches, it seems worth deepening our
analysis to understand whether there is a way to conciliate them; we will do
this by moving to the formal level and thus situating the intuitions behind
Schnieder’s rules as well as the intuitions described above in the wide and long
debate concerning the connective of implication. In this broader and more
technical context they both will be clarified and better evaluated.

Let us thus remind the reader the main points of this debate. First of all there
is the classical or material implication: a material implication is true if, and only
if, the antecedent is false or the consequent is true. On the one hand the material
implication has the great advantage of being easy and truth-functional; on the
other hand, it does not take into account the connection between antecedent and
consequent that we assume conditionals to have when we use them in natural
language. Thus the conditional “if 2+2 =3, then the moon is yellow” intuitively
seems to be false, while, when formalized by the material implication, it is taken
as true. An important defense of the material implication is that of Grice (e.g.
see Grice (1989); Thomson (1990)). According to Grice, when conditionals are
evaluated, a distinction should be drawn between semantics and pragmatics: on
the one hand, lies the question of when we can say that a conditional is true
and, on the other, lies the question of when a conditional can be reasonably
asserted. These two levels often differ: for example the conditional “if 2+2 =3,
then the moon is yellow” is true but it is not reasonable to assert it since it
violates some basic rules on conversational cooperation.

This defense of material implication is a milestone in the history of the sub-
ject and has attracted the interest and approval of many philosophers. Never-
theless it is not free from defects (e.g. see Gibbard (1981)) and several scholars
have preferred different formalizations of conditionals. Let us mention those
accounts that are, in our opinion, the most famous ones.

The first attempt to fix the inadequacies of the material implication was
made by the aforementioned C. I. Lewis (1918) with the definition of strict
implication, intended to block the paradoxes of material implication, and go
beyond the truth-functional analysis. Strict implication is defined as a material
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implication under the scope of the necessity operator, i.e. the famous A ( B
:= lpA Ñ Bq. An improved version of the strict implication is the variably
strict implication introduced by Stalnaker (1968) and D. Lewis (1973). While
a strict implication says: “if A, C” is true provided C is true in all the worlds
where A is true, the variably strict implication says “if A, C” is true provided
C is true in all the closest worlds to the actual world where A is true (where
closeness depends on the world of evaluation).

Alongside the work on (variably) strict implication, there is also the trivalent
approach whose starting point is the proviso that a material implication is true
whenever its antecedent is false. A common consideration is that an indicative
conditional whose antecedent is not true cannot be evaluated as true or false,
and so remains indeterminate in truth value. Trivalent logics implications are
basically built to satisfy this criterion, e.g. see De Finetti (1936); Belnap (1970);
McDermott (1996).

Relevant implication together with relevant logic, which have already been
introduced in the previous sections, are the last account that we present. Rele-
vant logic is an umbrella term for denoting several different logics whose main
(but not only) characteristic is that of having a relevant conditional, i.e. a con-
ditional where the antecedent is relevant for the consequent, or, in other terms,
a conditional where antecedent and consequent are on the same topic. Note
that there is formal principle that relevant logicians apply to force theorems
and inferences to be on the same topic. This is the variable sharing principle.
The variable sharing principle says that no formula of the form A Ñ B can be
proven in a relevant logic if A and B do not have at least one propositional
variable (sometimes called a proposition letter) in common (and that no infer-
ence can be shown valid if the premises and conclusion do not share at least one
propositional variable).

We have thus finished our brief panorama on the discussion concerning mate-
rial implication, which involved an excursus through other types of implication.
Let us now go back to our main concern namely the grounding rules for impli-
cation. Recall that we had identified two different ways of treating grounding
of conditional sentences. On the one hand, according to Schnieder’s approach,
the grounds of a conditional are its truth-values, and on the other hand, our
intuitions suggest that the grounds of a conditional are strictly related to the
connection between antecedent and consequent of that conditional. Let us now
link these insights with what has just been said about the implication connec-
tive. Two possible scenarios emerge.

