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Abstract 
Nowadays islanded microgrids mostly rely on diesel generator. In order to reduce greenhouse 

emissions, two islanded microgrids with hydrogen storage have been installed and are currently 

working autonomously in Reunion Island and France. Energy management implemented on these 

stations fall in the myopic control category. This study aims to determine the performance 

improvement that could be achieve on such stations using model predictive control. Ability to supply 

to the loads and energy losses minimisation are our main objectives. Lifetime degradation is also taken 

in consideration. Simulations shows that significant improvement can be brought, with a 76% decrease 

of the station’s defaults time and better fill rate of hydrogen tank and batteries. In the meantime, 

chemical and electrical losses are reduced by 38 and 11%, and the batteries degradations are 

decreased by around 1%. The relevance of taking into account the electrolyser and fuel cell 

degradations depends on the time-step of the control. These results give a performance target in order 

to implement a real-time model predictive control in the microgrids, and eventually can be used to 

better sizing of future microgrids with similar architecture. 

1. Introduction 
The last decade witnessed significant improvement in the understanding by the public at large of the 

impacts that can be caused by climate change. This increasing awareness leads in turn to more policies 

and actions to counterbalance global warming and to adapt ourselves to its effects. The energy sector 

is no exception to the general trend. 

Besides the major task of efficiently producing energy for a growing energy demand while reducing 

greenhouse gas global emissions, powering off-grids areas is also a great challenge. Indeed, numerous 

of these sites still have a diesel generator as principal or secondary power source and thus rely on oil. 

The expansion of renewable energy production is a promising way to overcome this fossil energy issue. 

However, renewable energies like photovoltaics and/or wind energies need an energy storage system, 

due to random and irregular power production. In this article, we study the Energy Management 

Strategy (EMS) of a Renewable Energy System (RES) in remote areas. The simulated RES has no diesel 

generator but includes a hybrid energy storage system composed of batteries and an hydrogen chain. 

Such a RES has been installed by company Powidian in the Parc de la Vanoise (France) and in the Cirque 

de Mafate (Reunion Island). Today the EMS of both stations are based on a myopic strategy.  Our goal 

is to quantify the potential gain that could be achieved by implementing a Model Predictive Control 



(MPC). MPC has been widely in industry in general. In the context of RES, it consists of predicting the 

energy production and consumption on a defined temporal horizon and to determine the optimal 

control regarding these predictions and a behaviour model of the station. Examples of implementation 

for RES with hydrogen storage can be found in [1–8]. In [1] Valverde et al developed a MPC to ensure 

the energy management to follow several goals, including the protection of the components (batteries, 

fuel cell and electrolyser), and to pilot the components to a predefined operating point. The control 

has been experimentally tested using a labscale microgid (HyLab) in the University of Sevilla[9].The 

command has been developed to control the RES for very short term temporal horizon (10 seconds) 

and has been combined with a short term temporal horizon (4 days) control developed by Cau [2], 

using also a model predictive control. The objectives of Cau’s MPC is to minimize the operating and 

maintenance cost over the whole lifetime of the RES. The labscale HyLab has also been used by Salazar 

in order to validate another MPC control. Objectives of the control were to supply the loads, to 

minimise the operational costs while assuring a good durability of key components. To do so, she 

introduced 4 continuous duration variables in such way that the problem is formulated as a nonlinear 

problem with continuous variables, easier to solve than Mixed Integer Linear Problems.[10,11]Another 

MPC has also been developed by Serna et al in [3]. In this study, the goal was to ensure the hydrogen 

production from wind and waves turbines and to preserve the state of health of the electrolyser. To 

do so, he developed a Mixed Integer Quadratic Programming resolution of MPC with naïve predictions. 

In [4] Konstantinopoulos et al presents a predictive control to balance the intermittency of renewable 

production while minimizing the financial cost. They assumed they know the probability density 

functions of forecasting errors and resolve the optimization problem with a Harmony Search 

Algorithm. Bornapour et al consider the problem of optimal scheduling for a RES in a stochastic 

programming framework. The RES is composed of PV panels, wind turbines, thermal units and a fuel 

cell. Its goal is also to maximise the financial revenue over the station’s lifetime. The problem is 

resolved through the Modified Fireflies Algorithm in a first paper in [5], which is an evolutionary 

algorithm, and a Teaching-Learning Based Optimisation Algorithm in a second one in [12]. Torreglosa 

et al implemented a predictive control of a RES with hydrogen storage and compared the performance 

improvements compared to a myopic strategy [6]. The goal was to meet the demand while assuring 

that batteries state of charges and hydrogen tank level stays between some reference value. MPC also 

increased the fuel cell and electrolyser efficiency by determining an optimal operating point for these 

components. However, lifetime considerations are not addressed. Two low-level MPC were introduced 

by Trifkovic et al to control the fuel cell and the electrolyser while the high level control was assured 

by a myopic strategy [7]. Increasing efficiency and renewable energies penetration while meeting the 

demand were the target. The energy storage system contains no batteries and rely only on hydrogen 

storage. Here again, ageing is not addressed. Finally, Nease & Adams implemented a predictive control 

with rolling horizon for a RES with a Solid Oxyde Fuel Cell and Compressed Air Energy Storage [8]. Use 

of stochastic Monte-Carlo simulations are used to deal with the uncertainty associated with forecasts. 

An economic objective is targeted and a trade off with load following performance is introduced. 

All of these papers show feasibility of controlling RES with hydrogen storage by a model predictive 

control. When comparison with other types of control are available, it appears that MPC improves 

performances of the RES [2,6,13]. This result can also be widely found for RES without hydrogen 

storage (see for example [14–17]). However, for a large majority of the above studies, the main 

objective of such command is to minimise the financial cost (or maximise the revenue) over the RES 

lifetime while ensuring power availability. While aiming for a better profitability for such expensive 

technologies is understandable, we think such questioning is not the only major issue to be solved. The 

industrialisation phase of the hydrogen storage system components – fuel cells, electrolysers and 

hydrogen storage – while needing improvements, is expected to be significant in the future [18]. 



