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Introduction

The last decade witnessed significant improvement in the understanding by the public at large of the impacts that can be caused by climate change. This increasing awareness leads in turn to more policies and actions to counterbalance global warming and to adapt ourselves to its effects. The energy sector is no exception to the general trend.

Besides the major task of efficiently producing energy for a growing energy demand while reducing greenhouse gas global emissions, powering off-grids areas is also a great challenge. Indeed, numerous of these sites still have a diesel generator as principal or secondary power source and thus rely on oil. The expansion of renewable energy production is a promising way to overcome this fossil energy issue. However, renewable energies like photovoltaics and/or wind energies need an energy storage system, due to random and irregular power production. In this article, we study the Energy Management Strategy (EMS) of a Renewable Energy System (RES) in remote areas. The simulated RES has no diesel generator but includes a hybrid energy storage system composed of batteries and an hydrogen chain. Such a RES has been installed by company Powidian in the Parc de la Vanoise (France) and in the Cirque de Mafate (Reunion Island). Today the EMS of both stations are based on a myopic strategy. Our goal is to quantify the potential gain that could be achieved by implementing a Model Predictive Control (MPC). MPC has been widely in industry in general. In the context of RES, it consists of predicting the energy production and consumption on a defined temporal horizon and to determine the optimal control regarding these predictions and a behaviour model of the station. Examples of implementation for RES with hydrogen storage can be found in [START_REF] Valverde | Power management using model predictive control in a hydrogenbased microgrid[END_REF][START_REF] Cau | Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[END_REF][START_REF] Serna | Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies[END_REF][START_REF] Konstantinopoulos | Optimal management of hydrogen storage in stochastic smart microgrid operation[END_REF][START_REF] Bornapour | Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage[END_REF][START_REF] Torreglosa | Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[END_REF][START_REF] Trifkovic | Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage[END_REF][START_REF] Nease | Application of rolling horizon optimization to an integrated solid-oxide fuel cell and compressed air energy storage plant for zero-emissions peaking power under uncertainty[END_REF]. In [START_REF] Valverde | Power management using model predictive control in a hydrogenbased microgrid[END_REF] Valverde et al developed a MPC to ensure the energy management to follow several goals, including the protection of the components (batteries, fuel cell and electrolyser), and to pilot the components to a predefined operating point. The control has been experimentally tested using a labscale microgid (HyLab) in the University of Sevilla [START_REF] Valverde | Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience[END_REF].The command has been developed to control the RES for very short term temporal horizon (10 seconds) and has been combined with a short term temporal horizon (4 days) control developed by Cau [START_REF] Cau | Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[END_REF], using also a model predictive control. The objectives of Cau's MPC is to minimize the operating and maintenance cost over the whole lifetime of the RES. The labscale HyLab has also been used by Salazar in order to validate another MPC control. Objectives of the control were to supply the loads, to minimise the operational costs while assuring a good durability of key components. To do so, she introduced 4 continuous duration variables in such way that the problem is formulated as a nonlinear problem with continuous variables, easier to solve than Mixed Integer Linear Problems. [START_REF] Salazar | Predictive control of a renewable energy microgrid with operational cost optimization[END_REF][START_REF] Salas | SYSTEM FOR HYBRID RENEWABLE ENERGIES[END_REF]Another MPC has also been developed by Serna et al in [START_REF] Serna | Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies[END_REF]. In this study, the goal was to ensure the hydrogen production from wind and waves turbines and to preserve the state of health of the electrolyser. To do so, he developed a Mixed Integer Quadratic Programming resolution of MPC with naïve predictions. In [START_REF] Konstantinopoulos | Optimal management of hydrogen storage in stochastic smart microgrid operation[END_REF] Konstantinopoulos et al presents a predictive control to balance the intermittency of renewable production while minimizing the financial cost. They assumed they know the probability density functions of forecasting errors and resolve the optimization problem with a Harmony Search Algorithm. Bornapour et al consider the problem of optimal scheduling for a RES in a stochastic programming framework. The RES is composed of PV panels, wind turbines, thermal units and a fuel cell. Its goal is also to maximise the financial revenue over the station's lifetime. The problem is resolved through the Modified Fireflies Algorithm in a first paper in [START_REF] Bornapour | Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage[END_REF], which is an evolutionary algorithm, and a Teaching-Learning Based Optimisation Algorithm in a second one in [START_REF] Bornapour | An Efficient Scenario-Based Stochastic Programming method for Optimal Scheduling of CHP-PEMFC, WT, PV and Hydrogen Storage Units in Micro Grids[END_REF]. Torreglosa et al implemented a predictive control of a RES with hydrogen storage and compared the performance improvements compared to a myopic strategy [START_REF] Torreglosa | Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[END_REF]. The goal was to meet the demand while assuring that batteries state of charges and hydrogen tank level stays between some reference value. MPC also increased the fuel cell and electrolyser efficiency by determining an optimal operating point for these components. However, lifetime considerations are not addressed. Two low-level MPC were introduced by Trifkovic et al to control the fuel cell and the electrolyser while the high level control was assured by a myopic strategy [START_REF] Trifkovic | Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage[END_REF]. Increasing efficiency and renewable energies penetration while meeting the demand were the target. The energy storage system contains no batteries and rely only on hydrogen storage. Here again, ageing is not addressed. Finally, Nease & Adams implemented a predictive control with rolling horizon for a RES with a Solid Oxyde Fuel Cell and Compressed Air Energy Storage [START_REF] Nease | Application of rolling horizon optimization to an integrated solid-oxide fuel cell and compressed air energy storage plant for zero-emissions peaking power under uncertainty[END_REF]. Use of stochastic Monte-Carlo simulations are used to deal with the uncertainty associated with forecasts. An economic objective is targeted and a trade off with load following performance is introduced.

