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Abstract

While recent advances in middleware and Software Engineering are at the edge of making
Software Reuse a reality, the newly given dynamicity and openness seriously challenge val-
idation, especially regarding Quality of Service (QoS). Modern QoS models require highly
accurate quantitative descriptions of future execution environments, whereas these envi-
ronments are getting more and more uncertain as dynamicity and openness increases. As
a result, our ability to validate QoS concerns diminishes until a point where its worthiness
must be reconsidered. In this context, we envision in this paper an alternative approach
to reconcile dynamicity, openness and QoS. It combines run-time and design-time vali-
dation together with advanced modelling of uncertainty. We describe the overall process
and discuss several obstacles to its realization, including QoS requirements modelling, QoS
validation and run-time QoS fault-detection.

1 Introduction

With the emergence of middleware platforms supporting run-time adaptations (e.g., WS, OSGi,
JEE), software systems are becoming more and more open and dynamic. These new abilities,
which improve software reuse, also directly challenge our ability to validate these systems. This
is further complicated when extra-functional requirements like Quality of Service (QoS) must
be met. Overlooking QoS undoubtedly leads to overpriced rollbacks in the development, or
even jeopardise the delivery of final software artifacts. To mitigate QoS issues, modern ap-
proaches [1] validate end-to-end QoS requirements against predictive QoS models representing
the system and its environment. Precise quantitative descriptions (e.g., probability distribu-
tions, memory capacities, CPU speeds) are critical to ensure high accuracy of QoS predictions.
However, the more dynamic a system is, the more difficult it becomes to precisely characterise
its environment, and, in turn, the less significant existing techniques are. The same is true
for end-to-end requirements, whose numerical estimation becomes more and more irrelevant as
the system bounds become uncertain. This inherent incompatibility between dynamicity and
accuracy challenges the worthiness of QoS analysis: the effort spent at design-time validating
QoS requirements must be put in perspective using the significance of the validation results at
run-time.

We are convinced that our ability to tame dynamicity and openness is bounded to the way
we address the uncertainty it implies. We believe that postponing validation until run-time to
minimise uncertainty while using proper mathematical foundations shall help reconcile dynam-
icity and QoS engineering. In this setting, the contribution of this vision paper is to examine
to which extent recent models at run-time techniques [2] can be combined with advanced mod-
elling/reasoning techniques addressing uncertainty in the first place [3]. To this end, we first
present our approach as a development process focusing on QoS requirements. We then re-
viewed the key properties that an ideal QoS model must exhibit to enable the validation of QoS
requirements under openness and dynamicity. We then discuss the construction, the validation
and the injection of such QoS requirements into running systems.
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2 Motivations

Let us consider an application server, as a practical example of above-mentioned QoS issues.
In a general sense, a server processes requests for resources (e.g., files, HTML pages, service
invocations) and users are often expecting its response time to be bounded, (we consider here the
server-side response time, i.e., the time between the reception of a request and the emission of
the related response). A typical QoS requirement describing the server is “the server response-
time must be less than 3 s for 90 % of requests in a single day”.

Various models and techniques can be used to validate that this requirement will hold at
run-time, such as Markovian models for instance. In a general setting, servers’ response time
depends on two main factors, namely, the arrival rate (i.e., the speed at which requests arrive,
in req.s−1), and the service rate (i.e., the speed at which the server processes them, in req.s−1).
The task of QoS expert is therefore to anticipate, at design time, the environments the system
may be facing. In Markovian models, this is achieved by means of probability distributions
quantifying the likelihood of possible arrival rates, and service rates. For the sake of the
example, let us assume the two following distributions: f , which describes the arrival rate, is
a normal distribution centred around 50 req.s−1 with a deviation of 25 req.s−1, whereas g,
which describes the service rate, is also a normal distribution centred around 100 req.s−1 with
a deviation of 25 req.s−1. The Markovian model assesses that our requirement holds. However,
in real life, when the actual arrival rates will exceed the service rate, our requirement will
actually not hold anymore, as the server will either start to store or to reject pending request,
depending of the overload management policy.

So what did we get wrong? Actually, the original QoS requirement and the one that we
validated, are not the same. The one we validated is: “assuming the distributions f and g for
the arrival and service rates, respectively, the response time must be less than 3 s for 90 % of the
requests in a single day” and is much more restrictive.We could obviously relax our expectations
on the expected execution environment by using uniform distributions, but we would not be
able to validate our requirement: there will always be a non null probability that the arrival
rate exceeds the service rate, in which case the response time will tends towards infinity.