Therefore, the discount rates and cash flows relative to these components in near future are highly 

unpredictable and could lead to significant deviations when considered too early. For this reason, we 

choose to optimize the efficiency of the RES by minimizing energetic losses during the power 

conversions while assuring the load to be met. As these are physical process, the results presented 

here will stay valid no matter of the market evolution. In addition, the duty factor of the fuel cell and 

electrolyser is expected to be reduced by the use of a predictive control, leading to a reduction of their 

performances [13]. Therefore, the health of batteries, electrolysers and fuel cells are also considered 

in the optimisation process. To our knowledge, there are no such study applied for RES with hydrogen 

storage and similar architecture and for the same objectives taken altogether. 

The main contributions of this papers are: 

- Describing the model used in the study that will be reused in future works. 

- Optimising the energy management to minimize default time, energetic losses and ageing 

process altogether through a multi-objectives formulation.  

- Quantifying the performance improvement brought by implementing a MPC regarding the 

objectives mentioned above. 

Section 2 of this paper presents an overview of the architecture of the stations. Section 3 deals with 

the model of each component. Section 4 exposes the current EMS, the principle of MPC and defines 

its objectives functions. Results and discussion are presented in section 5. 

2. Architecture of the station 
In remote and/or off-grid area, electricity is not provided by the grid and thus it must be produced 

onsite. Nowadays, a wide majority of such power production is assured by diesel generators, resulting 

in a high dependence of imported fuel and CO2 emissions. Renewable energy production like solar 

photovoltaic or wind turbine can overcome these issues. These technologies, however, cannot be 

controlled by an operator and depend on stochastic parameters such as wind speed and daylight. RES 

thus relies on storage systems to achieve full autonomy. If a large variety of storage technologies can 

be used, the present study focuses on a hybrid batteries / hydrogen energy storage system. A diagram 

of the such RES is provided in Figure 1. 

 

Figure 1 : Diagram of the studied RES 



It can be decomposed in four parts: 

1) The power production subsystem, composed of two branches of five solar panels plugged in 

series. We suppose that they all work at their Maximum Power Point in all time. 

2) The loads - both deferrable and not deferrable – connected to an inverter to provide a AC 

power. 

3) A short-term Energy Storage Subsystem (ESS), composed of Li-ion batteries. 

4) A long-term ESS, composed of an electrolyser, a fuel cell and a hydrogen tank. 

Every component is connected on a 48V DC bus through converters. A central controller, called 

MasterControler, is responsible for collecting data from each component and for their control. A 4G 

modem is integrated so the RES can be remotely supervised and updated. As converting electricity to 

hydrogen and again to electricity is low-efficiency process, usage of lithium-ion batteries is intuitively 

preferred over the hydrogen subsystem.  

3. Models 
The behaviour of each components of the studied RES is provided in the following sections. The 

timestep used in further simulations is greater by several orders of magnitude than typical constant 

time associated with component’s fast dynamics. Consequently, fast dynamics are not taken into 

account. 

3.1. Photovoltaic panels 
The theoretical power that can be delivered by the PV panels (after MPPT converters) is noted 𝑃𝑃𝑣

𝑡ℎ𝑒𝑜 

and is given by  [19,20]: 

 𝑃𝑃𝑉
𝑡ℎ𝑒𝑜(𝑡) = 𝑁𝑝 × 𝜂𝑀𝑃𝑃𝑇 × 𝑃𝑏𝑟𝑎𝑛𝑐ℎ(𝑡) (1) 

With 𝜂𝑀𝑃𝑃𝑇 being the MPPT converter efficiency and 𝑁𝑝 the number of parallel branches. The power 

𝑃𝑏𝑟𝑎𝑛𝑐ℎ delivered by one series of panels is calculated by (2)(12). 

 𝑃𝑏𝑟𝑎𝑛𝑐ℎ𝑒(𝑡) = 𝑁𝑠 × max (𝑃𝑐 ×
𝐸(𝑡)

𝐸0 (1 −
𝛾

100
(𝑇𝑐𝑒𝑙𝑙(𝑡) − 𝑇𝑐𝑒𝑙𝑙

0 )) , 𝑃𝑀𝑃𝑃𝑇
𝑚𝑎𝑥 ) (2) 

 

𝑁𝑠 is the number of PV panels in one series, 𝑃𝑐 is peak power of one panel, 𝛾 the thermal coefficient, 

𝑃𝑀𝑃𝑃𝑇
𝑚𝑎𝑥  the maximal power delivered by MPPT converters, 𝐸 the incidence irradiance, 𝑇𝑐𝑒𝑙𝑙 the 

temperature at the cell surface. 𝐸0 and 𝑇𝑐𝑒𝑙𝑙
0  are the incident irradiance and the cell temperature under 

standard conditions. 