All of these papers show feasibility of controlling RES with hydrogen storage by a model predictive control. When comparison with other types of control are available, it appears that MPC improves performances of the RES [START_REF] Cau | Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[END_REF][START_REF] Torreglosa | Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[END_REF][START_REF] Brka | Predictive power management strategies for stand-alone hydrogen systems: Operational impact[END_REF]. This result can also be widely found for RES without hydrogen storage (see for example [START_REF] Dufo-López | Daily operation optimisation of hybrid stand-alone system by model predictive control considering ageing model[END_REF][START_REF] Bruni | A study on the energy management in domestic micro-grids based on Model Predictive Control strategies[END_REF][START_REF] Luo | Development of multi-supply-multi-demand control strategy for combined cooling, heating and power system primed with solid oxide fuel cell-gas turbine[END_REF][START_REF] Vergara-Dietrich | Advanced chance-constrained predictive control for the efficient energy management of renewable power systems[END_REF]). However, for a large majority of the above studies, the main objective of such command is to minimise the financial cost (or maximise the revenue) over the RES lifetime while ensuring power availability. While aiming for a better profitability for such expensive technologies is understandable, we think such questioning is not the only major issue to be solved. The industrialisation phase of the hydrogen storage system components -fuel cells, electrolysers and hydrogen storage -while needing improvements, is expected to be significant in the future [START_REF] Abad | The role of Hydrogen and Fuel Cells in Future Energy Systems[END_REF].

Therefore, the discount rates and cash flows relative to these components in near future are highly unpredictable and could lead to significant deviations when considered too early. For this reason, we choose to optimize the efficiency of the RES by minimizing energetic losses during the power conversions while assuring the load to be met. As these are physical process, the results presented here will stay valid no matter of the market evolution. In addition, the duty factor of the fuel cell and electrolyser is expected to be reduced by the use of a predictive control, leading to a reduction of their performances [START_REF] Brka | Predictive power management strategies for stand-alone hydrogen systems: Operational impact[END_REF]. Therefore, the health of batteries, electrolysers and fuel cells are also considered in the optimisation process. To our knowledge, there are no such study applied for RES with hydrogen storage and similar architecture and for the same objectives taken altogether.

The main contributions of this papers are:

-Describing the model used in the study that will be reused in future works.

-Optimising the energy management to minimize default time, energetic losses and ageing process altogether through a multi-objectives formulation. -Quantifying the performance improvement brought by implementing a MPC regarding the objectives mentioned above.

Section 2 of this paper presents an overview of the architecture of the stations. Section 3 deals with the model of each component. Section 4 exposes the current EMS, the principle of MPC and defines its objectives functions. Results and discussion are presented in section 5.

Architecture of the station

In remote and/or off-grid area, electricity is not provided by the grid and thus it must be produced onsite. Nowadays, a wide majority of such power production is assured by diesel generators, resulting in a high dependence of imported fuel and CO2 emissions. Renewable energy production like solar photovoltaic or wind turbine can overcome these issues. These technologies, however, cannot be controlled by an operator and depend on stochastic parameters such as wind speed and daylight. RES thus relies on storage systems to achieve full autonomy. If a large variety of storage technologies can be used, the present study focuses on a hybrid batteries / hydrogen energy storage system. A diagram of the such RES is provided in Figure 1. It can be decomposed in four parts:

1) The power production subsystem, composed of two branches of five solar panels plugged in series. We suppose that they all work at their Maximum Power Point in all time.

2) The loads -both deferrable and not deferrable -connected to an inverter to provide a AC power. 3) A short-term Energy Storage Subsystem (ESS), composed of Li-ion batteries. 4) A long-term ESS, composed of an electrolyser, a fuel cell and a hydrogen tank.

Every component is connected on a 48V DC bus through converters. A central controller, called MasterControler, is responsible for collecting data from each component and for their control. A 4G modem is integrated so the RES can be remotely supervised and updated. As converting electricity to hydrogen and again to electricity is low-efficiency process, usage of lithium-ion batteries is intuitively preferred over the hydrogen subsystem.

Models

The behaviour of each components of the studied RES is provided in the following sections. The timestep used in further simulations is greater by several orders of magnitude than typical constant time associated with component's fast dynamics. Consequently, fast dynamics are not taken into account.

Photovoltaic panels

The theoretical power that can be delivered by the PV panels (after MPPT converters) is noted 𝑃 𝑃𝑣 𝑡ℎ𝑒𝑜 and is given by [START_REF] Luque | Handbook of Photovoltaic Science and Engineering[END_REF][START_REF] Skoplaki | Operating temperature of photovoltaic modules: A survey of pertinent correlations[END_REF]:

𝑃 𝑃𝑉 𝑡ℎ𝑒𝑜 (𝑡) = 𝑁 𝑝 × 𝜂 𝑀𝑃𝑃𝑇 × 𝑃 𝑏𝑟𝑎𝑛𝑐ℎ (𝑡) (1) 
With 𝜂 𝑀𝑃𝑃𝑇 being the MPPT converter efficiency and 𝑁 𝑝 the number of parallel branches. The power 𝑃 𝑏𝑟𝑎𝑛𝑐ℎ delivered by one series of panels is calculated by (2) [START_REF] Bornapour | An Efficient Scenario-Based Stochastic Programming method for Optimal Scheduling of CHP-PEMFC, WT, PV and Hydrogen Storage Units in Micro Grids[END_REF].

𝑃 𝑏𝑟𝑎𝑛𝑐ℎ𝑒 (𝑡) = 𝑁 𝑠 × max (𝑃 𝑐 × 𝐸(𝑡) 𝐸 0 (1 - 𝛾 100 (𝑇 𝑐𝑒𝑙𝑙 (𝑡) -𝑇 𝑐𝑒𝑙𝑙 0 )) , 𝑃 𝑀𝑃𝑃𝑇 𝑚𝑎𝑥 ) (2) 
𝑁 𝑠 is the number of PV panels in one series, 𝑃 𝑐 is peak power of one panel, 𝛾 the thermal coefficient, 𝑃 𝑀𝑃𝑃𝑇 𝑚𝑎𝑥 the maximal power delivered by MPPT converters, 𝐸 the incidence irradiance, 𝑇 𝑐𝑒𝑙𝑙 the temperature at the cell surface. 𝐸 0 and 𝑇 𝑐𝑒𝑙𝑙 0 are the incident irradiance and the cell temperature under standard conditions.

