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Abstract

Markov intertwining is an important tool in stochastic processes: it enables to prove equalities in
law, to assess convergence to equilibrium in a probabilistic way, to relate apparently distinct random
models or to make links with wave equations, see Carmona, Petit and Yor [8], Aldous and Diaconis
[2], Borodin and Olshanski [7] and Pal and Shkolnikov [23] for examples of applications in these
domains. Unfortunately the basic construction of Diaconis and Fill [10] is not easy to manipulate.
An alternative approach, where the underlying coupling is first constructed, is proposed here as an
attempt to remedy to this drawback, via random mappings for measure-valued dual processes, first
in a discrete time and finite state space setting. This construction is related to the evolving sets
of Morris and Peres [22] and to the coupling-from-the-past algorithm of Propp and Wilson [27].
Extensions to continuous frameworks enable to recover, via a coalescing stochastic flow due to
Le Jan and Raimond [16], the explicit coupling underlying the intertwining relation between the
Brownian motion and the Bessel-3 process due to Pitman [25]. To generalize such a coupling to
more general one-dimensional diffusions, new coalescing stochastic flows would be needed and the
paper ends with challenging conjectures in this direction.
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1 Introduction
Consider two Markov processes X and X on respective state spaces V and V, whose generators are
denoted L and L. The Markov process X is said to be a dual (by intertwining) of X when L and L
are linked via a weak conjugation relation LΛ “ ΛL, where Λ is a Markov kernel going from V to
V (so that at least formally, the previous commutation makes sense). In such circumstances, the
processes X and X can usually be nicely coupled, so that useful informations on the behavior of
X can be deduced from X. The construction of the coupling was given by Diaconis and Fill [10] in
the case of finite state spaces and it is sometimes possible to extend it to more general situations,
up to cumbersome technicalities (see e.g. [20], for one-dimensional diffusions). Here we propose a
direct construction in the context of measure-valued duals X, namely those for which V is a set
of (non-negative and different from 0) measures on V and Λ corresponds to the canonical Markov
kernel from V to V :

@ η P V, Λpη, ¨q B ηp¨q{ηpV q (1)

When X admits an invariant probability measure π, we can also consider set-valued duals: then
V is a set of measurable subsets of V and Λ corresponds to the conditioning of π with respect to
the elements of V. Since any measurable subset S of V can be seen as 1Sπ, the measure admitting
the indicator function 1S of S as density with respect to π (i.e. the restriction of π on S), set-
valued duals are in fact a particular case of measure-valued duals. When V is finite and X is
irreducible, Chapter 17 of Levin, Peres and Wilmer [18] presents a particular set-valued dual as a
Doob transform of the evolving sets of Morris and Peres [22]. We go further in this direction, by
constructing measure-valued dual X directly from X via an approach sharing similarities with the
coupling-from-the-past algorithm of Propp and Wilson [27]. Some reverse random mappings play
the main role, since after having been conditioned to be compatible with a given trajectory of X,
they are used to make the measure-valued dual evolve (or the set-valued dual spread through the
state space). We will reinterpret the classical examples of the discrete Pitman theorem [25] and
of the top-to-random shuffle due to Aldous and Diaconis [1] as particular instances of this general
construction. To facilitate the exposition, we will mainly consider finite state spaces and discrete
time in this introduction, leaving the extensions to continuous time and spaces to the last part
of the paper, that will enable us to recover the classical Pitman’s theorem [25] (see also Rogers
and Pitman [29]). To deal with more general one-dimensional diffusions and even multi-dimensional
diffusions (see the preprint [9] for the corresponding definition of L), we would need some coalescing
flows of a new type, whose theory has not yet been developed, despite the works of Le Jan and
Raimond, in particular [15, 16]. Their investigation should lead to direct constructions of stochastic
perturbations of mean curvature flows, in the spirit of [9], which is the remote motivation for the
present study. An alternative approach has recently been proposed by Machida [19] for set-valued
duals of diffusions.