3.2. Batteries 
We suppose that power flows are equally distributed over the batteries. We can hence consider the 

battery bank as a unique battery, modelled by its instantaneous power, its state of charge and state of 

health. We compute the state of charge at each time step with (3) 

 𝑆𝑂𝐶𝑏𝑎𝑡(𝑡 + 1) = 𝑆𝑂𝐶𝑏𝑎𝑡(𝑡) +  Δ𝑡
√𝜂𝑏𝑎𝑡𝑃𝑏𝑎𝑡

+ + 𝑃𝑏𝑎𝑡
− /√𝜂𝑏𝑎𝑡 

𝑉𝑛𝑜𝑚 × 𝐶𝑛𝑜𝑚
 (3) 

 



Δ𝑡 is the time step, 𝜂𝑏𝑎𝑡 the battery round trip efficiency, 𝑉𝑛𝑜𝑚 the nominal voltage, 𝐶𝑛𝑜𝑚 the nominal 

capacity. 𝑃𝑏𝑎𝑡
+  and 𝑃𝑏𝑎𝑡

−  are the power charged and discharged between time 𝑡 and time 𝑡 + 1. The 

state of health gives an overview of the capacity loss due to ageing process. For a state of health equal 

to 1 for a new battery and to 0 when its nominal capacity is only 80% of its initial capacity, it is defined 

by  

 𝑆𝑂𝐻𝑏𝑎𝑡(𝑡) = 5
𝐶𝑛𝑜𝑚(𝑡)

𝐶𝑛𝑜𝑚
0 − 4 (4) 

When 𝑆𝑂𝐻 = 0, the battery is considered unusable and must be replaced [21]. The capacity 

degradation is calculated through an empirical model developed by Wang et al [22,23]. It can be 

decomposed by the sum of calendar ageing 𝐴𝑐𝑎𝑙 and cycling ageing 𝐴𝑐𝑦𝑐. The calendar ageing depicts 

the natural capacity loss through time. The cycling ageing accounts for the degradation due to 

repetitive charges and discharges.  

 𝐴𝑐𝑦𝑐(𝑡) =  (𝑤1𝑇𝑒𝑥𝑡
2 + 𝑤2𝑇𝑒𝑥𝑡 + 𝑤3)𝑒(𝑤4𝑇𝑒𝑥𝑡+𝑤5)×𝐶𝐼𝑑𝑒𝑐 × 𝐸𝑡𝑜𝑡 (5) 

 𝐴𝑐𝑎𝑙(𝑡) = 𝑤6𝑒
−

𝐸𝐴
𝑅𝑇𝑒𝑥𝑡√𝑡 (6) 

 
𝐶𝑛𝑜𝑚(𝑡)

𝐶𝑛𝑜𝑚
0 = 1 − (𝐴𝑐𝑦𝑐(𝑡) + 𝐴𝑐𝑎𝑙(𝑡)) (7) 

𝑇𝑒𝑥𝑡 is the ambient temperature, 𝐶𝐼𝑑𝑒𝑐
 is the rated capacity for a discharge current 𝐼𝑑𝑒𝑐, 𝐸𝑡𝑜𝑡 the total 

amount of energy discharged by the battery during its lifetime, 𝐸𝐴 the activation energy, 𝑅 the gas 

constant and 𝑤𝑖 empirical parameters. Other influence of ageing on internal impedance is not 

considered here. It is reasonable since a rise of the internal impedance mainly have two consequences. 

First, their maximal power decrease both for charges and discharge. However, batteries rarely reach 

their maximal power in our application so we can neglect this effect. And second, the temperature 

inside the batteries increases due to higher joule effect, but this consideration is beyond the scope of 

our study. 

3.3. Fuel cell 
A proton exchange membrane fuel cell (PEMFC) is an electrochemical device which aim is to produce 

electricity from hydrogen. It is composed of numerous cells connected in series and parallel. A stream 

of gaseous hydrogen is brought to the anode part where it will be decomposed in two protons. Then, 

the protons migrate to the cathode part through the polymer-made membrane and react with 

dioxygen to produce pure water. The electrons produced while decomposing the dihydrogen are 

collected to generate electrical power. We suppose that the fuel cell always works at its nominal power 

when active: 

 𝑃𝐹𝐶 =  {𝑃𝑛𝑜𝑚
𝐹𝐶      when active

0  otherwise
 (8) 

This simple model is not often used in the literature.  Authors usually prefer more complex models 

based on polarization curves and internal voltage losses (see for example [24]). The choice of using this 

model is guided by the fact that the classical models only consider the process within the cells and the 

stacks. Fuel cells, however, also contain auxiliaries like pumps or electronics for which consumption 

are not known. Moreover, supplier can introduce their own strategies to manage the flow of reactants 

and to maintain the cells in good operating conditions. These strategies are also not known and depend 



on the supplier. For this reason, we suppose the fuel cell to be locally controlled at nominal conditions 

given by the supplier. Doing so, we are taking into account all the reactant losses and re-use, as well 

as auxiliaries consumption. 

The amount of hydrogen consumed in the process given by the supplier’ datasheet is 32 slpm at 

nominal power. It considers the efficiency and hydrogen lost during the process (purges). We suppose 

this quantity constant through fuel cell the lifetime. 

We also define a state of health for the fuel cell 𝑆𝑂𝐻𝐹𝐶 that depicts the performance loss which ageing. 

Just like the batteries, the 𝑆𝑂𝐻𝐹𝐶 is equal to 1 for a new fuel cell and get to 0 at the fuel cell end-of-

life (EOL). The EOL defined as the moment when the nominal power delivered by the fuel cell is 90% 

of its initial power. 

 𝑆𝑂𝐻𝐹𝐶 = 10
𝑃𝑛𝑜𝑚

𝐹𝐶 (𝑡)

𝑃𝑛𝑜𝑚
𝐹𝐶,0 − 9 (9) 

The nominal power decrease through the loss of nominal voltage that occurs at each start, each stop 

and for each time step when the fuel cell is active. We assume a loss of 106 µV per stop or start and a 

loss of 10 µV for time step of fuel cell usage [25]. 

3.4. Electrolyser 
An anion exchange membrane electrolyser is also an electrochemical device but which role is the exact 

opposite of a fuel cell i.e. to produce hydrogen from water and electrical power. Pure water is brought 

to the anode and is reduce to hydrogen 𝐻2 and anions 𝑂𝐻−. The anions then migrate at the cathode 

through the membrane and there produce water and oxygen. We presume the electrolyser always 

works at its nominal power when active. We also presume that the quantity of produced hydrogen 

(8.3slpm at nominal power) is constant through the electrolyser lifetime and is given by the supplier. 