Batteries

We suppose that power flows are equally distributed over the batteries. We can hence consider the battery bank as a unique battery, modelled by its instantaneous power, its state of charge and state of health. We compute the state of charge at each time step with (3)

𝑆𝑂𝐶 𝑏𝑎𝑡 (𝑡 + 1) = 𝑆𝑂𝐶 𝑏𝑎𝑡 (𝑡) + Δ𝑡 √𝜂 𝑏𝑎𝑡 𝑃 𝑏𝑎𝑡 + + 𝑃 𝑏𝑎𝑡 -/√𝜂 𝑏𝑎𝑡 𝑉 𝑛𝑜𝑚 × 𝐶 𝑛𝑜𝑚 (3) 
Δ𝑡 is the time step, 𝜂 𝑏𝑎𝑡 the battery round trip efficiency, 𝑉 𝑛𝑜𝑚 the nominal voltage, 𝐶 𝑛𝑜𝑚 the nominal capacity. 𝑃 𝑏𝑎𝑡 + and 𝑃 𝑏𝑎𝑡 -are the power charged and discharged between time 𝑡 and time 𝑡 + 1. The state of health gives an overview of the capacity loss due to ageing process. For a state of health equal to 1 for a new battery and to 0 when its nominal capacity is only 80% of its initial capacity, it is defined by

𝑆𝑂𝐻 𝑏𝑎𝑡 (𝑡) = 5 𝐶 𝑛𝑜𝑚 (𝑡) 𝐶 𝑛𝑜𝑚 0 -4 (4) 
When 𝑆𝑂𝐻 = 0, the battery is considered unusable and must be replaced [START_REF] Nuhic | Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[END_REF]. The capacity degradation is calculated through an empirical model developed by Wang et al [START_REF] Wang | Cycle-life model for graphite-LiFePO4 cells[END_REF][START_REF] Wang | Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation[END_REF]. It can be decomposed by the sum of calendar ageing 𝐴 𝑐𝑎𝑙 and cycling ageing 𝐴 𝑐𝑦𝑐 . The calendar ageing depicts the natural capacity loss through time. The cycling ageing accounts for the degradation due to repetitive charges and discharges.

𝐴 𝑐𝑦𝑐 (𝑡) = (𝑤 1 𝑇 𝑒𝑥𝑡 2 + 𝑤 2 𝑇 𝑒𝑥𝑡 + 𝑤 3 )𝑒 (𝑤 4 𝑇 𝑒𝑥𝑡 +𝑤 5 )×𝐶 𝐼 𝑑𝑒𝑐 × 𝐸 𝑡𝑜𝑡 (5) 
𝐴 𝑐𝑎𝑙 (𝑡) = 𝑤 6 𝑒 - 𝐸 𝐴 𝑅𝑇 𝑒𝑥𝑡 √𝑡 (6) 
𝐶 𝑛𝑜𝑚 (𝑡) 𝐶 𝑛𝑜𝑚 0 = 1 -(𝐴 𝑐𝑦𝑐 (𝑡) + 𝐴 𝑐𝑎𝑙 (𝑡)) (7) 
𝑇 𝑒𝑥𝑡 is the ambient temperature, 𝐶 𝐼 𝑑𝑒𝑐 is the rated capacity for a discharge current 𝐼 𝑑𝑒𝑐 , 𝐸 𝑡𝑜𝑡 the total amount of energy discharged by the battery during its lifetime, 𝐸 𝐴 the activation energy, 𝑅 the gas constant and 𝑤 𝑖 empirical parameters. Other influence of ageing on internal impedance is not considered here. It is reasonable since a rise of the internal impedance mainly have two consequences. First, their maximal power decrease both for charges and discharge. However, batteries rarely reach their maximal power in our application so we can neglect this effect. And second, the temperature inside the batteries increases due to higher joule effect, but this consideration is beyond the scope of our study.

Fuel cell

A proton exchange membrane fuel cell (PEMFC) is an electrochemical device which aim is to produce electricity from hydrogen. It is composed of numerous cells connected in series and parallel. A stream of gaseous hydrogen is brought to the anode part where it will be decomposed in two protons. Then, the protons migrate to the cathode part through the polymer-made membrane and react with dioxygen to produce pure water. The electrons produced while decomposing the dihydrogen are collected to generate electrical power. We suppose that the fuel cell always works at its nominal power when active:

𝑃 𝐹𝐶 = { 𝑃 𝑛𝑜𝑚 𝐹𝐶 when active 0 otherwise (8)
This simple model is not often used in the literature. Authors usually prefer more complex models based on polarization curves and internal voltage losses (see for example [START_REF] Barbir | PEM Fuel Cells -Theory and Practice[END_REF]). The choice of using this model is guided by the fact that the classical models only consider the process within the cells and the stacks. Fuel cells, however, also contain auxiliaries like pumps or electronics for which consumption are not known. Moreover, supplier can introduce their own strategies to manage the flow of reactants and to maintain the cells in good operating conditions. These strategies are also not known and depend on the supplier. For this reason, we suppose the fuel cell to be locally controlled at nominal conditions given by the supplier. Doing so, we are taking into account all the reactant losses and re-use, as well as auxiliaries consumption.

The amount of hydrogen consumed in the process given by the supplier' datasheet is 32 slpm at nominal power. It considers the efficiency and hydrogen lost during the process (purges). We suppose this quantity constant through fuel cell the lifetime.

We also define a state of health for the fuel cell 𝑆𝑂𝐻 𝐹𝐶 that depicts the performance loss which ageing. Just like the batteries, the 𝑆𝑂𝐻 𝐹𝐶 is equal to 1 for a new fuel cell and get to 0 at the fuel cell end-oflife (EOL). The EOL defined as the moment when the nominal power delivered by the fuel cell is 90% of its initial power.