Let V be a finite space, endowed with a Markov kernel P B pP px, yqqx,yPV . A traditionally
associated generator L is P ´ I, where I is the V ˆ V identity matrix, to make a connexion with
the above paragraph. Instead, we first consider discrete time and keep working with P instead of
L. When we are given a distribution m0 on V , there exists a Markov chain X B pXnqnPZ` on
V whose initial position X0 is distributed according to m0 and whose transition are dictated by
P . The law LpXq of X is uniquely determined by m0 and P . From now on, we assume that P is
irreducible (i.e. exppP q has only positive entries), so that it admits a unique invariant probability
π B pπpxqqxPV . The entries of π are positive. As usual, measures (respectively functions) are seen
as row (resp. column) vectors and the invariance of π writes πP “ π. This terminology comes
from the fact that when the initial distribution is chosen to be π, then for any time n P Z`, the
law of Xn is equal to π. In this situation, it is possible to consider a stationary Markov chain
X B pXnqnPZ defined for all times n P Z. The time-reversed process pX´nqnPZ is also a stationary
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Markov chain, whose transition matrix P ˚ B pP ˚px, yqq is given by

@ x, y P V, P ˚px, yq B
πpyq

πpxq
P py, xq (2)

Let us recall the evolving set process of Morris and Peres [22] (see also Chapter 17 of Levin,
Peres and Wilmer [18]). It is a Markov chain X B pXnqnPZ` taking values in S̄, where S̄ is the set
of all subsets of V . To define its transition matrix J , fix S P S̄ and consider a random variable U
uniformly distributed on r0, 1s. Denote

ΦpSq B ty P V : P ˚py, Sq ě Uu (3)

and

@ S, S1 P S̄, JpS, S1q B PrΦpSq “ S1s (4)

Note that X is absorbed at H and at V P S̄. The mapping π : S̄ Q S ÞÑ πpSq is harmonic for
J , in the sense that Jπ “ π. This harmonicity of π is equivalent to the fact that pπpXnqqnPZ` is
a martingale. It leads to consider the Doob transform of J by π, which is the SˆS transition
matrix PJ given by

@ S, S1 P S, PJpS, S
1q B

πpS1q

πpSq
JpS, S1q (5)

where S B S̄ztHu is the set of all nonempty subsets of V . The matrix PJ is the transition kernel
of X conditioned not to be absorbed at H, cf. Chapter 17 of Levin, Peres and Wilmer [18]. Let
X B pXnqnPZ` be a Markov chain whose transitions are dictated by PJ . It is a set-valued dual to
X. Indeed, let Λ be the Markov matrix from S to V given by

@ S P S, @ x P V, ΛpS, xq B
πpxq

πpSq
(6)

It is not difficult to check the intertwining relation PJΛ “ ΛP .
More generally, let P be a transition kernel on a finite set V and Λ be a Markov kernel from V

to V such that

PΛ “ ΛP (7)

and let X B pXnqnPZ` be a corresponding Markov chain. Assuming furthermore

LpX0qΛ “ LpX0q (8)

Diaconis and Fill [10] constructed a coupling of X and X such that the two following properties
hold:

@ n P Z`, LpXJ0,nK|Xq “ LpXJ0,nK|XJ0,nKq (9)
@ n P Z`, LpXn|XJ0,nKq “ ΛpXn, ¨q (10)

In these identities, LpY|Zq stands for the conditional law of Y knowing Z, for any (here finite
valued) random variables Y, Z defined on a same probability space, J0, nK B t0, 1, ..., nu and YJ0,nK
is the stopped trajectory pYmqmPJ0,nK for any process Y B pYnqnPZ` .

The first relation (9) requires that X can be deduced from X in an adapted way: for any n P Z`,
only the knowledge of XJ0,nK is needed to construct XJ0,nK, maybe with the help of independent
randomness. The second relation can be seen as a stochastic prolongation of both LpX0qΛ “ LpX0q

and PΛ “ ΛP .
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Unfortunately, the construction of Diaconis and Fill [10] is not easy to manipulate, that is why
we propose an alternative approach, valid for a extension of the evolving set point of view (for the
generality of this method, see Remark 9).

