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a b s t r a c t

The control of malolactic fermentation (MLF) by Oenococcus oeni is an essential step in winemaking

process. Although selected O. œni strains are available for winemakers, the MLF is not always successful,

sometimes because of indigenous presence of other strains. In this work, interaction during MLF between

five strains of O. œni was studied. Experiments were performed in MRS medium modified to be closer to

wine conditions (pH 3.5, 10% ethanol). Interaction in mixed cultures of 10 pairs formed by the five strains

were analysed from experiments performed in a Membrane Bioreactor (MBR). Pairs were classified in

three different classes among growth interaction: 1) negative reciprocal interaction of both strains (6

pairs), 2) interaction that affect negatively one strain and positively the other (3 pairs), and 3) interaction

with positive effect on one strain and no effect on the other (1 pair). Thanks to a mathematical model

previously established during pure cultures to link growth and malic acid consumption, effect of mixed

cultures on the specific activity of cells to consume malic acid has been equally evaluated. This capacity

seemed not to be affected for 4 pairs whereas it seemed activated for 6 pairs.

1. Introduction

In winemaking Malolactic Fermentation (MLF) is an important

step that consists to convert L-malic acid into L-lactic acid after the

alcoholic fermentation. Among lactic acid bacteria, Oenococcus oeni

is the major specie responsible for MLF. The acidity decrease

resulting of MLF is also accompanied by production of flavor and

aroma in wine. In fact, the good monitoring of MLF is mandatory to

ensure the good quality and the suit cost of wine. Actually, selected

O. oeni strains are proposed by microorganism producers to inocu-

late musts after alcoholic fermentation but the good control of MLF

remains difficult. One of the reasons could be that the majority of

studies onMLFwere donewith pure cultures of O. oeni. However, in

the real process, several indigenous strains are present in grape

musts. Interactions that probably occur between lactic acid bacteria

can impact the onset and/or the progress of theMLF. In the literature

several studies have shown very different interaction effects be-

tween microorganisms: inhibition (Nissen & Arneborg, 2003),

stimulation (De Souza Oliveira, Perego, Converti, & De Oliveira,

2009), competition (Bely, Stoeckle, Masneuf-Pomar"ede, &

Dubourdieu, 2008; Holm, Nissen, Sommer, Nielsen, & Arneborg,

2001; King & Beelman, 1986; Lonvaud-Funel, Joyeux, & Dessens,

1988), amensalism (Carrau, Neirotti, & Gioia, 1993; Fernandez,

Beaufort, Brandam, & Taillandier, 2014; Osborne & Edwards, 2007;

Pommier, Strehaiano, & D!elia, 2005; Taillandier, Gilis, &

Strehaiano, 1995; Taillandier, Julien-Ortiz, Lai, & Brandam, 2014).

All these studies concerned yeasts interactions. In our knowledge,

only one interaction study was realized with lactic acid bacteria but

it was to study its interactionwith wine yeasts (Nehme, Mathieu,&

Taillandier, 2010). In this work,O. oeni intra-specy interactionswere

investigated. The behaviour of 10pairs of 5 strains ofO. oeni inmixed

cultures was analysed. A difficulty to study microorganisms

belonging to the same species in mixed cultures is to distinguish

each strain population. For that, a specific tool developed in our

laboratory, the membrane bioreactor with double compartments,

was used. It was conceived to study indirect interactions between

microorganisms i.e. interactions due to metabolites excreted in the

medium. To evaluate interaction between strains on theMLF, mixed

cultures were compared to pure cultures. A mathematical model

thatwehavebeen established inpreviouswork (Fahimi, Brandam,&

Taillandier, 2014) on pure cultures to represent the consumption of

L-malic acid is used to help us to interpret mixed culture behaviour.
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2. Materials and methods

2.1. Strains and storage conditions

Five strains of Œnococcus œni named A, B, C, D, and E were

studied in this work. These strains belong to the DIVOENI ANR

collection at the faculty of œnology, Bordeaux, France (n!ANR-07

BDIV 011-01). The strains were kept frozen at "20 !C in MRS broth

(Biokar diagnostic, Beauvais, France) containing 20% glycerol (v/v).

2.2. Cultures conditions

2.2.1. Reactivation

One hundred ml of the frozen strains A, B, C, D, and E were

reactivated 65 h in 10 ml of MRS broth supplemented with L-malic

acid (4 g/L) at 28 !C, pH 5.2 without agitation in Erlenmeyer flasks.