The previous example shows the intrinsic difficulty of QoS requirement modelling and val-
idation, even on simple examples. Existing QoS requirements reflect our expectations from
a user perspective, whereas our validation techniques reflects the system’s ability from the
“pragmatic” engineer standing point. Open and dynamic systems acerbate this conflict and a
paradigm shift is needed to validate QoS in such a context.

3 Overview of the Approach

The paradigm shift we envision is the continuous anticipation of the inherent conflict between the
user expectations and the system abilities, so as to trigger preventive adaptations. The proposed
approach combines advanced mathematical modelling of uncertainty with recent advances in
models@runtime. Fig. 1 illustrates the development process making concrete continuous QoS
validation in open and dynamic systems. This process reflects our will to turn the traditional
once-and-for-all QoS validation into a continuous validation process at runtime. It is structured
as follows:

• QoS Requirements Elicitation is jointly carried out by the user and the QoS expert.
The objective here is to obtain detailed QoS requirements that can be later turned to
operational artifacts, stating the expectations from a user point of view.
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Figure 1: Overview of the process, designed to tackle QoS validation for open/dynamic systems

• QoS Model Extraction is carried out by the QoS expert and aims at obtaining a model
describing the dynamics of the system’s QoS, describing the system’s abilities. Recent
advances in QoS models shows that automated extraction is needed to cope with the
difficulty of quantifying the various parameters needed to obtain accurate QoS predic-
tions [1, 4].

• Initial QoS validation is also carried out by the QoS expert, but is an initial comparison
between the system abilities and the user expectations. When this first validation fails,
the QoS expert has to determine whether they are due to ill-formed requirements, or to
error in the running system. Once issues have been mitigated, the process restarts with
QoS model extractions or with alternative requirements.

• Probes and Requirements Injection is the combination of the running system (ex-
tended with additional monitoring capabilities) and the user requirements: the mismatch
between requirements and systems abilities can be dynamically checked while the system
is running, taking into account unforeseen environments discovered at runtime.

• Continuous QoS Validation, supported by probes injection, aims at anticipating when
QoS requirements might actually be violated. This is further complicated by the potential
softness of QoS requirements, whose violation may deal with softness regarding amplitude,
duration or frequency.

• Corrective Maintenance is needed to moderate QoS issues anticipated at run-time.
This might be done automatically using self-adaptation techniques [5] or semi automati-
cally [6].

3.1 Towards Assume/Guarantee-based QoS Requirements

The first obstacle to the process sketched on Fig. 1 is the lack of a model for QoS requirements.
By contrast with traditional QoS requirements, we believe that key point is not to quantify
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end-to-end QoS, but to constraint its possible values by capturing the “envelope” in which the
QoS is expected to evolve, depending on the context. Fig. 2 illustrates what we envision as a
good QoS requirement, regarding our server example.

whenever (service rate > arrival rate): // Nominal behaviour

response time must be always below service_rate * max waiting req

rejection_rate should be around 0

whenever (service rate <= arrival rate): // Overload

response time must be always below service_rate * max waiting req

rejection_rate should be around arrival rate - service rate

Figure 2: Alternative QoS Requirements bounding the response-time of a server application

In Fig. 2, we express that when the service rate exceeds the arrival rate, the response time
shall be bounded by the time spent processing all the requests that are already pending, and no
request shall be rejected. By contrast, if the arrival rate exceeds the service rate, new requests
shall be rejected at a rate which is the difference between arrival rate and service rate. This
example highlights several key properties of what we think are good QoS requirements:

• Completeness. Such requirements forms a complete partition regarding the different
situations that might occur, namely nominal behaviour, or overloads in our example.
Such a partition discards superfluous details but retains the critical distinctions. Building
such partitions is critical to tame open and dynamic systems.

• Uncertainty. Such QoS requirements are inherently uncertain. First, they are imprecise
as they capture relative orders of magnitude, instead of accurate prediction. For instance,
we only assume that the difference between the arrival rate and the service rate is a good
approximation of what must be the rejection rate. In addition, QoS requirements are
inherently permissive or soft, as they make explicit what is acceptable in which contexts.
Imprecision and Softness are the counter part of completeness, to tame open and dynamic
systems.

• Clear Intention & Operational Extension. They have a clear intention: “bound the
response time” in our example. This critical from the user perspective. Besides, assuming
that the values at play can be observed at run-time, such requirements must be turned
into operational checkers. This is critical from the QoS Expert perspective: Considering
the effort to elicit and track one single QoS requirement through the development process,
we directly question the worthiness of non-operational requirements.

• Qualitative. The envelope that is presented here is qualitative: it does not refer to crisp
values (except for 0, which can be considered as a qualitative value). Such qualitative
description, uses merely basic arithmetic operators, as non-linearity emerges from the
identification of distinct cases (e.g., nominal versus overloads).