Our main ingredient is the following object. A random mapping ψ : V Ñ V (defined on some
underlying probability space) is said to be associated to P ˚ when

@ x, x1 P V, Prψpxq “ x1s “ P ˚px, x1q

Consider V̄ the set of non-negative measures on V . It is convenient to have at our disposal a
random mapping ψη for any given η P V̄. Such a family pψηqηPV̄ is said to be locally associated
to P ˚ if

@ η P V̄, @ x P V, @ x1 P supppηq, Prψηpxq “ x1s “
P ˚px, x1q

ζpηq
(11)

where supppηq is the support of η and where ζ : V̄ Ñ p0,`8q is a given positive mapping on V̄
(note that necessarily, ζpηq “ 1 as soon as supppηq “ V ). From now on, all the families pψηqηPV̄ we
will consider will be implicitly assumed to be locally associated to P ˚.

A family pψηqηPV̄ enables to define a random mapping Ψ from V̄ to V̄ in the following way. For
any η P V̄, consider f the density of η with respect to π:

@ x P V, fpxq B
ηpxq

πpxq

We define

@ η P V̄, Ψpηq B pf ˝ ψηqπ (12)

namely the measure admitting the density f ˝ ψη with respect to π.
Denote FpV q the set of real functions defined on V and recall the following notation for the

duality measures-functions:

@ η P V̄, @ f P FpV q, ηrf s B
ÿ

xPV

fpxqηpxq

We compute that

@ η P V̄, @ f P FpV q, ErΨpηqrf ss “
ÿ

xPV

fpxqErfpψηpxqqsπpxq

“
ÿ

x,yPV

fpxqfpyqPrψηpxq “ ysπpxq

“
ÿ

x,yPV

fpxqfpyq
P ˚px, yq

ζpηq
πpxq

“
πrfP ˚rfss

ζpηq

“
πrfP rf ss

ζpηq

“
ηrP rf ss

ζpηq
(13)

where in the third equality, we used that the sum can be restricted to y belonging to the support
of η, i.e. satisfying fpyq ą 0.

The above relation will be crucial for our purposes, but before developing them, let us make a
link with the evolving sets of Morris and Peres [22].
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Consider a family of random mappings pψSqSPS̄, namely which is rather indexed by the subsets of
V . We will refer to this situation as the subset case to distinguish it from the previous measure
case. These two settings are related, as alluded to in the introductive paragraph: consider the
mapping T : S̄Ñ V̄ defined by

@ S P S̄, TpSq B 1Sπ (14)

This embedding enables us to see S̄ as a subset of V̄. In particular, by restriction, any measure-
indexed family of random mappings leads to a subset-indexed family of random mappings. Con-
versely subset-indexed family of random mappings pψSqSPS̄ can be extended into a measure-indexed
family of random mappings pψηqηPV̄, by example via

@ η P V̄, ψη B

"

ψS , when η “ TpSq
ψH , otherwise

Remark 1 Measure (respectively subset)-indexed family of random mappings will lead to measure
(resp. subset)-valued dual processes. Measure-valued dual processes are more general than subset-
valued processes, while the latter can be interesting in their own right, as they are related to
natural objects such as the evolving sets of Morris and Peres [22] or mean curvature flows, see for
instance [9]. Nevertheless in hypoelliptic continuous settings, subset-valued dual processes may lack
a natural continuity property of their trajectories, cf. [21], and to recover this regularity, it is better
to reinterpret them as measure-valued dual processes, as the topologies put on sets of measures are
traditionally weaker than topologies put on set of subsets.

˝

Remark 2 A family pψηqηPV̄ is said to be globally associated to P ˚ when all its random mappings
ψη are associated to P ˚. All the examples of Section 3 are set-valued and globally associated to
P ˚. The interest of the notion of local association only appeared while writing Section 5, when
dealing with Polish spaces. A posteriori it seemed natural point of view that can be useful for some
applications, even in the finite setting. Indeed, looking for an set-valued intertwining relation with
a link Λ as in (6) with π replaced by a probability measure µ which is not invariant for the transition
kernel P of the (primal) Markov chain, it is tempting modify P “far away” from the initial point so
that µ becomes invariant. Until these “far away” points are attained, the Markov chain “does not
know” its transition kernel has been modified, so we can intertwine it using the modified Λ. Here
we will not investigate the consequences of this possibility to work locally.