Its state of health 𝑆𝑂𝐶𝐸𝐿 describe the rise of electrical power consumed for a given quantity of 

hydrogen. The electrolyser reaches its EOL when nominal power increase exceeds 110% of its initial 

nominal power. At that time, 𝑆𝑂𝐶𝐸𝑙 = 0. 

 𝑆𝑂𝐻𝐸𝐿(𝑡) = 11 − 10
𝑃𝑛𝑜𝑚

𝐸𝐿 (𝑡)

𝑃𝑛𝑜𝑚
𝐸𝐿,0  (10) 

By analogy with the fuel cell degradation, we consider a 106µV rise per start or stop and 10µV per time 

step of electrolyser usage. 

3.5. Loads 
The RES contains both controllable and not controllable loads. The first can be control by the EMS and 

are often associated with comfort while the last are critical and endured. Controllable loads considered 

here are classified in time-shiftable and power shiftable loads. Both can be interruptible or not. 

3.5.1. Time shiftable loads 
Time shiftable loads are loads whose moments of activation are controllable by the EMS. This class is 

suitable for tasks whose consumption profile is finite and known (e.g. a washing machine, charge of an 

electrical car, etc…). When the user wants such task to be done, he specifies to the EMS the admissible 

period of activation as well as the moment he want the task done. The EMS then choose the most 

appropriate moment to execute it. 



3.5.2. Power shiftable loads 
Power shiftable loads are loads whose power consumption can be controllable by the EMS. HVAC or 

water heater can be classified as power shitable loads. For this class of loads, the user specified a 

reference control regarding the service provided by the load (e.g. temperature in water tank must be 

60°C between 7pm and 10pm). The EMS then adjusts the load ‘s power to closely match this reference.  

3.6. Power balance 
The power balance between the components gives equation (12)(11): 

 𝑃𝑃𝑉 + 𝑃𝐹𝐶 + 𝜂𝐷𝐶𝐷𝐶𝑃𝑏𝑎𝑡
− =

𝑃𝑏𝑎𝑡
+

𝜂𝐷𝐶𝐷𝐶
+

𝑃𝐸𝐿 + 𝑃𝐿𝑜𝑎𝑑 + 𝑃𝐷𝑒𝑓

𝜂𝐷𝐶𝐴𝐶
+ 𝑃𝐴𝐶𝑜𝑛𝑠 (11) 

Where 𝑃𝑃𝑉 is the actual power delivered by solar panels, 𝜂𝐷𝐶𝐷𝐶 and 𝜂𝐷𝐶𝐴𝐶  are the chopper and 

inverter efficiencies, and 𝑃𝐴𝑐𝑜𝑛𝑠 the electrical power needed for the components to work. It contains 

the consumption of the controller, solenoids and others auxiliaries.  

4. Energy Management Strategies 
Energy management is a key aspect of a renewable energy system. Simply speaking, the question to 

answer is how to smartly use the energy produced and stored regarding the present and future 

situation? 

4.1.  Current EMS: A myopic control 
Figure 2 shows the energy management currently implemented in RES at Parc de la Vanoise (France) 

and at Cirque de Mafate (Réunion island). Its general idea is described below. The batteries act like an 

energy buffer, storing the energy in excess and supplying energy in default for short time periods, 

typically 2 to 5 days. On the other hand, the hydrogen system acts like a backup system, storing energy 

surplus when batteries are full and returning it when production is low and batteries empty. Underlying 

thought is to size the PV and batteries bank regarding spring or autumns months, to store the summer 

surplus with the hydrogen system and to use it during winter months. 

More specifically, the electrolyser becomes active when the batteries’ State Of Charge (𝑆𝑂𝐶) reach a 

threshold 𝑆𝑂𝐶𝐸𝐿𝑂𝑛
 and irradiance is greater than 𝐼𝑟𝑟𝑡ℎ. It then produces hydrogen until the 𝑆𝑂𝐶 

becomes lower than 𝑆𝑂𝐶𝐸𝐿𝑂𝑓𝑓
 or when the hydrogen tank is full. In a similar way, the fuel cell starts 

when 𝑆𝑂𝐶 = 𝑆𝑂𝐶𝐹𝐶𝑂𝑛
 and stops when 𝑆𝑂𝐶 = 𝑆𝑂𝐶𝐹𝐶𝑂𝑓𝑓

 or when the tank is empty (meaning 

Figure 2 : Myopic EMS of the RES 



hydrogen pressure is below 0.5bar). This type of EMS is based on real-time, measured parameters. 

They do not take in account what could happen in the future. For that reason, there are qualified 

myopic EMS [26].  A wide variety of myopic control can be implemented. Most of them are based on 

distinguishing when consumption is higher than production and conversely (for example see [27–29]). 

The described EMS however, is currently implemented in working and autonomous RES at our disposal. 

Consequently, it will be used to evaluate and compare performance with respect to MPC. 

With myopic EMS, nothing prevents us to take a bad decision, meaning a decision that will compromise 

the station in the future. For example, suppose that at some point we start the electrolyser and 

produce hydrogen. Shortly after, the sun goes down and the solar power is not sufficient to support 

its consumption. Then the batteries provide the needed energy until 𝑆𝑂𝐶 reach 𝑆𝑂𝐶𝐸𝐿𝑂𝑓𝑓
. Suppose 

also that at a same time, consumption is quite high. Then batteries will quickly be empty and we will 

need to start the fuel cell. In this scenario, the bad timing when starting the electrolyser entails 

discharged batteries and consumption of hydrogen right after its production – meaning avoidable 

losses. 

4.2. Proposed EMS: MPC control 
In order to take into account the near future while taking a control decision, one can use a Model 

Predictive Control (Figure 3). This type of control uses forecasts of production and consumption to 

optimizes the EMS strategy over a temporal horizon 𝐻𝑐. 