𝑆𝑂𝐻 𝐹𝐶 = 10 𝑃 𝑛𝑜𝑚 𝐹𝐶 (𝑡) 𝑃 𝑛𝑜𝑚 𝐹𝐶,0 -9 (9) 
The nominal power decrease through the loss of nominal voltage that occurs at each start, each stop and for each time step when the fuel cell is active. We assume a loss of 106 µV per stop or start and a loss of 10 µV for time step of fuel cell usage [START_REF] Wu | A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies[END_REF].

Electrolyser

An anion exchange membrane electrolyser is also an electrochemical device but which role is the exact opposite of a fuel cell i.e. to produce hydrogen from water and electrical power. Pure water is brought to the anode and is reduce to hydrogen 𝐻 2 and anions 𝑂𝐻 -. The anions then migrate at the cathode through the membrane and there produce water and oxygen. We presume the electrolyser always works at its nominal power when active. We also presume that the quantity of produced hydrogen (8.3slpm at nominal power) is constant through the electrolyser lifetime and is given by the supplier. Its state of health 𝑆𝑂𝐶 𝐸𝐿 describe the rise of electrical power consumed for a given quantity of hydrogen. The electrolyser reaches its EOL when nominal power increase exceeds 110% of its initial nominal power. At that time, 𝑆𝑂𝐶 𝐸𝑙 = 0.

𝑆𝑂𝐻 𝐸𝐿 (𝑡) = 11 -10 𝑃 𝑛𝑜𝑚 𝐸𝐿 (𝑡)

𝑃 𝑛𝑜𝑚 𝐸𝐿,0 (10) 
By analogy with the fuel cell degradation, we consider a 106µV rise per start or stop and 10µV per time step of electrolyser usage.

Loads

The RES contains both controllable and not controllable loads. The first can be control by the EMS and are often associated with comfort while the last are critical and endured. Controllable loads considered here are classified in time-shiftable and power shiftable loads. Both can be interruptible or not.

Time shiftable loads

Time shiftable loads are loads whose moments of activation are controllable by the EMS. This class is suitable for tasks whose consumption profile is finite and known (e.g. a washing machine, charge of an electrical car, etc…). When the user wants such task to be done, he specifies to the EMS the admissible period of activation as well as the moment he want the task done. The EMS then choose the most appropriate moment to execute it.

Power shiftable loads

Power shiftable loads are loads whose power consumption can be controllable by the EMS. HVAC or water heater can be classified as power shitable loads. For this class of loads, the user specified a reference control regarding the service provided by the load (e.g. temperature in water tank must be 60°C between 7pm and 10pm). The EMS then adjusts the load 's power to closely match this reference.

Power balance

The power balance between the components gives equation ( 12) [START_REF] Salas | SYSTEM FOR HYBRID RENEWABLE ENERGIES[END_REF]:

𝑃 𝑃𝑉 + 𝑃 𝐹𝐶 + 𝜂 𝐷𝐶𝐷𝐶 𝑃 𝑏𝑎𝑡 -= 𝑃 𝑏𝑎𝑡 + 𝜂 𝐷𝐶𝐷𝐶 + 𝑃 𝐸𝐿 + 𝑃 𝐿𝑜𝑎𝑑 + 𝑃 𝐷𝑒𝑓 𝜂 𝐷𝐶𝐴𝐶 + 𝑃 𝐴𝐶𝑜𝑛𝑠 (11) 
Where 𝑃 𝑃𝑉 is the actual power delivered by solar panels, 𝜂 𝐷𝐶𝐷𝐶 and 𝜂 𝐷𝐶𝐴𝐶 are the chopper and inverter efficiencies, and 𝑃 𝐴𝑐𝑜𝑛𝑠 the electrical power needed for the components to work. It contains the consumption of the controller, solenoids and others auxiliaries.

Energy Management Strategies

Energy management is a key aspect of a renewable energy system. Simply speaking, the question to answer is how to smartly use the energy produced and stored regarding the present and future situation?

Current EMS: A myopic control

Figure 2 shows the energy management currently implemented in RES at Parc de la Vanoise (France) and at Cirque de Mafate (Réunion island). Its general idea is described below. The batteries act like an energy buffer, storing the energy in excess and supplying energy in default for short time periods, typically 2 to 5 days. On the other hand, the hydrogen system acts like a backup system, storing energy surplus when batteries are full and returning it when production is low and batteries empty. Underlying thought is to size the PV and batteries bank regarding spring or autumns months, to store the summer surplus with the hydrogen system and to use it during winter months.

More specifically, the electrolyser becomes active when the batteries' State Of Charge (𝑆𝑂𝐶) reach a threshold 𝑆𝑂𝐶 𝐸𝐿 𝑂𝑛 and irradiance is greater than 𝐼𝑟𝑟 𝑡ℎ . It then produces hydrogen until the 𝑆𝑂𝐶 becomes lower than 𝑆𝑂𝐶 𝐸𝐿 𝑂𝑓𝑓 or when the hydrogen tank is full. In a similar way, the fuel cell starts when 𝑆𝑂𝐶 = 𝑆𝑂𝐶 𝐹𝐶 𝑂𝑛 and stops when 𝑆𝑂𝐶 = 𝑆𝑂𝐶 𝐹𝐶 𝑂𝑓𝑓 or when the tank is empty (meaning hydrogen pressure is below 0.5bar). This type of EMS is based on real-time, measured parameters. They do not take in account what could happen in the future. For that reason, there are qualified myopic EMS [START_REF] Powell | Clearing the Jungle of Stochastic Optimization[END_REF]. A wide variety of myopic control can be implemented. Most of them are based on distinguishing when consumption is higher than production and conversely (for example see [START_REF] Dufo-López | Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[END_REF][START_REF] Wang | Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System[END_REF][START_REF] Nasri | Autonomous hybrid system and coordinated intelligent management approach in power system operation and control using hydrogen storage[END_REF]). The described EMS however, is currently implemented in working and autonomous RES at our disposal.

Consequently, it will be used to evaluate and compare performance with respect to MPC.