2.2.2. Inoculum

Themodified MRSm (MRS brothþ 4 g/L of L-malic acidþ 2 g/L of

D-fructose) was used with adjusting the pH at 4.8 using a 85%

orthophosphoric acid solution. After autoclaving, 5% (v/v) of

ethanol were added and then the mediumwas inoculated at 1% (v/

v) using reactivated cultures. The cultures were incubated at 28 !C

in Erlenmeyer flasks without agitation.

2.2.3. Malolactic fermentation conditions (MLF)

A tool designed specially to study the indirect interactions be-

tween two microorganisms was used: a lab-made, two-compart-

ment, membrane bioreactor (MBR) (See Fig. 1). The complete

system has been described in detail (Albasi, Tataridis, Salgado

Manjarrez, & Taillandier, 2001). It is composed of two jars inter-

connected by a hollow fibre membrane module immersed in one of

the jars. The membrane fibre diameter of 0.1 mm allows the me-

dium, but not the microorganisms, to pass through the fibres. Each

strain is inoculated into only one compartment, which can be

sampled and analysed separately. By applying pressure into the

headspace of each of the vessels alternately, the medium is made to

flow andmix. Compressed, filter-sterilised nitrogen is used to apply

the pressure and a system of valves controls its admission and

expulsion according to the liquid levels. The time and quantity of

liquid inversion is calculated to ensure perfect homogenisation

between the two jars. Hence, the microorganisms grow as if they

were in the same liquid medium but they are physically separated,

thus allowing the dynamics of each population to be easily followed

by microscopic counting. So, this specific system can be used to

study indirect interactions without needing a sophisticatedmethod

to follow each dynamic population based for example on molecular

biology. It is not suitable for direct interactions since the strains are

cultivated separately.

For these cultures, the pH of the modifiedMRSmwas adjusted to

3.5 and 10% (v/v) of ethanol was added. The fermentation was

carried out at 20 !C. Strains were grown in anaerobiosis conditions

under 0.45 bar of nitrogen atmosphere pressure in the membrane

bioreactor of 4 L, and with an agitation of 100 rpm. For pure culture,

fermentations were performed exactly in the same conditions as

mixed culture but without the membrane in reactor. Three culture

replicates have been done for each strain in pure culture.

Ten mixed cultures were studied in this work using the

following crossings between strains: A/B, A/C, A/D, A/E, B/C, B/D, B/

E, C/D, C/E and D/E. The experiments of A/C, A/D and B/D pairs were

repeated 3 times, the other pairs were repeated 2 times. All the

presented results (growth and L-malic acid concentrations) had no

more 8% of variation between the 2 or 3 repetitions. The inoculum

was adjusted in order to start the MLF with 2 $ 106 CFU/mL in all

cases: 2$ 106 CFU/mL of the strain in pure culture and 1$ 106 CFU/

mL of each strain in mixed cultures. The experiments were stopped

when L-malic acid was totally consumed in the medium culture.

2.3. Analytical methods

2.3.1. Growth

Bacterial growth was followed by measuring the optical density

(OD) in a spectrophotometer (Hitachi U-2000) at 620 nm using a

quartz cuvette with a 1 cm light path. Biomass was also determined

by colony counts on MRS agar plates. The MRS agar was completed

with 4 g/L L-malic acid and 5 g/L agar. Its pH was adjusted to 5.7

using a 10 M NaOH solution. A specific correlation between OD and

number of colonies was determined for each bacterium and used to

inoculate fermentations at 2 $ 106 CFU/mL.

2.3.2. L-malic acid concentration

L-malic acid concentration was determined using an enzymatic

assay (Roche Boehringer Mannheim/R-Biopharm, kit no. 10 139 068

035, Darmstadt, Germany) and the results were expressed in g/L.

3. Methodology for evaluation of interaction

Using the membrane bioreactor (MBR), it is possible to follow

the development of each strain in mixed cultures with classical

countingmethods. Then, comparison of the growth of each strain in

pure and mixed cultures is possible. Concerning L-malic acid con-

sumption (MLF), experimentally it is not possible to measure the

quantity of L-malic acid consumed by each one of the strains

growing in the same medium. Only total malolactic activity of the

two strains can be evaluated and compared with each strain ac-

tivity in pure cultures.

However, it was demonstrated in previous study (Fahimi et al.,

2014) the existence for one given strain of a link between bacte-

ria growth andmalic acid consumption. Amathematical model was

proposed in pure cultures to represent the specific growth rate (m)

versus the specific L-malic acid consumption rate (n). It allowed

quantifying and comparing the link between these two activities

for each of the strains:

n ¼ ki$ m$
½mal'

½kmal' þ ½mal'

Fig. 1. Scheme of the membrane bioreactor used.



n, specific L-malic acid consumption rate:

n ¼ 1
X $

d½mal'
dt

½ðg=L=h=ðOD620unitÞ'

m, specific growth rate: m ¼ 1
X $

dX
dt

ðh"1Þ

with [mal] the L-malic acid concentration in g/L, X the biomass

concentration in OD unit and t the time in hour.