˝

The family pψSqSPS̄ enables to define a random mapping Ψ from S̄ to S̄ via

@ S P S̄, ΨpSq B ty P V : ψSpyq P Su (15)

It is easy to check that the definitions (12) and (15) are compatible with the identification map
T, in the sense that T ˝Ψ “ Ψ ˝ T. Similarly to (13), we compute that

@ S P S̄, @ y P V, Pry P ΨpSqs “ PrψSpyq P Ss
“

ÿ

y1PS

PrψSpyq “ y1s

“
ÿ

y1PS

P ˚py, y1q{ζpSq

“ P ˚py, Sq{ζpSq
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Thus when ζ ” 1, in particular for globally associated to P ˚ random mappings, it appears that for
any y P V and S P S̄, Pry P ΨpSqs “ Pry P ΦpSqs, but in general the law of ΦpSq and ΨpSq are not
equal, as it can be seen on the examples of Section 3.

Remark 3 The subset case is absorbing for the measure case in the following sense. Let pψηqηPV̄
be a family of random mappings indexed by measures and Ψ be the associated mapping defined in
(12). Then we have

ΨpS̄q Ă S̄

where S̄ is seen as a subset of V̄, via the identification (14). This is due to the fact that S̄
corresponds to the measures whose density with respect to π takes only two values, one of them
being 0 (or which takes only one value, then the measure is proportional to π). Note from (12) that
the number of values taken by Ψpηq is smaller or equal to the number of values taken by η P V̄.

As a consequence, if the algorithm we present below produces at some time a measure belonging
to S̄, then all subsequent measures will also belong to S̄. In particular, when we start with a Dirac
mass (which is identified with the singleton of S̄ where is concentrated the Dirac mass), only
pψηqηPS̄ is needed for the constructions presented below, namely it is sufficient to consider the
subset case.

˝

We now come back to the measure situation. Generalize (4), by considering the transition
matrix K from V̄ to V̄ given by

@ η, η1 P V̄, Kpη, η1q B PrΨpηq “ η1s (16)

In order to extend the Doob transform of (5), let us define

@ η P V̄, πpηq B ηpV q (17)

This definition may seem strange at first view, but note that in the subset case, it is quite natural,
as it just asserts that

@ S P S̄, πp1Sπq “ πpSq

We can now generalize (5) via

@ η, η1 P V, Ppη, η1q B
πpη1qζpηq

πpηq
Kpη, η1q (18)

where V B V̄zt0u is the set of measures on V which do not vanish identically. Even in the subset
case, in general P does not coincide with PJ . It will be shown in Corollary 6 below that P is a
Markov transition kernel. It will also be useful to introduce the following conditioned transition:
fix x, x1 P V such that P px, x1q ą 0 (i.e. P ˚px1, xq ą 0) and denote for any η P V whose support
contains x,

@ η1 P V, Kx,x1pη, η
1q B PrΨpηq “ η1|ψηpx

1q “ xs (19)

Note that the conditioning is non-degenerate, since Prψηpx1q “ xs “ P ˚px1, xq{ζpSq ą 0, due to the
fact that x P supppηq.

Consider

W B tpx, ηq P V ˆV : x P supppηqu (20)
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and let A be the set of probability measures m on W which can be written under the form

@ px, ηq PW, mpx, ηq “ µpηqΛpη, xq (21)

where µ is the marginal of m on V (i.e. the image of m by the mapping W Q px, ηq ÞÑ η P V).
Define a Markov kernel Q on W via

@ px, ηq, px1, η1q PW, Qppx, ηq, px1, η1qq B P px, x1qKx,x1pη, η
1q (22)

Remark 4 This expression should be compared with the one given by Levin, Peres and Wilmer in
Section 17.7 of [18], where they introduce a Markov kernel rQ on ĂW via