With myopic EMS, nothing prevents us to take a bad decision, meaning a decision that will compromise the station in the future. For example, suppose that at some point we start the electrolyser and produce hydrogen. Shortly after, the sun goes down and the solar power is not sufficient to support its consumption. Then the batteries provide the needed energy until 𝑆𝑂𝐶 reach 𝑆𝑂𝐶 𝐸𝐿 𝑂𝑓𝑓 . Suppose also that at a same time, consumption is quite high. Then batteries will quickly be empty and we will need to start the fuel cell. In this scenario, the bad timing when starting the electrolyser entails discharged batteries and consumption of hydrogen right after its production -meaning avoidable losses.

Proposed EMS: MPC control

In order to take into account the near future while taking a control decision, one can use a Model Predictive Control (Figure 3). This type of control uses forecasts of production and consumption to optimizes the EMS strategy over a temporal horizon 𝐻 𝑐 . Under these hypothesis, the optimal control is the one for which 𝐹 is maximal:

𝑢 * = Argmax u ( ∑ [𝐹 (𝑔 (𝑥 ̂(𝑡), 𝑢(𝑡), 𝑃 𝑃𝑉 (𝑡) ̂, 𝑃 𝐿𝑜𝑎𝑑 ̂(𝑡)))] 𝐻 𝑐 -1 𝑡=𝑡 0 ) (12)
4.3. Objectives

Energy availability

In this study, three objectives will be considered. The first one means to maximise the energy available for users. This is a key issue for the control determination as it is the primary goal of installing a power production system. It will be considered by strongly penalizing power demand unmet over the optimization horizon:

𝐹 1 (𝑡 0 ) = ∑ -𝐷(𝑡) 2 𝑡 0 +𝐻 𝑡=𝑡 0 +1 (13) 
With 𝐷(𝑡) the unmet power demand at time step 𝑡.

Global efficiency

The second is to reinforce the global efficiency of the RES by minimizing the power lost during the conversion process. Several types of loss are considered. 

Electrical conversion losses

𝐿 𝑐𝑜𝑛 𝑡 being the converters losses for timestep 𝑡. Efficiency coefficient also take into account the power needed for the converters to work (given by supplier). The 1 1000 coefficient is introduced to work in kWh units.

4.3.2.2.

Chemical conversion losses Chemical losses occur batteries charges and discharges, in the electrolyser during hydrogen production, and in the fuel cell during electricity production. The losses in the batteries are computed with the batteries round trip efficiency:

𝐿 𝑐ℎ𝑒,𝑏𝑎𝑡 (𝑡) = Δ𝑡 1000 × [ (1 -√𝜂 𝑏𝑎𝑡 ) √𝜂 𝑏𝑎𝑡 𝑃 𝑏𝑎𝑡 + (𝑡) + (1 -√𝜂 𝑏𝑎𝑡 )𝑃 𝑏𝑎𝑡 -(𝑡)] (15) 
The losses in the 𝐻 2 production and consumption processes are expressed as below:

𝐿 𝑐ℎ𝑒,𝐻 2 (𝑡) = Δ𝑡 1000 [(𝑃 𝐸𝐿 (𝑡) - 𝐿𝑉𝐻 𝑀 𝑄 𝐸𝐿 (𝑡)) + ( 𝐿𝑉𝐻 𝑀 𝑄 𝐹𝐶 (𝑡) -𝑃 𝐹𝐶 (𝑡))] (16) 
In ( 16) [START_REF] Bornapour | An Efficient Scenario-Based Stochastic Programming method for Optimal Scheduling of CHP-PEMFC, WT, PV and Hydrogen Storage Units in Micro Grids[END_REF], 𝑄 𝐸𝐿 is the flow of hydrogen produced by the electrolyser, 𝑄 𝐹𝐶 the flow of hydrogen consumed by the fuel cell. 𝑀 and 𝐿𝑉𝐻 are the hydrogen molar mass and low heating value.

4.3.2.3.

Availability losses In islanded area, energy cannot be sell or bought from the grid by definition. Hence, production must be directly consumed or stored. Otherwise it is lost. We thus introduce an energy availability loss 𝐿 𝑎𝑣𝑎 as follow:

𝐿 𝑎𝑣𝑎 (𝑡) = Δ𝑡 1000 max(𝑃 𝑛𝑒𝑡 (𝑡), 0) (17)) 
Where 𝑃 𝑛𝑒𝑡 is difference between the theorical maximal produced power and the power actually consumed or stored: 

𝑃 𝑛𝑒𝑡 (𝑡) =

Components lifetime

Last objective, but not least, is to maximize the lifetime of the energy storage components: the batteries, the electrolyser and the fuel cell. The batteries are indeed used as a buffer. Thus, they are subjects to repetitive charges and discharges that cause premature ageing and impact their lifetime. Moreover, electrolysers and fuel cells are still not mature technologies and reliability stays a critical issue [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: Guidelines and metrics[END_REF]. Their state of health is thus supervised and taken into account. The third objective function is then given by:

𝐹 3 (𝑡 0 ) = 1 3 × (𝑆𝑂𝐻 𝑏𝑎𝑡 (𝑡 0 + 𝐻) + 𝑆𝑂𝐻 𝐸𝐿 (𝑡 0 + 𝐻) + 𝑆𝑂𝐻 𝐹𝐶 (𝑡 0 + 𝐻)) (20) 
Fuel cells and electrolysers are more expensive than batteries and the technology is less mature. However, batteries are a key component to maintain the balance between production and consumption, i.e. for the system to work. For this reason, the same importance is given for 1% degradation of batteries, fuel cell or electrolyser.

It is worth to note that unlike 𝐹 1 and 𝐹 2 , 𝐹 3 is not a cumulative function. Only the estimated states of health at the end of the optimization horizon is considered. 𝐹 3 is not path dependant.