For each pure strain, parameters ki and kmal was identified

(Table 1). ki was a parameter representing the proportional coef-

ficient between n and m, it informed about the intrinsic capacity of

the cells of a strain to consume L-malic acid, independently of its

growth. kmal was a substrate limitation parameter; a low value of

kmal signified that the bacteria is able to grow with a low con-

centration of L-malic acid in the medium, in the opposite a high

value of kmal signified the bacteria require a high minimum

threshold of L-malic acid concentration to ensure its growth from

the malate metabolism.

Thanks to the model, it is here possible to test the effect of the

interaction on the link between growth and acid malic consump-

tion established on pure cultures. In mixed cultures, the con-

sumption of L-malic acid can be calculated by using the

experimental data of the biomass concentrations of each of the two

strains according to the following equation:

d½mal'

dt
¼ Xs1;mixed $ k1 $ m1 $

½mal'

½mal' þ kmal1
þ Xs2;mixed $ k2 $ m2

$
½mal'

½mal' þ kmal2
;

- s1: strain 1

- s2: strain 2

This predicted consumption in the mixed culture of a pair of

bacteria was then compared to their experimental consumption

and reveals if there is an effect of the presence of the other bacte-

rium strain on the intrinsic capacity of the cells of a strain to

consume L-malic acid. If no interaction occurred on this link,

modelled and experimental values would be identical.

4. Results

The methodology was applied on the ten pairs of bacteria

studied in our work. Table 2 summarizes effects of interactions on

both growth and consumption of L-malic acid of different pairs in

the mixed cultures. The pairs could be classified into 3 kinds of

interaction based on growth curves analysis.

4.1. Negative reciprocal interaction of both strain growth

This interaction concerned 6 pairs of strains (Table 2, lines 2 to

7). The example of the pair B/C was showed on Fig. 2. Fig. 2a shows

the growth of B and C strains in pure and mixed cultures. Both

strains were clearly affected negatively in the mixed culture.

Growth began after 340 h approximately for the two strains in

mixed cultures against 140 h in pure cultures. At the end of MLF,

level of population was also 5 fold and 10 fold higher in pure cul-

tures for strain B and for strain C.

The consumption duration of L-malic acid in mixed culture was

very long in comparison with the consumption of each strain in

pure cultures (Fig. 2b); MLF of the mixed culture was affected

negatively. However, Fig. 2b shows that the predicted and experi-

mental L-malic acid consumption are similar. These data indicate

that if the growth or the acid malic consumption were affected

negatively by the presence of the two strains, the intrinsic capacity

of each cell to transformed malic acid into lactic acid was not

affected compared to pure cultures.

In the sameway, pairs A/B (Fig. 5 in Supplementary data), A/C, A/

D, B/D (Fig. 6 in Supplementary data), and D/C showed interaction

with negative effect on the growth of each strain in mixed cultures

compared to their growth in pure cultures (Table 2, column 2). The

level of growth inhibition was different from one pair to another

and also from one strain to another but the tendency was the same.

MLF of these pairs was also slower in mixed culture than in each

pure cultures, excepted for pairs A/D and B/D where MLF duration

was identical to D pure culture (Table 2, column 3). As for the pair B/

C, modelled values of L-malic acid consumptionwere in accordance

with experimental values for pair B/D. However, for pairs A/B, A/C,

A/D, and D/C, experimental consumption of L-malic acid was faster

than the predicted one (Table 2, column 4). So, the intrinsic capacity

of one (or two) strain(s) has been modified positively in mixed

cultures compared to pure cultures.

4.2. Interaction that affect negatively the growth of one strain and

positively the growth of the other

These interactions concerned three pairs where the E strain was

always affected positively in the mixed culture (Table 2, lines 8 to

10).

Growth profile comparison for pair B/E are shown in Fig. 3a. In

the mixed culture, the E strain was activated, with a lag phase

shorter, while the B strain was strongly inhibited.

Fig. 3b presents results of L-malic acid consumption of this pair

B/E. The experimental consumption by the 2 strains in mixed cul-

ture was faster than the consumption by E strain cultivated alone

Table 2

Effects of interaction in mixed culture compared to pure culture for the ten pairs of bacteria A, B, C, D, and E. (þ): positive effect, (¼): neutral effect, ("): negative effect.