 

Figure 3 : Diagram of EMS with predictive control 

Let’s say that at time 𝑡0 we want to determine the optimal dispatch 𝑢∗ between time 𝑡0 + 1 and 𝑡0 +

𝐻𝑐 regarding some objectives, 𝐻𝑐  being the control horizon. The performance of a particular dispatch 

is measured by a function 𝐹. A reference model 𝑔  is used to estimate the state  𝑥(𝑡 + 1) of the RES at 

time 𝑡 + 1 given: 

- The current or estimated state of RES at time 𝑡: 𝑥(𝑡) 

- A prediction of the power production at time 𝑡: 𝑃𝑃�̂�(𝑡) 

- A prediction of the power consumption at time 𝑡: 𝑃𝐿𝑜𝑎�̂�(𝑡) 

- The control applied to the station: 𝑢(𝑡)  



Under these hypothesis, the optimal control is the one for which 𝐹 is maximal: 

 𝑢∗ = Argmaxu ( ∑ [𝐹 (𝑔 (𝑥(𝑡), 𝑢(𝑡), 𝑃𝑃𝑉(𝑡)̂ , 𝑃𝐿𝑜𝑎�̂�(𝑡)))] 

𝐻𝑐−1

𝑡=𝑡0

) (12) 

 

4.3. Objectives  

4.3.1. Energy availability 
In this study, three objectives will be considered. The first one means to maximise the energy available 

for users. This is a key issue for the control determination as it is the primary goal of installing a power 

production system. It will be considered by strongly penalizing power demand unmet over the 

optimization horizon: 

 𝐹1(𝑡0) = ∑ −𝐷(𝑡)2 

𝑡0+𝐻

𝑡=𝑡0+1

 (13) 

With 𝐷(𝑡) the unmet power demand at time step 𝑡. 

4.3.2. Global efficiency 
The second is to reinforce the global efficiency of the RES by minimizing the power lost during the 

conversion process. Several types of loss are considered. 

4.3.2.1. Electrical conversion losses 

When converting electrical power from AC to DC or from DC to DC, some losses occur in the converters. 

These losses are calculated by  

 

𝐿𝑐𝑜𝑛
𝑡 (𝑡) =

Δ𝑡

1000
[
(1 − 𝜂𝐷𝐶𝐴𝐶)

𝜂𝐷𝐶𝐴𝐶
(𝑃𝐿𝑜𝑎𝑑(𝑡) + 𝑃𝐸𝐿(𝑡))

+ (1 − 𝜂𝐷𝐶𝐷𝐶) (
𝑃𝑏𝑎𝑡

+ (𝑡)

𝜂𝐷𝐶𝐷𝐶
+ 𝑃𝑏𝑎𝑡

− (𝑡))] 

(14) 

𝐿𝑐𝑜𝑛
𝑡  being the converters losses for timestep 𝑡. Efficiency coefficient also take into account the power 

needed for the converters to work (given by supplier). The 
1

1000
 coefficient is introduced to work in 

kWh units. 

4.3.2.2. Chemical conversion losses 

Chemical losses occur batteries charges and discharges, in the electrolyser during hydrogen 

production, and in the fuel cell during electricity production. The losses in the batteries are computed 

with the batteries round trip efficiency: 

 𝐿𝑐ℎ𝑒,𝑏𝑎𝑡(𝑡) =
Δ𝑡

1000
× [

(1 − √𝜂𝑏𝑎𝑡)

√𝜂𝑏𝑎𝑡

𝑃𝑏𝑎𝑡
+ (𝑡) + (1 − √𝜂𝑏𝑎𝑡)𝑃𝑏𝑎𝑡

− (𝑡)] (15) 

The losses in the 𝐻2 production and consumption processes are expressed as below: 

 𝐿𝑐ℎ𝑒,𝐻2
(𝑡) =

Δ𝑡

1000
[(𝑃𝐸𝐿(𝑡) −

𝐿𝑉𝐻

𝑀
 𝑄𝐸𝐿(𝑡)) + (

𝐿𝑉𝐻

𝑀
𝑄𝐹𝐶(𝑡) − 𝑃𝐹𝐶(𝑡))] (16) 

In (16)(12), 𝑄𝐸𝐿 is the flow of hydrogen produced by the electrolyser, 𝑄𝐹𝐶  the flow of hydrogen 

consumed by the fuel cell. 𝑀 and 𝐿𝑉𝐻 are the hydrogen molar mass and low heating value. 



4.3.2.3. Availability losses 

In islanded area, energy cannot be sell or bought from the grid by definition. Hence, production must 

be directly consumed or stored. Otherwise it is lost. We thus introduce an energy availability loss 𝐿𝑎𝑣𝑎 

as follow: 

 𝐿𝑎𝑣𝑎(𝑡) =
Δ𝑡

1000
max(𝑃𝑛𝑒𝑡(𝑡), 0) (17)) 

Where 𝑃𝑛𝑒𝑡 is difference between the theorical maximal produced power and the power actually 

consumed or stored: 

 
𝑃𝑛𝑒𝑡(𝑡) =  𝑃𝑃𝑉

𝑡ℎ𝑒𝑜(𝑡) + 𝑃𝐹𝐶(𝑡) + 𝜂𝐷𝐶𝐷𝐶𝑃𝑏𝑎𝑡
− (𝑡) −

1

𝜂𝐷𝐶𝐷𝐶
𝑃𝑏𝑎𝑡

+ (𝑡)

−
1

𝜂𝐷𝐶𝐴𝐶
(𝑃𝐸𝐿(𝑡) + 𝑃𝐿𝑜𝑎𝑑(𝑡) + 𝑃𝐷𝑒𝑓(𝑡)) + 𝑃𝐴𝐶𝑜𝑛𝑠(𝑡) 

(18) 

 

4.3.2.4. Global losses 

The total equation loss is expressed as below: 

 𝐹2(𝑡0) = ∑ 𝐿𝑐𝑜𝑛(𝑡) + 𝐿𝑐ℎ𝑒,𝑏𝑎𝑡(𝑡) + 𝐿𝑐ℎ𝑒,𝐻2
(𝑡) + 𝐿𝑎𝑣𝑎(𝑡)

𝑡0+𝐻

𝑡=𝑡0+1

 (19) 

 

4.3.3. Components lifetime 
Last objective, but not least, is to maximize the lifetime of the energy storage components: the 

batteries, the electrolyser and the fuel cell. The batteries are indeed used as a buffer. Thus, they are 

subjects to repetitive charges and discharges that cause premature ageing and impact their lifetime. 