Scenario number 1. We focus on the material implication adopting Grice’s
defense. In this context a conditional sentence like “if 2+2 =3, then the moon
is yellow” is true. But why is it true? The only plausible answer seems to be
the following: because the antecedent is false or the consequent is true. This
answer completely matches with Schnieder’s rules which identify the grounds
of an implication with its truth-conditions. Thus in the framework depicted by
material implication Schnieder’s rules are the appropriate grounding rules for
implication.

Scenario number 2. We do not adopt the material implication and we are
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thus faced to the other types of implication connective. In this second scenario
Schnieder’s intuitions are of course no longer appropriate and thus the challenge
is to combine our intuitions on grounding rules for conditionals with the several
connectives of the market. More specifically, the question which naturally arises
seems to be the following: what kind of implication best allows us to formalise
the intuitions on grounds for conditionals presented above? The trivalent anal-
ysis of conditionals fairs poorly since it mainly focuses on the situation where
an implication has a false antecedent. Then we remain with the (variably) strict
implication accounts and the relevant one. Both approaches appear to create a
tighter link between antecedents and consequents of implication, so at the first
glance they both seem a plausible choice. However relevant logic is definitely
closer to our insights since it explicitly requires a connection between antecedent
and consequent and that is exactly what is needed to find the grounds of a condi-
tional. To see this in more detail, let us consider the case of a conditional where
antecedent and consequent are tautologies with no atomic sentence in common,
such as “if it is not the case that it rains and it does not rain, then the moon
is yellow or the moon is not yellow”. This conditional formalized in both Lewis
and Stalnaker-Lewis accounts is true because both antecedent and consequent
are true in any world; on the contrary if formalized as a relevant implication is
not provable since it does not enjoy the variable sharing principle. The analysis
offered by relevant logics is thus compatible with our perspective: according to
our insights the lack of connection between antecedent and consequent in the
sentence “if it is not the case that it rains and it does not rain, then the moon
is yellow or the moon is not yellow” does not make it possible to formulate the
grounds for such a sentence.

So relevant logic seems to be the best option for formulating grounding
rules for implication that reflect our intuitions. But since relevant logic is an
umbrella term that gathers together several different formal systems, it would
be interesting to identify the most appropriate. There are two good reasons
for preferring the system CR, which has been introduced in Section 4, over
the others. Let us explain these two reasons in detail. The first is simplicity:
compared to the other relevant logics, CR has both an elegant and simple
semantics and and elegant and simple proof theory. The proof theory has been
introduced in Section 4 and it is striking for its clarity. The semantics has
not been presented for brevity but we refer to Tennant (1984). Grounding
is a complicated and problematic object to treat formally; choosing a simple
framework in which to formulate grounding rules is thus a primary requirement
if we do not want the complexity of the topic to explode. Thus, CR appears to
be the best relevant logic for this purpose.

A second reason for choosing CR is its peculiar link with normality of deriva-
tions: as already said (see Section 4) in CR all derivations are normal. There
exists a viable tradition that starts with Aristotle, passes trough Bolzano, but
is also present in the contemporary literature (e.g. see Casari (1987); Rumberg
(2013)) that requires ground-revealing proofs to be normal in some sense. This
aspect has been deeply discussed in the recent debate. Hence, from this per-
spective, CR seems to be an ideal framework where to develop grounding rules
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for implication since it ensures normality right from the start. This certainly
is a second significant reason for preferring it over the other existing relevant
logics.

We have thus terminated our reflections on grounding rules for implication.
We have shown that depending on which type of implication is adopted the
grounding rules for implication vary. While Schnieder’s intuitions match very
well with the material implication, our intuitions are captured very well by
relevant logic and in particular by the system CR. Schnieder’s intuitions have
already been formalized by means of the rulesÑ 1 andÑ 2. As for our intuitions
(or analogous ones) no result has so far been presented. This is certainly an
interesting and compelling line of work for future research.
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