Mixed cultures Effect on growth Effect on MLF duration Effect on the link between n and m Best developed strain

A/B -A/-B -A/-B þ A

A/C -A/-C -A/-C þ A

A/D -A/-D -A/¼D þ A

B/C -B/-C -B/-C ¼ B

B/D -B/-D -B/¼D ¼ B

D/C -D/-C -D/-C þ C

B/E -B/þE -B/þE þ E

C/E -C/þE -C/þE ¼ E

D/E -D/þE -D/þE þ E

A/E þA/¼E þA/þE ¼ A

Table 1

Model parameter values determined in pure culture for the five strains.

Strain A B C D E

ki 35.8 54.5 45.7 70.8 62.2

kmal (g.L
"1) 1.1 1.23 1.14 0.47 0.8



while it was slower than consumption by B strain alone. The

experimental consumption of L-malic acid for the mixed culture

predicted was faster than the one predicted by the model. This

could be interpreted as a different effect of interaction on growth

and malolactic activity, and so a different link between these two

activities for one strain.

This kind of interaction affecting negatively the faster strain in

pure culture and positively the slowest one was also observed in

the case of pairs C/E (Fig. 7 in Supplementary data) and D/E (Table 2,

column 2). Strain E was always activated and reached quickly bio-

masses higher than those reached in pure culture. The stimulation

was also remarkable on the duration of the latency phase that was

shorter in mixed culture than in pure one. In fact, it seems that the

presence of another strain (B, C, or D) activates the strain E. On the

contrary, each one of strains B, C, and D was strongly inhibited in

mixed culture in presence of strain E.

L-malic acid consumption in mixed culture for each of these 3

pairs was intermediate to the consumption of the two strains in

pure cultures (Table 2, column 3). The experimental consumption

of the 2 strains in mixed culture was faster than the predicted

consumption in both cases of B/E and D/E pair. On the opposite for

the C/E pair, they were similar indicating that in this case the link

between growth and malolactic activity remained the same in pure

and mixed cultures, not changing the intrinsic capacity of each cell

of strain to do MLF (Table 2, column 4).

4.3. Interaction with positive effect on the growth of one strain and

no effect on the other

This kind of interaction concerned only the pair A/E. Comparing

growth profiles of the two strains in mixed culture (Fig. 4a), the

development of A strain decreased during the first 120 h but after

that the growth started, it reached rapidly higher biomasses than in

pure culture. The strain E did not grow throughout the MLF in

mixed culture. So growth of strain A was activated by the presence

of strain E. There was no growth of strain E during 220 h of mixed

culture. In fact consumption of L-malic acid was completed before

the E strain started to grow.

Experimental consumption of L-malic acid for this pair was

faster than the consumption of each strain in pure cultures (Fig. 4b).

This can be justified by the activation of the growth of the strain A

in mixed culture that we showed above. The mixing of these two

strains in mixed culture seemed to lead to a gain on the duration of

the MLF.

Modelled consumption of L-malic acid was almost similar to

experimental consumption of the 2 strains A and E in mixed cul-

ture. This means that the global link between specific activities of

growth and malolactic fermentationwas the same in mixed culture

as pure cultures.

5. Discussion

The study of the interactions between strains for the 10 pairs of

O. oeni strains A, B, C, D, and E showed three different kinds of in-

teractions on growth: negative reciprocal interactions of both

strains in mixed culture (pairs A/B, A/C, A/D, B/C, B/D, and D/C),

interactions that affect negatively the faster strain in pure culture

and positively the slowest one (pairs B/E, C/E, and D/E), and in-

teractions with positive effect on the fastest strain in pure culture

a

b

Fig. 2. Experimental values (dotted lines) for growth (2a) and consumption of L-malic

acid (2b) by O. oeni strains B and C in pure and mixed cultures. Modelled values

(dotted lines) for consumption of L-malic acid in mixed culture (2b).

a

b

Fig. 3. Experimental values (dotted lines) for growth (3a) and consumption of L-malic

acid (3b) by O. oeni strains B and E in pure and mixed cultures. Modelled values

(dotted lines) for consumption of L-malic acid in mixed culture (3b).



(pair A/E).

In Table 2, we can observe that the interactions existing in the

six pairs A/B, A/C, A/D, B/E, D/C, and D/E had a positive effect on the

global link between the specific consumption L-malic acid activity n

and the specific growth activity m. Hypothesis are an activation of

the consumption of L-malic acid and/or an inhibition of the growth

of the strains. The interaction effect also resulted in a loss of initial

biomass that was observed experimentally in the first part of the

cultures. Presumably to adapt to the conditions of mixed culture,

the cells ability to consume L-malic acid increased but does not

necessarily led to an increase in growth. Therefore, the overall

correlation between n and m rates was affected in themixed culture.