Moreover, electrolysers and fuel cells are still not mature technologies and reliability stays a critical 

issue [30]. Their state of health is thus supervised and taken into account. The third objective function 

is then given by:  

 𝐹3(𝑡0) =
1

3
× (𝑆𝑂𝐻𝑏𝑎𝑡(𝑡0 + 𝐻) + 𝑆𝑂𝐻𝐸𝐿(𝑡0 + 𝐻) +  𝑆𝑂𝐻𝐹𝐶(𝑡0 + 𝐻)) (20) 

Fuel cells and electrolysers are more expensive than batteries and the technology is less mature. 

However, batteries are a key component to maintain the balance between production and 

consumption, i.e. for the system to work.  For this reason, the same importance is given for 1% 

degradation of batteries, fuel cell or electrolyser. 

It is worth to note that unlike 𝐹1 and 𝐹2, 𝐹3 is not a cumulative function. Only the estimated states of 

health at the end of the optimization horizon is considered. 𝐹3 is not path dependant. 

4.3.4. Global objective function 
The global objective function 𝐹 is a linear combination of sub-objectives 1, 2 and 3:  

 𝐹(𝑡0) = 𝛼1𝐹1(𝑡0) + 𝛼2𝐹2(𝑡0) + 𝛼3𝐹3(𝑡0) (21) 

The 𝛼𝑖 coefficients enables us to adapt the magnitude of each objectives functions. We can also use 

them to favoured one or several objectives over the others. As the goal is to minimize unmet power 

demand and energetic losses, 𝛼1 and 𝛼2 are both strictly negatives while 𝛼3 is strictly positive. 



4.4. Constraints 
The optimization problem is subjects to physical constraints described by equation (22)  to (26) : 

 𝑆𝑂𝐶𝑚 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑀 (22) 

 𝑃𝑏𝑎𝑡,𝑚 ≤ 𝑃𝑏𝑎𝑡 ≤ 𝑃𝑏𝑎𝑡,𝑀 (23) 

 𝑃𝑟𝑒𝑚 ≤ 𝑃𝑟𝑒 ≤ 𝑃𝑟𝑒𝑀 (24) 

 𝑄𝐸𝐿,𝑚 ≤ 𝑄𝐸𝐿 ≤ 𝑄𝐸𝐿,𝑀 (25) 

 𝑄𝐹𝐶,𝑚 ≤ 𝑄𝐹𝐶 ≤ 𝑄𝐹𝐶,𝑀 (26) 

Subscripts  𝑚 and  𝑀 stand for minimal and maximal respectively. 𝑃𝑟𝑒 is the 𝐻2 pressure inside the 

tank. 

5. Simulation and Results 

5.1. Simulation 
In order to evaluate the performance improvement brought by MPC, simulations of an RES station 

with a myopic control and a model predictive control have been simulated. Results are shown and 

compared in next sections. Irradiance, temperature and load power data come from measurements 

done at the mountain refuge Col du Palet in Parc de la Vanoise, France between January 2017 and 

December 2017. Missing data have been manually reconstructed using similar days data. Irradiance 

and load power for a typical week in august are shown in Figure 4. As can be observed, consumption 

peaks can occur so the energy management must provide sufficient power reserve to supply them. 

Moreover, production alone is clearly not sufficient to meet the desire demand, particularly early in 

the morning, late at in evening and at night. This justify the need of storage, no matter how many solar 

panels are installed. 



 

Figure 4 : Typical days in august for load power (W) and Irradiance (W/m²) 

The simulated RES is composed of 2 branches of 5 PV panels with a total installed power of 3.2KWc. 

The batteries bank is composed of 4 Saft 48V Li-Ion batteries if a nominal capacity of 77Ah [31]. The 

electrolyser is a 2.5KW Acta ELS500 [32] able to deliver a 500L/h pressurised hydrogen flow. The fuel 

cell is an E-2500 PEM fuel cell from PlugPower [33] with a nominal power of 2.5KW. The hydrogen tank 

can store 1100L of gaseous hydrogen under 30 bars.  

 This sizing does not correspond to the one installed at the Parc de la Vanoise and is purposely 

undersized. Indeed, as the station was designed to meet the load with the myopic control described in 

section 4, simulations with actual sizing return no default time. It is then impossible to quantify the 

performance gain for this objective. As reducing the default time is our number one priority, we need 

a design for which both control strategies fail to meet the load for the whole simulation. For the same 

reason, the hydrogen tank is supposed to be half empty at the beginning of simulations. 