How one can come up with such requirements? We believe that such requirements can
be elicited using the two main abilities of human reasoning: abstraction and decomposition.
Decomposition is our ability to break down complex problems into smaller ones that can be
separately solved, whereas abstraction is our ability to get rid of irrelevant details and to retain
only critical distinctions. In the previous example, abstraction selects the properties of interest:
service rate, arrival rate, rejection rate, and maximum number of waiting requests. By contrast,
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decomposition identifies our two cases: one characterising the nominal behaviour of the system,
the other one characterising overloads.

How to manage uncertainty? Aside of the well known Probability theory, there have
been several attempts during the past 50 years to provide sound mathematical foundations for
reasoning under uncertainty [3]: Fuzzy Sets, Evidence Theory, Rough Sets, Grey Theory and
numerous hybrid theories. Each of these theories addresses specific aspects of uncertainty, e.g.,
eventuality, cognitive imprecision, approximation, incompleteness. We are firmly convinced
that, while abstraction and decomposition will help designers elicit QoS requirements, such
formal foundations will permit to effectively exploit their inherent imprecision and softness.
Modern Control Theory relies for instance on Fuzzy Set Theory to tackle complex non-linear
and multivariate problems.

3.2 QoS Model Extraction and Validation

QoS Models, at least performance models [1], have always suffered a very low acceptance due to
the difficulty to quantify the numerous parameters that they require. However, recent advances
in parameter estimation now permit to extract such parameters directly from running artifacts,
typically traces or source code [4]. Alternatively, it is also possible to extract QoS models
using approximations techniques combined with performance testing: The model then mimic
the behaviour observed during testing.

QoS Models extraction is a great step towards a general and effective QoS engineering. In
our process, it is critical to continuously validate the QoS of the system as often as needed,
by changes in the context. Coming back to our server example, and assuming an existing QoS
model, it becomes possible to validate that the response time is bounded, in nominal conditions
as well as during overloads.

Models extraction is however still not sufficient as it results in accurate predictive models
whose complexity is far too high to be embedded at runtime. There is hence a need for models
approximations and efficient parameter identification to reflect context changes observed at
runtime, and enable in turn continuous validation.

3.3 Probe Injection and Continuous Validation

The last obstacle to the process introduced in Fig. 1 is the ability to deploy probes that observe
the various parameters involved in QoS requirements, and the ability to decide whether a given
requirements will be violated or not. Measuring values at play in QoS requirements implies,
in the general case, the development of specific probes. The design and the integration of
such probes undoubtedly impacts the system itself, so it exhibits relevant information. While
probes represent an additional development, their integration in the rest of the system can be
lightened by advanced software engineering techniques, e.g., aspect-oriented programming or
dynamic deployment.

Deciding whether a given QoS requirement will be violated or not depends on two aspects:
(i) our ability to calculate, at run-time, the expected envelope and trajectory of the QoS prop-
erties of interest, and (ii) our ability to handle the imprecision and softness inherent to QoS
requirements. Regarding run-time evaluation, we envision two main approaches, the dynamic
interpretation of QoS requirements at run-time, or if their semantic is not computationally
efficient enough, the injection of some precomputed numeric approximations. Regarding im-
precision, it is critical to properly handle all acceptable relative deviations, both in term of
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amplitude and frequency. Efficient QoS fault detection is critical to ensure the good usability
and stability of the system, especially is fault detection triggers self-adaptive mechanisms. In
this perspective, we aim at reusing existing classification techniques (e.g., clustering, pattern
recognition), already effective in other engineering fields.

4 Conclusions & Road Map

In this paper, we envision a paradigm shift to support the modelling of QoS requirements in
adaptive systems that are open and dynamic systems. This approach is complementary to usual
QoS methods, as it aims to address systems that are typically not designed to support usual
QoS models. We are especially interested in looking for convergence with the development
various services architectures, including Internet of Things and Internet of Services. Regarding
IoT, we are especially exploring within the ThingML project [7], which defines a model-driven
framework enhancing the development of embedded systems.

On the short term, we are targeting at first the formal definition of a QoS requirements se-
mantics that would handle uncertainty while preserving computational efficiency. Another task
is the definition of QoS fault detection mechanisms that would report gradual degradations,
supporting deviations in frequency or amplitude and enable preventive adaptations. On the
mid-term perspective, our focus will be on the development of QoS requirements framework,
that would combine traditional verification with the imprecision and softness of QoS require-
ments. Finally, in the long term perspective, we will focus on the evaluation of the feasibility,
of the effectiveness and of the performance in securing QoS in dynamic and open systems.
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