For the four other pairs (B/C, B/D, C/E, A/E), the link between spe-

cific consumption and specific growth was the same in mixed

cultures as in pure cultures.

In wine medium many factors can affect the onset and/or the

progress of MLF; physicochemical conditions such as a high con-

centration of ethanol (Ingram & Buttke, 1984; King & Beelman,

1986; Rosa & Sa-Correia, 1992), low pH (Henick-Kling, 1990), low

temperature (Asmundson & Kelly, 1990; Maicas, Pardo, & Ferrer,

2000), nutriment depletion (Remize et al., 2006), fatty acids

presence (Guerrini, Bastianini, Granchi, & Vincenzini, 2002;

Guilloux-Benatier, Le Fur, & Feuillat, 1998) and sulfur dioxide

addition (Romano & Suzzi, 1993). In addition to those factors, this

work shows clearly the importance of interactions factors in their

effect on the physiology of strains, being in the same stressed

conditions (20 !C, pH 3.5, and 10% of ethanol), bacteria behave

differently in mixed culture in comparison to the pure culture.

Indeed it have been demonstrated that inadequate biological

conditions may cause the failure of MLF by release of some com-

mon inhibitory metabolites from yeasts such as SO2 (Carret!e,

Vidal, Bordons, & Constanti, 2002; Henick-Kling & Park, 1994; 
Osborne, Dube Morneau, & Mira de Orduna, 2006), specific
inhibitory metabolites produced by some strains of Saccharomyces 
cerevisiae (Nehme et al., 2010) and probably inhibitory metabolites 
produced by indigenous strains of LAB (Knoll, Divol, & Du Toit, 
2008).

Comparing the five studied strains, strain A was always the best 
developed one in the presence of one of the other strains B, C, D, or 
E; followed by strain E that was the best developed one in mixed 
culture with B, C, or D, while it doesn't grow in the presence of the 
strain A. In this last case the interaction could be a competition 
phenomenon since the difference of growth rate is very high. Then 
the B strain is the best developed one in presence of strains C or E. 
Finally, strain C is the best one in mixed culture of the pair C/D. In 
terms of best growth, the following order was found: A, E, B, and C. 
Growth of strain D is always disadvantaged in mixed culture.
Nevertheless it is a strain that present a very low growth in pure 
culture but has the highest specific consumption activity of L-malic 
acid (Fahimi et al., 2014). This means that although a strain growth 
is affected in mixed culture its malolactic activity may be higher 
than the other strain.

It also was observed that for the majority of cases, the presence 
of 2 strains in the same culture medium led to an extension of the 
duration of the lag phase. Let to suppose that in mixed culture, after
a duration corresponding to the duration of the latency phase in 
pure culture, strains activate their defense system and produce 
extra cellular metabolites (indirect interaction) that inhibit recip-
rocally their development. For most of the mixed cultures, after this 
long latency phase we observed that their maximal specific growth 
rates become higher than those reached in pure cultures. On one 
hand, this result can be explained by the fact that there is a loss of 
cells during the lag phase and culture medium only cells that ac-
quire resistance and become able to withstand environmental 
conditions (mixed culture) survive. In the other hand, activation of 
growth can also be explained by reaching a certain concentration of 
extra cellular molecule(s) produced in conditions of stress and 
promote(s) growth activity.

In this work we evaluated the globally consumption of L-malic 
acid in mixed culture. Regarding the effects of interactions on the 
growth and on the consumption of L-malic acid, a large variability 
between pairs was showed. In our study we focused on indirect 
interactions between microorganisms (use of Membrane Biore-
actor). Effects we have seen, both positive and negative, are not due 
to direct contact between strains, so they are only due to the 
excretion of extra cellular metabolite(s) or due to a potential 
competition phenomena in some cases. Then it still mandatory to
continue research in this way to identify the nature of the agents 
responsible of the identified interactions.

From a practical point of view, this study brings to the fore 
difficulties for winemakers to manage MLF. The diversity of be-
haviours prevents predicting MLF with good certainty. Even the 
used of bacteria selected for their MLF efficiency, the success is not 
assured in case of natural presence of other bacteria strains that 
could interact negatively.
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Fig. 4. Experimental values (dotted lines) for growth (4a) and consumption of L-malic

acid (4b) by O. oeni strains A and E in pure and mixed cultures. Modelled values

(dotted lines) for consumption of L-malic acid in mixed culture (4b).
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