Table 1 : Objectives ponderation used for MPC control 

𝜶𝟏 𝜶𝟐 𝜶𝟑 

5000 -1 30000 

 

For the sake of simplicity, deferrable loads are not taken into account. Then the control vector 𝑢 is 

reduce to the electrolyser and fuel cell activation. The temporal horizon considered is 12h-ahead with 

a 30-min time step. Ponderation used to order objectives is given by Table 1. It has been obtained 

iteratively following a manual Trial and Error procedure. At the first step, ponderation was set to 𝛼1 =

𝛼2 = −1 and 𝛼3 = 1   and a simulation has been performed. This led the final value of objective 

functions 𝐹1, 𝐹2 and 𝐹3 to be different by several orders of magnitude, 𝐹2 being much greater than 𝐹1 

and 𝐹3. Hence, with this ponderation the MPC strongly favour the reduction of energetic losses over 

the over two objectives. To fix this issue, we set 𝛼1 = 𝛼2
𝐹2(0)−𝐹2(𝑒𝑛𝑑)

𝐹1(0)−𝐹1(𝑒𝑛𝑑)
 and 𝛼3 = 𝛼2

𝐹2(0)−𝐹2(𝑒𝑛𝑑)

𝐹3(0)−𝐹3(𝑒𝑛𝑑)
 and 

repeat the process until each objectives function worth nearly equally in the global objective function 

𝐹. Finally, the weights are adjusted by doubling 𝛼1 and by multiplying 𝛼3 by 2/3 to strongly favour 

objectives 1 over 2 and 3 and shortly favour 2 over 3. The optimization problem is solved using Branch 



and Bound algorithm and a rolling horizon technique is employed. As the goal of this study is to 

quantify the maximal improvement that could be brought by MPC, the load and production forecasts 

are supposed to be perfectly known. Similarly, the reference model is assumed to perfectly estimate 

the station behaviour. The results are exposed in next section. 

5.2. Results and Discussion 

5.2.1. Results 
To better understand how MPC affects the station, Figure 5 and Figure 6 give the station behaviour for 

two days with different conditions as example. In order not to overcharge this paper, a focus is given 

on energetic losses only. 

August 11th was a cloudy day, with low consumption but with a peak between 9:00 and 10:00 AM.  

Batteries are mid-charged at the beginning of the day and are the only energy supplier during the night. 

They are about to reach their lower threshold when the peak starts. MPC then turns the fuel cell on, 

so it can supply peak demand and to recharge the batteries a little. When the peak is over, the solar 

power is sufficient to provide the demand until 7:00 PM. At the end of the day, MPC anticipate that 

batteries are not sufficiently charged to cover the energy needs during the next night. It then turns on 

the fuel cell again, but only enough to allow the batteries to get it through the night. Finally, MPC 

anticipate the next day will be a low consumption day, sunny enough to fully recharge the batterie 

without activating the fuel cell. This is why it does not turn it on even if batteries are close to the 

minimal threshold at dawn. This example shows that MPC use only the correct amount of hydrogen 

needed and turns on the fuel cell at the most appropriate time step (during the consumption peak). In 

a similar situation, a myopic control would have turn on the batteries until 𝑆𝑂𝐶 reaches 𝑆𝑂𝐶𝐹𝐶𝑂𝑓𝑓
 

(70% in this simulation). This would have led to an excessive consumption of hydrogen without 

choosing the appropriate time to do it. 

 

Figure 5: PV, Load, Fuel cell powers and batteries SOC during the 11th and 12th   of August 

On the over hand, October the 30th is a sunny, low consumption day and present a great opportunity 

to produce hydrogen. Here a myopic control would have start recharging the batteries first, and only 

when 𝑆𝑂𝐶 reaches 𝑆𝑂𝐶𝐸𝐿𝑂𝑛
 the electrolyser would have been switched on. However, solar power is 



rarely sufficient to supply the electrolyser by itself. Hence batteries need to be use to cover the 

difference. At the end of the day, batteries would have been charged by solar power, and then partly 

discharged to supply the electrolyser. This process leads to avoidable energy losses. 

MPC however decides to switch the electrolyser on before charging the batteries, when solar power is 

maximal. Doing this, the energy needed from the batteries is minimised. It then switches the 

electrolyser off in time for the batteries to be fully charged at sundown. Here again, by choosing the 

best time to activate the electrolyser, MPC allows to minimise the energetic losses. 

 

 

Figure 6: PV, Load, Electrolyser powers and batteries SOC during the 30th of October 

5.2.2. Energy availability 
Table 2 compares myopic and MPC control in term of load supplied (objective 1). The EMS is considered 

in default at a specific time step if it cannot provide enough power to meet the demand. It can be seen 

that MPC allows significant improvement, with only 150 default time steps against 629 for myopic 

control. This corresponds to an improvement of 76%. 

Table 2: Loss of Load comparison between Myopic control and MPC 

 Myopic  MPC 

Number of default time-step 629 150 
Total default time (h) 314.5 75 
Total of not supplied demand (KWh) 80 24.3 

 

Moreover, we can see in Figure 7 that batteries are better charged with MPC. In fact, batteries are 

nearly fully charged (𝑆𝑂𝐶 comprised between 0.95 and 1) nearly 20% of the year and 𝑆𝑂𝐶 is above 0.7 

during 72% of the year. In contrast, with a myopic control the batteries are nearly fully charged only 

13% of the year and their 𝑆𝑂𝐶 is above 0.7 for only 49% of simulation time. 



 

Figure 7 : Repartition of batteries SOC in term of time percentage with a MPC control (blue) and a myopic control (red) 

Likewise, Figure 8 shows the quantity of hydrogen stored in the tank throughout the year. Once again, 

improvement brought by MPC is obvious. While with a myopic control the average fill rate of the 

hydrogen is 22%, MPC achieve a fill rate of 82%. It is worth noticing that MPC get this result despite 

producing less hydrogen that the myopic control over the simulated year. Simulations show indeed 

that the electrolyser produce 9.6Kg of hydrogen with MPC and 15.8Kg with the myopic control. This 

shows that a better management of hydrogen production can significantly improve the storage 

performance. 