@ px, Sq, px1, S1q PW, rQppx, Sq, px1, S1qq B P px, x1qJx1pS, S
1q

where, with the notation of (3),

@ S P V, @ px1, S1q P ĂW, Jx1pS, S
1q B PrΦpSq “ S1|x1 P S1s

and where ĂW corresponds to W in the subset case:

ĂW B tpx, Sq P V ˆS : x P Su (23)

In Subsection 2.3, we will check that rQ is a particular case of Q, for an appropriate choice of the
family of random mappings pψSqSPS in the subset case. The generality of the random mapping
point of view leads to easy constructions in practice, even if they are not optimal, with a coupling-
from-the-past flavor (see Subsection 2.4). In particular, it facilitates the reinterpretation of classical
set-valued dual processes (see Subsections 3.1 and 3.2). Another advantage of the random map-
pings is that they can be transformed into coalescing stochastic flows in the diffusion setting (see
Section 6 for the general approach, Subsection 7.1 for an application to the real Brownian motion
and Subsection 7.2 for corresponding conjectures about general one-dimensional diffusions).

˝

We can now state the first main result of this paper (continuous space and time extensions will
be presented in Theorems 22, 24 and 33 of Sections 5 and 6).

Theorem 5 Let pXn,XnqnPZ` be a Markov chain onW whose initial distribution LpX0,X0q belongs
to A and whose transitions are given by Q. Then X B pXnqnPN and X B pXnqnPN are Markov chains
whose respective transitions are given by P and P. Furthermore the conditions (9) and (10) are
fulfilled.

It follows that the kernel P is Markovian. As another consequence, we get an extension of
properties recalled for the evolving sets:

Corollary 6 The intertwining relation (7) is satisfied. Furthermore when ζ ” 1, in particular in
the case of globally associated to P ˚ random mappings, π, as defined in (17), is harmonic for K.

Proof
The last assertion is obtained by summing in (18) with respect to η1 P V. The intertwining relation
can be checked directly, but it also comes from the computation of PrXn`1 “ x|Xn “ ηs, for n P Z`,
x P V and η P V, in two different ways:

On one hand, we have

PrXn`1 “ x|Xn “ ηs “
ÿ

η1PV

PrXn`1 “ x|Xn`1 “ η1,Xn “ ηsPrXn`1 “ η1|Xn “ ηs

“
ÿ

η1PV

Λpη1, xqPpη, η1q

“ PΛpη, xq
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and on the other hand,

PrXn`1 “ x|Xn “ ηs “
ÿ

x1PV

PrXn`1 “ x|Xn “ x1,Xn “ ηsPrXn “ x1|Xn “ ηs

“
ÿ

x1PV

Λpη, x1qPrXn`1 “ x|Xn “ x1,Xn “ ηs

“
ÿ

x1PV

Λpη, x1qP px1, xq

“ ΛP pη, xq

where the last-but-one equality comes by summing over η1 in (22).
�

Theorem 5 leads to an algorithm for the construction of X, given X, when µ0Λ “ m0, where
µ0 B LpX0q and m0 B LpX0q (in practice, one is often only interested in the situation where m0 is
a Dirac mass at some x0 P V and µ0 is the Dirac mass at tx0u, trivially satisfying Λptx0u, x0q “ 1).
Assume that a trajectory pxnqnPZ` of X is given. We begin by sampling X0 according to the
probability measure V Q η ÞÑ µ0pηqΛpη, x0q{m0px0q. Next, for n P Z`, assume that Xn has been
constructed. We consider a random mapping ψXn locally associated to P ˚, whose law may depend
on Xn (but not directly on pxmqmPJ0,nK, see Subsection 2.2 for a generalization with a dependence
on XJ0,nK) and whose underlying randomness is independent from all that has been done before
(except for the index parameter Xn). We condition by the fact that ψXnpxn`1q “ xn and we sample
a corresponding mapping ϕ (which is no longer associated to P ˚, since in general this property is
not preserved by conditioning), to construct Xn`1 via

@ y P V, Xn`1pyq B Xnpϕpyqq
πpyq

πpϕpyqq
(24)

In particular, since ϕpxn`1q “ xn, we get that Xn`1pxn`1q “ Xnpxnqπpxn`1q{πpxnq, and by
iteration it appears that xn P supppXnq for all n P Z`.