Global objective function

The global objective function 𝐹 is a linear combination of sub-objectives 1, 2 and 3:

𝐹(𝑡 0 ) = 𝛼 1 𝐹 1 (𝑡 0 ) + 𝛼 2 𝐹 2 (𝑡 0 ) + 𝛼 3 𝐹 3 (𝑡 0 ) (21) 
The 𝛼 𝑖 coefficients enables us to adapt the magnitude of each objectives functions. We can also use them to favoured one or several objectives over the others. As the goal is to minimize unmet power demand and energetic losses, 𝛼 1 and 𝛼 2 are both strictly negatives while 𝛼 3 is strictly positive.

Constraints

The optimization problem is subjects to physical constraints described by equation ( 22) to (26) :

𝑆𝑂𝐶 𝑚 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶 𝑀 (22) 𝑃 𝑏𝑎𝑡,𝑚 ≤ 𝑃 𝑏𝑎𝑡 ≤ 𝑃 𝑏𝑎𝑡,𝑀 (23) 
𝑃𝑟𝑒 𝑚 ≤ 𝑃𝑟𝑒 ≤ 𝑃𝑟𝑒 𝑀 [START_REF] Barbir | PEM Fuel Cells -Theory and Practice[END_REF] 𝑄 𝐸𝐿,𝑚 ≤ 𝑄 𝐸𝐿 ≤ 𝑄 𝐸𝐿,𝑀

𝑄 𝐹𝐶,𝑚 ≤ 𝑄 𝐹𝐶 ≤ 𝑄 𝐹𝐶,𝑀 (25) 
Subscripts 𝑚 and 𝑀 stand for minimal and maximal respectively. 𝑃𝑟𝑒 is the 𝐻 2 pressure inside the tank.

Simulation and Results

Simulation

In order to evaluate the performance improvement brought by MPC, simulations of an RES station with a myopic control and a model predictive control have been simulated. Results are shown and compared in next sections. Irradiance, temperature and load power data come from measurements done at the mountain refuge Col du Palet in Parc de la Vanoise, France between January 2017 and December 2017. Missing data have been manually reconstructed using similar days data. Irradiance and load power for a typical week in august are shown in Figure 4. As can be observed, consumption peaks can occur so the energy management must provide sufficient power reserve to supply them. Moreover, production alone is clearly not sufficient to meet the desire demand, particularly early in the morning, late at in evening and at night. This justify the need of storage, no matter how many solar panels are installed. The simulated RES is composed of 2 branches of 5 PV panels with a total installed power of 3.2KWc. The batteries bank is composed of 4 Saft 48V Li-Ion batteries if a nominal capacity of 77Ah [START_REF] Saft | Evolion Li-ion battery -Technical Manual[END_REF]. The electrolyser is a 2.5KW Acta ELS500 [START_REF][END_REF] able to deliver a 500L/h pressurised hydrogen flow. The fuel cell is an E-2500 PEM fuel cell from PlugPower [START_REF] Plugpower | E-Series Fuel Cell System -Operator's Manual[END_REF] with a nominal power of 2.5KW. The hydrogen tank can store 1100L of gaseous hydrogen under 30 bars.

This sizing does not correspond to the one installed at the Parc de la Vanoise and is purposely undersized. Indeed, as the station was designed to meet the load with the myopic control described in section 4, simulations with actual sizing return no default time. It is then impossible to quantify the performance gain for this objective. As reducing the default time is our number one priority, we need a design for which both control strategies fail to meet the load for the whole simulation. For the same reason, the hydrogen tank is supposed to be half empty at the beginning of simulations. 
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For the sake of simplicity, deferrable loads are not taken into account. Then the control vector 𝑢 is reduce to the electrolyser and fuel cell activation. The temporal horizon considered is 12h-ahead with a 30-min time step. Ponderation used to order objectives is given by Table 1. It has been obtained iteratively following a manual Trial and Error procedure. At the first step, ponderation was set to 𝛼 1 = 𝛼 2 = -1 and 𝛼 3 = 1 and a simulation has been performed. This led the final value of objective functions 𝐹 1 , 𝐹 2 and 𝐹 3 to be different by several orders of magnitude, 𝐹 2 being much greater than 𝐹 1 and 𝐹 3 . Hence, with this ponderation the MPC strongly favour the reduction of energetic losses over the over two objectives. To fix this issue, we set 𝛼 1 = 𝛼 2 𝐹 2 (0)-𝐹 2 (𝑒𝑛𝑑) 𝐹 1 (0)-𝐹 1 (𝑒𝑛𝑑) and 𝛼 3 = 𝛼 2 𝐹 2 (0)-𝐹 2 (𝑒𝑛𝑑) 𝐹 3 (0)-𝐹 3 (𝑒𝑛𝑑) and repeat the process until each objectives function worth nearly equally in the global objective function 𝐹. Finally, the weights are adjusted by doubling 𝛼 1 and by multiplying 𝛼 3 by 2/3 to strongly favour objectives 1 over 2 and 3 and shortly favour 2 over 3. The optimization problem is solved using Branch and Bound algorithm and a rolling horizon technique is employed. As the goal of this study is to quantify the maximal improvement that could be brought by MPC, the load and production forecasts are supposed to be perfectly known. Similarly, the reference model is assumed to perfectly estimate the station behaviour. The results are exposed in next section.

Results and Discussion

Results

To better understand how MPC affects the station, Figure 5 and Figure 6 give the station behaviour for two days with different conditions as example. In order not to overcharge this paper, a focus is given on energetic losses only.