Figure 8 : 𝐻2 stocked in tank through the year 

5.2.3. Power Losses 
Figure 9 gives the cumulative losses for myopic control (dashed red line) and MPC (blue line). 

Up-left graph represents the chemical losses during the electrochemical process. Between March and 

April, chemical losses are higher with MPC. But at the end of the year MPC improves chemical losses 



by 38%. As the round-trip efficiency of Li-Ion batteries is close to 1 (we took 𝜂𝑏𝑎𝑡 = 0.9 in this study), 

the production and consumption of hydrogen constitute the main contribution to these losses. As said 

in previous section, myopic control tends to overproduce hydrogen. This is also true for hydrogen 

consumption (17.2kg consumed with myopic control against 8.4kg with MPC). This leads to superior 

chemical losses with myopic control. The reason why chemical losses with MPC are greater between 

March and April is the tank filling happening in February. 

In up-right graph, one can see the electrical losses occurring in the converters. Here again, MPC get 

the best results. Nevertheless, this improvement is limited to 11%, mostly because of the high 

efficiency of the converter, above 0.9. The gap can be explained by lower battery power, partly 

compensate by greater demand response (meaning greater use of the inverter). 

The down-left graph gives the availability losses. Here MPC underperform myopic control by 29%. Two 

reasons explain this result. The first reason is that despite a better energy management, the RES is still 

undersized with MPC. Storage capacity are particularly limited. Then between March and July excess 

of solar power can no longer be stored, the tank being full. Second, between July and October myopic 

control is in very short energy supply. So, every last joule generated is ever store or used, leading to a 

long available losses stabilisation. Both reasons can be resolve by a better sizing of the station. 

At last, total losses are shown in the down-right graph. As one can see, MPC outperform myopic control 

with a global improvement of 1%. This poor improvement is explained by the fact that the good 

performances obtained for chemical and electrical losses are counterbalanced by the bad performance 

for availability losses. As MPC is supposed to perform better under realistic sizing, the overall 

improvement is expected to be higher. 

Figure 9 : Power losses for MPC and Myopic control 

5.2.4. Component lifetime 
 



Figure 10: State of health of batteries, electrolyser, fuel cell and overall 

Figure 10 presents the state of health evolution of batteries (up-left), electrolyser (up-right), fuel cell 

(down-left) and the 𝐹3 objective function. 

Both controls tend to impact the batteries more than the fuel cell and the electrolyser. 𝑆𝑂𝐻𝑏𝑎𝑡 is 

indeed 0.90 and 0.89 at the end of simulation for MPC and myopic control respectively. On the other 

hand, 𝑆𝑂𝐻𝐸𝐿 ends at 0.99 and 0.98 while 𝑆𝑂𝐻𝐹𝐶 is around 1 for MPC and 0.99 for myopic control. In 

every case, MPC mitigate the components degradation by approximately 1%. When extrapolated, this 

result suggest that batteries need to be replaced every 10.5 years with MPC and every 9 years with 

myopic control. This could be very welcomed in remote area. 

However, the fuel cell and electrolyser durability, even if better with MPC, has to be put in perspective 

with the excellent performance obtained by the myopic control on this matter. This is mostly due to 

the 30 min time-step taken in the simulation. Indeed, On and Off switches are the more impacting 

actions on durability in normal operating conditions. As a high time-step inherently limits the number 

of possible activations – deactivations, a good durability was predictable.  

To better see the relevance of MPC on the fuel cell and electrolyser degradations, Figure 11 shows the 

degradations of batteries, fuel cell and electrolyser for a 10-min time-step for a myopic control and 

MPC with several ponderations 𝛼3. A temporal horizon of 6h is adopted for the computation time to 

be compatible with a real-time control. Here, as expected, the number of activations and deactivations 

is higher, making the improvement brought by MPC more pronounced.  This is particularly true for the 

electrolyser. 𝑆𝑂𝐻𝐸𝐿 is indeed equal to 0.95 with myopic control and 0.99 with MPC (𝛼3 = 30 000), 

meaning an improvement of 20%. Another interesting result is the fact that ageing is mitigate for 

electrolyser and batteries with MPC, even if the durability is not considered (𝛼3 = 0). This is explained 

by less and shorter discharges for the batteries and a shorter time of use for electrolyser. This is 

however not true for the fuel cell, as MPC turns it on often and for very short period of time to cover 

demands peaks. However, a higher ponderation does not significantly increase the durability, but 

degrade the performances in the other objectives (𝛼3 = 60 000). 



 

Figure 11 : State of health of batteries (up left), electrolyser (up right), fuel cell (down left) and overall (down right) MPC 
considering or not ageing process in MPC and Myopic Control 

At the end, the inclusion of fuel cell and electrolyser degradation in MPC control will depend on the 

time-step considered. In theory, a lower time-step is preferable as it allows more freedom. But in 

practise, it will be limited by the number of equipment to control, and by the quality of the forecasts 

models. 

6. Conclusion 
This study aims to give an evaluation of performance improvement of a RES controlled by MPC. 

Advantage of MPC is to control the station’s components using production and consumption forecasts. 

Doing this, decisions are taken without compromising the near future. Results shows that MPC can 

achieve substantial improvements and savings. The - undersized - station is indeed in default for 75h 

against 314.5h with a myopic control. In the meantime, chemical losses have been reduced by 38% 

and electrical losses by 11%. Moreover, if MPC seems relevant to reduce the premature ageing of 

batteries, its impact on fuel cell and electrolyser depends greatly on the time-step of the control. The 

priority between objective is another factor as well. This raise the question of how to optimally tune 

the ponderation weight. Ponderation shown Table 1 have been obtained with a Trial and Error 

methods but more sophisticated Pareto-based techniques can be implemented.  

Besides, it is important to notice that these improvements must be seen as an optimal target. In other 

words, improvements brought by MPC on the studied RES will never be better than what we obtained 

above. In practise, production and consumption forecasts are strong limitations to reach these 

improvements. The reference model used in MPC is another one as well (not planned process can lead 

to significant deviation with actual behaviour). Future works must be done to integrate those 

restrictions in the energy management. Eventually, the goal of this work and future work is to develop 

a real-time control which performance are the closest as possible to the ones above. 
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