In the subset case, pXnqnPZ` is subset-valued and the evolution step (24) is replaced by

Xn`1 B ty P V : ϕpyq P Xnu

By iteration, we check that xn P Xn for all n P Z`.
This procedure is maybe better illustrated by the explicit constructions of Subsections 2.3, 2.4,

3.1 and 3.2 in the subset case. There, only classical examples are considered, as this paper is pri-
marily concerned with the theoretical aspects of the random mapping point of view. Theorem 5
describes a general method of construction of measure-valued dual processes as well as their cou-
plings with the primal processes. The obtained dual processes will be good or bad (with respect to
their fast spreading over the primal state space in the set-valued case) depending on the underlying
random mappings. In practice, a relevant choice of the latters is thus crucial (the principle alluded
to at the end of Subsection 2.3 could serve as a general guide). This is another task, so that more
examples will be presented in future works. While in the finite state space setting random mappings
are easy to describe, this is no longer true in continuous frameworks, as the underlying coalescing
stochastic flows should be investigated further, beginning with dimension one. Nevertheless we also
expect applications for elliptic diffusions on manifolds, then even the construction of dual processes
is difficult (see the recent preprint [9]) and the coupling apparently out-of-reach by traditional ap-
proaches. We believe that the coalescing stochastic flows will provide a constructive existence of the
dual processes and of their couplings with the primal processes. As illustrated by Theorem 5 and
Corollary 6, the coupling should be constructed first and the dual process deduced in a second step.
Thus our method is in reverse order in comparison to the original work of Diaconis and Fill [10].
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Remark 7 In the first version of this paper, only the subset case was considered. The referee
pointed out that there are natural measure-valued dual processes, as illustrated e.g. by the papers
of Avena, Castell, Gaudillière and Mélot [4, 5] and he/she was wondering if random mappings could
be used in this situation. It led to the present theoretical extension. The question of finding the
random mappings indexed by measures inducing the measure-valued dual processes of Avena et
al. [4, 5] is very interesting and should be investigated further, as it would provide an algorithm for
the coupling of the primal and dual processes. Again, this is out of the scope of the present paper,
whose main goal is to establish the principles behind such coupling constructions.

From Section 3 on, we will only work in the subset case, since in Sections 3 and 4 we consider
Dirac masses (i.e. singletons) as starting points for the dual processes, and Sections 5, 6 and 7
should be seen as the first steps toward the coupling of stochastically modified mean curvature
flows with their primal diffusion processes.

˝

Remark 8 The finite state space framework is sufficiently important (as illustrated by the book
of Levin, Peres and Wilmer [18]) to prevent us from presenting a more general version of The-
orem 5 in this introduction. Nevertheless, it can be extended to infinite transition matrices
P B pP px, yqqx,yPV , where V is a denumerable state space, under the following conditions:

Finite degree: for any x P V , there is only a finite number of y P V such that P px, yq ą 0.
Reversibility: there exists a measure π giving a positive weight to any x P V , such that

@ x, y P V, πpxqP px, yq “ πpyqP py, xq

Indeed, in this situation, take V̄ to be the set of measures with a finite support in V , so that
the kernel Λ given in (6) is still well-defined on V B V̄zt0u. We look for dual processes taking
values in V. By reversibility, we have P ˚ “ P . Consider pψηqηPV̄ a family of random mappings
locally associated to P . Note that V̄ is left stable by the mapping Ψ defined in (12), due to the
finite degree assumption. Theorem 5 is still valid, because it is sufficient to work up to some
arbitrarily fixed time-horizon n ě 0 and the Markov chains we are interested in have an initial
distribution with finite support (i.e. belongs to V, up to a normalisation). Thus up to time n, the
Markov chain stays in a fixed finite state space S Ă V (depending on n). We can then apply the
previous constructions on the finite state space S. Let PS be the restriction of P to S, obtained
by transferring the probabilities to exit S to self-loops. The reversibility assumption implies that
the renormalization of the restriction of π to S is invariant for PS . This property insures us of the
compatibility of these constructions for different times n.