August 11 th was a cloudy day, with low consumption but with a peak between 9:00 and 10:00 AM. Batteries are mid-charged at the beginning of the day and are the only energy supplier during the night. They are about to reach their lower threshold when the peak starts. MPC then turns the fuel cell on, so it can supply peak demand and to recharge the batteries a little. When the peak is over, the solar power is sufficient to provide the demand until 7:00 PM. At the end of the day, MPC anticipate that batteries are not sufficiently charged to cover the energy needs during the next night. It then turns on the fuel cell again, but only enough to allow the batteries to get it through the night. Finally, MPC anticipate the next day will be a low consumption day, sunny enough to fully recharge the batterie without activating the fuel cell. This is why it does not turn it on even if batteries are close to the minimal threshold at dawn. This example shows that MPC use only the correct amount of hydrogen needed and turns on the fuel cell at the most appropriate time step (during the consumption peak). In a similar situation, a myopic control would have turn on the batteries until 𝑆𝑂𝐶 reaches 𝑆𝑂𝐶 𝐹𝐶 𝑂𝑓𝑓 (70% in this simulation). This would have led to an excessive consumption of hydrogen without choosing the appropriate time to do it. On the over hand, October the 30th is a sunny, low consumption day and present a great opportunity to produce hydrogen. Here a myopic control would have start recharging the batteries first, and only when 𝑆𝑂𝐶 reaches 𝑆𝑂𝐶 𝐸𝐿 𝑂𝑛 the electrolyser would have been switched on. However, solar power is rarely sufficient to supply the electrolyser by itself. Hence batteries need to be use to cover the difference. At the end of the day, batteries would have been charged by solar power, and then partly discharged to supply the electrolyser. This process leads to avoidable energy losses.

MPC however decides to switch the electrolyser on before charging the batteries, when solar power is maximal. Doing this, the energy needed from the batteries is minimised. It then switches the electrolyser off in time for the batteries to be fully charged at sundown. Here again, by choosing the best time to activate the electrolyser, MPC allows to minimise the energetic losses. 

Energy availability

Table 2 compares myopic and MPC control in term of load supplied (objective 1). The EMS is considered in default at a specific time step if it cannot provide enough power to meet the demand. It can be seen that MPC allows significant improvement, with only 150 default time steps against 629 for myopic control. This corresponds to an improvement of 76%. Moreover, we can see in Figure 7 that batteries are better charged with MPC. In fact, batteries are nearly fully charged (𝑆𝑂𝐶 comprised between 0.95 and 1) nearly 20% of the year and 𝑆𝑂𝐶 is above 0.7 during 72% of the year. In contrast, with a myopic control the batteries are nearly fully charged only 13% of the year and their 𝑆𝑂𝐶 is above 0.7 for only 49% of simulation time. Likewise, Figure 8 shows the quantity of hydrogen stored in the tank throughout the year. Once again, improvement brought by MPC is obvious. While with a myopic control the average fill rate of the hydrogen is 22%, MPC achieve a fill rate of 82%. It is worth noticing that MPC get this result despite producing less hydrogen that the myopic control over the simulated year. Simulations show indeed that the electrolyser produce 9.6Kg of hydrogen with MPC and 15.8Kg with the myopic control. This shows that a better management of hydrogen production can significantly improve the storage performance. 

Power Losses

Figure 9 gives the cumulative losses for myopic control (dashed red line) and MPC (blue line).

Up-left graph represents the chemical losses during the electrochemical process. Between March and April, chemical losses are higher with MPC. But at the end of the year MPC improves chemical losses by 38%. As the round-trip efficiency of Li-Ion batteries is close to 1 (we took 𝜂 𝑏𝑎𝑡 = 0.9 in this study), the production and consumption of hydrogen constitute the main contribution to these losses. As said in previous section, myopic control tends to overproduce hydrogen. This is also true for hydrogen consumption (17.2kg consumed with myopic control against 8.4kg with MPC). This leads to superior chemical losses with myopic control. The reason why chemical losses with MPC are greater between March and April is the tank filling happening in February.

In up-right graph, one can see the electrical losses occurring in the converters. Here again, MPC get the best results. Nevertheless, this improvement is limited to 11%, mostly because of the high efficiency of the converter, above 0.9. The gap can be explained by lower battery power, partly compensate by greater demand response (meaning greater use of the inverter).

The down-left graph gives the availability losses. Here MPC underperform myopic control by 29%. Two reasons explain this result. The first reason is that despite a better energy management, the RES is still undersized with MPC. Storage capacity are particularly limited. Then between March and July excess of solar power can no longer be stored, the tank being full. Second, between July and October myopic control is in very short energy supply. So, every last joule generated is ever store or used, leading to a long available losses stabilisation. Both reasons can be resolve by a better sizing of the station.

At last, total losses are shown in the down-right graph. As one can see, MPC outperform myopic control with a global improvement of 1%. This poor improvement is explained by the fact that the good performances obtained for chemical and electrical losses are counterbalanced by the bad performance for availability losses. As MPC is supposed to perform better under realistic sizing, the overall improvement is expected to be higher. Both controls tend to impact the batteries more than the fuel cell and the electrolyser. 𝑆𝑂𝐻 𝑏𝑎𝑡 is indeed 0.90 and 0.89 at the end of simulation for MPC and myopic control respectively. On the other hand, 𝑆𝑂𝐻 𝐸𝐿 ends at 0.99 and 0.98 while 𝑆𝑂𝐻 𝐹𝐶 is around 1 for MPC and 0.99 for myopic control. In every case, MPC mitigate the components degradation by approximately 1%. When extrapolated, this result suggest that batteries need to be replaced every 10.5 years with MPC and every 9 years with myopic control. This could be very welcomed in remote area.

However, the fuel cell and electrolyser durability, even if better with MPC, has to be put in perspective with the excellent performance obtained by the myopic control on this matter. This is mostly due to the 30 min time-step taken in the simulation. Indeed, On and Off switches are the more impacting actions on durability in normal operating conditions. As a high time-step inherently limits the number of possible activations -deactivations, a good durability was predictable.

To better see the relevance of MPC on the fuel cell and electrolyser degradations, Figure 11 shows the degradations of batteries, fuel cell and electrolyser for a 10-min time-step for a myopic control and MPC with several ponderations 𝛼 3 . A temporal horizon of 6h is adopted for the computation time to be compatible with a real-time control. Here, as expected, the number of activations and deactivations is higher, making the improvement brought by MPC more pronounced. This is particularly true for the electrolyser. 𝑆𝑂𝐻 𝐸𝐿 is indeed equal to 0.95 with myopic control and 0.99 with MPC (𝛼 3 = 30 000), meaning an improvement of 20%. Another interesting result is the fact that ageing is mitigate for electrolyser and batteries with MPC, even if the durability is not considered (𝛼 3 = 0). This is explained by less and shorter discharges for the batteries and a shorter time of use for electrolyser. This is however not true for the fuel cell, as MPC turns it on often and for very short period of time to cover demands peaks. However, a higher ponderation does not significantly increase the durability, but degrade the performances in the other objectives (𝛼 3 = 60 000). At the end, the inclusion of fuel cell and electrolyser degradation in MPC control will depend on the time-step considered. In theory, a lower time-step is preferable as it allows more freedom. But in practise, it will be limited by the number of equipment to control, and by the quality of the forecasts models.