The latter property is not true for general denumerable Markov chains (even under the finite
degree assumption). Furthermore the invariant measure may not be unique (even up to a factor),
even when there is one invariant measure which is reversible. Thus, at least locally in time and
for finite degree Markov kernels, it should be possible to construct different measure-valued duals,
associated to various invariant measures through the corresponding Λ. We did not try to investigate
further the opportunities suggested by this observation.

When there is an invariant probability measure π for P , the extension of Theorem 5 is simpler,
since it can be easily verified that all the computations are still valid. In this situation, we take
V̄ to be the set of measures on V whose total weight is finite. Again the kernel Λ given in (6) is
still well-defined on V B V̄zt0u. Let pψηqηPV̄ be a family of random mappings locally associated
to P ˚. The only point which has to be checked is that the mapping Ψ defined in (12) a.s. leaves V̄
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invariant. Consider η P V̄, it is sufficient to show that ErΨpηqpV qs ă `8. We compute:

ErΨpηqpV qs “
ÿ

x,yPV

ηpyq
πpxq

πpyq
Prψηpxq “ ys

“
ÿ

x,yPV

ηpyq
πpxq

πpyq

P ˚px, yq

ζpηq

“
ÿ

x,yPV

ηpyq
P py, xq

ζpηq

“
ÿ

yPV

ηpyq

ζpηq

“
ηpV q

ζpηq
ă `8

˝

The plan of the paper is as follows. Theorem 5 is proven in the next section and we will see
how random mappings can also be used to deduce non-Markov measure-valued dual processes.
The classical set-valued dual processes of the discrete Pitman theorem and of the top-to-random
shuffle are treated in Section 3. In Section 4, we generalize the discrete Pitman theorem to restless
birth and death chains, i.e. necessarily moving at each time step. In Sections 5 and 6, we provide
extensions of the random mapping analysis, respectively to Polish state spaces and to continuous
time. From these abstract considerations, Section 7 recovers Pitman’s theorem [25] about the
explicit and deterministic coupling associated to the intertwining of the Brownian motion with the
Bessel-3 process and proposes some conjectures about general one-dimensional diffusion processes.
Our hope is that the underlying challenge of the existence of some needed singular coalescing
stochastic flows will motivate a more thorough investigation in their direction. An appendix ends
the paper, showing why in dimension 1 it is sufficient to study diffusions whose variance coefficient
is 1, via some traditional transformations of the state space R.

2 Random mappings
The proof of Theorem 5 generalizes that of Theorem 17.23 of Levin, Peres and Wilmer [18], itself in
the spirit of Diaconis and Fill [10]. The argument will be extended to non-Markov measure-valued
dual processes in Subsection 2.2, obtained by slightly relaxing the notion of random mappings, it
leads to more general dual processes. In Subsection 2.3, we justify the assertions of Remark 4 and
in Subsection 2.4 we discuss the link with the coupling-from-the-past algorithm.

2.1 Proof of Theorem 5
By definition, we have for any n P Z` and px0, η0q, px1, η1q, ..., pxn, ηnq PW ,

PrpX0,X0q “ px0, η0q, pX1,X1q “ px1, η1q, ..., pXn,Xnq “ pxn, ηnqs

“ µ0pη0qΛpη0, x0q
ź

mPJ0,n´1K

P pxm, xm`1qKxm,xm`1pηm, ηm`1q (25)

where µ0 B LpX0q. Summing over all η0, η1, ..., ηn P V (so that x0 P supppη0q, x1 P supppη1q, ..., xn P
supppηnq), we get that for any x0, x1, ..., xn P V ,

PrX0 “ x0, X1,“ x1, ..., Xn “ xns “ m0px0q
ź

mPJ0,n´1K

P pxm, xm`1q (26)

10



where

m0px0q B
ÿ

η0PV

µ0pη0qΛpη0, x0q

(the r.h.s. sum can be restricted to η0 whose support contains x0, since otherwise Λpη0, x0q “ 0).
It follows that pXmqmPJ0,nK is Markovian with transitions given by P and initial distribution m0.
Since this is true for all n P Z`, we get that X is Markovian with transitions given by P and initial
distribution m0.