Conclusion

This study aims to give an evaluation of performance improvement of a RES controlled by MPC. Advantage of MPC is to control the station's components using production and consumption forecasts. Doing this, decisions are taken without compromising the near future. Results shows that MPC can achieve substantial improvements and savings. The -undersized -station is indeed in default for 75h against 314.5h with a myopic control. In the meantime, chemical losses have been reduced by 38% and electrical losses by 11%. Moreover, if MPC seems relevant to reduce the premature ageing of batteries, its impact on fuel cell and electrolyser depends greatly on the time-step of the control. The priority between objective is another factor as well. This raise the question of how to optimally tune the ponderation weight. Ponderation shown Table 1 have been obtained with a Trial and Error methods but more sophisticated Pareto-based techniques can be implemented.

Besides, it is important to notice that these improvements must be seen as an optimal target. In other words, improvements brought by MPC on the studied RES will never be better than what we obtained above. In practise, production and consumption forecasts are strong limitations to reach these improvements. The reference model used in MPC is another one as well (not planned process can lead to significant deviation with actual behaviour). Future works must be done to integrate those restrictions in the energy management. Eventually, the goal of this work and future work is to develop a real-time control which performance are the closest as possible to the ones above.
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 3 Figure 3 : Diagram of EMS with predictive controlLet's say that at time 𝑡 0 we want to determine the optimal dispatch 𝑢 * between time 𝑡 0 + 1 and 𝑡 0 + 𝐻 𝑐 regarding some objectives, 𝐻 𝑐 being the control horizon. The performance of a particular dispatch is measured by a function 𝐹. A reference model 𝑔 is used to estimate the state 𝑥 ̂(𝑡 + 1) of the RES at time 𝑡 + 1 given:-The current or estimated state of RES at time 𝑡: 𝑥 ̂(𝑡) -A prediction of the power production at time 𝑡: 𝑃 𝑃𝑉 ̂(𝑡)-A prediction of the power consumption at time 𝑡: 𝑃 𝐿𝑜𝑎𝑑 ̂(𝑡)-The control applied to the station: 𝑢(𝑡)

Figure 4 :

 4 Figure 4 : Typical days in august for load power (W) and Irradiance (W/m²)
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 5 Figure 5: PV, Load, Fuel cell powers and batteries SOC during the 11 th and 12 th of August
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 6 Figure 6: PV, Load, Electrolyser powers and batteries SOC during the 30 th of October
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 7 Figure 7 : Repartition of batteries SOC in term of time percentage with a MPC control (blue) and a myopic control (red)
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 8 Figure 8 : 𝐻 2 stocked in tank through the year
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 9 Figure 9 : Power losses for MPC and Myopic control 5.2.4. Component lifetime
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 10 Figure 10: State of health of batteries, electrolyser, fuel cell and overall Figure 10 presents the state of health evolution of batteries (up-left), electrolyser (up-right), fuel cell (down-left) and the 𝐹 3 objective function.
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 11 Figure 11 : State of health of batteries (up left), electrolyser (up right), fuel cell (down left) and overall (down right) MPC considering or not ageing process in MPC and Myopic Control

  When converting electrical power from AC to DC or from DC to DC, some losses occur in the converters.

	These losses are calculated by				
	𝐿 𝑐𝑜𝑛 𝑡 (𝑡) =	Δ𝑡 1000	[	(1 -𝜂 𝐷𝐶𝐴𝐶 ) 𝜂 𝐷𝐶𝐴𝐶	(𝑃 𝐿𝑜𝑎𝑑 (𝑡) + 𝑃 𝐸𝐿 (𝑡))
		+ (1 -𝜂 𝐷𝐶𝐷𝐶 ) ( 𝑃 𝑏𝑎𝑡 + (𝑡) 𝜂 𝐷𝐶𝐷𝐶	+ 𝑃 𝑏𝑎𝑡 -(𝑡))]

  𝐹 2 (𝑡 0 ) = ∑ 𝐿 𝑐𝑜𝑛 (𝑡) + 𝐿 𝑐ℎ𝑒,𝑏𝑎𝑡 (𝑡) + 𝐿 𝑐ℎ𝑒,𝐻 2 (𝑡) + 𝐿 𝑎𝑣𝑎 (𝑡)

		𝑃 𝑃𝑉 𝑡ℎ𝑒𝑜 (𝑡) + 𝑃 𝐹𝐶 (𝑡) + 𝜂 𝐷𝐶𝐷𝐶 𝑃 𝑏𝑎𝑡 -(𝑡) --𝜂 𝐷𝐶𝐴𝐶 (𝑃 𝐸𝐿 (𝑡) + 𝑃 𝐿𝑜𝑎𝑑 (𝑡) + 𝑃 𝐷𝑒𝑓 (𝑡)) + 𝑃 𝐴𝐶𝑜𝑛𝑠 (𝑡) 1 𝑃 𝑏𝑎𝑡 + (𝑡) 𝜂 𝐷𝐶𝐷𝐶 1	(18)
	4.3.2.4.	Global losses
	The total equation loss is expressed as below:
		𝑡 0 +𝐻
			(19)
		𝑡=𝑡 0 +1

Table 1 :

 1 Objectives ponderation used for MPC control

	𝜶 𝟏	𝜶 𝟐	𝜶 𝟑

Table 2 :

 2 Loss of Load comparison between Myopic control and MPC

	Myopic	MPC
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