For any m P J0, nK, dividing (25) by (26) and summing over ηm`1, ..., ηn, we get

PrX0 “ η0,X1 “ η1, ...,Xm “ ηm|X0 “ x0, X1 “ x1, ..., Xn “ xns

“
µ0pη0qΛpη0, x0q

m0px0q

ź

lPJ0,m´1K

Kxl,xl`1
pηl, ηl`1q

“ PrX0 “ η0,X1 “ η1, ...,Xm “ ηm|X0 “ x0, X1 “ x1, ..., Xm “ xms

Fixing m P Z` and ηJ0,mK, note that the process pPrXJ0,mK “ ηJ0,mK|X0, X1, ..., XnsqnPZ` is a non-
negative martingale which is well-known to converge toward PrXJ0,mK “ ηJ0,mK|Xsq for n large. It
follows that

PrXJ0,mK “ ηJ0,mK|Xs “ PrXJ0,mK “ ηJ0,mK|XJ0,mKs

namely (9).
The Markov property of X and (10) are less immediate and the argument is based on an iteration

with respect to the following statements, for n P Z`:

The finite stochastic chain pXmqmPJ0,nK is Markovian with transitions given by P (An)

LpXn|XJ0,nKq “ ΛpXn, ¨q (Bn)

For n “ 0, the assertion (A0) is void and (B0) is a rewriting of the assumption LpX0,X0q P A.
Next assume that (An) and (Bn) are true for some n P Z` and let us prove (An`1) and (Bn`1).
Let px, ηq PW be given, we compute that

PrXn`1 “ x,Xn`1 “ η|XJ0,nKs “
ÿ

y P supppXnq

PrXn`1 “ x,Xn`1 “ η|Xn “ y,XJ0,nKsPrXn “ y|XJ0,nKs

Due to the Markov property of the couple pX,Xq, we deduce that for any y P supppXnq,

PrXn`1 “ x,Xn`1 “ η|Xn “ y,XJ0,nKs “ PrXn`1 “ x,Xn`1 “ η|Xn “ y,Xns

“ P py, xqKy,xpXn, ηq

“ P py, xq
PrΨpXnq “ η, ψXnpxq “ ys

PrψXnpxq “ ys

“ P py, xqζpXnq
PrΨpXnq “ η, ψXnpxq “ ys

P ˚px, yq

“
πpxq

πpyq
ζpXnqPrΨpXnq “ η, ψXnpxq “ ys (27)

where the local association with P ˚ was used in the fourth equality. On the other hand, (Bn)
asserts that for y P supppXnq,

PrXn “ y|XJ0,nKs “ ΛpXn, yq

“
Xnpyq

πpXnq

11



and we get that

PrXn`1 “ x,Xn`1 “ η|XJ0,nKs “
ÿ

y P supppXnq

πpxq

πpXnq
ζpXnqPrΨpXnq “ η, ψXnpxq “ ys

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ η, ψXnpxq P Xns

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ η, x P ηs

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ ηs

“
πpxq

πpηq
PpXn, ηq

where we used Definitions (16) and (18).
Summing over x P supppηq, we get

PrXn`1 “ η|XJ0,nKs “ PpXn, ηq

whose validity for all η P V is (An`1). Using that for all px, ηq PW ,

PrXn`1 “ x|Xn`1 “ η,XJ0,nKs “
PrXn`1 “ x,Xn`1 “ η|XJ0,nKs

PrXn`1 “ η|XJ0,nKs

“
πpxq

πpηq

“ Λpη, xq

we conclude to (Bn`1).

2.2 Auxiliary measure-valued processes
In the definition of random mappings locally associated to P ˚ given in the introduction, we as-
sumed that we had at our disposal a family pψηqηPV̄. Suppose now that we rather have a family
pψηJ0,nKqηJ0,nKPW̄

, where

W̄ B \nPNV̄
n

and whose elements are written under the form ηJ0,nK B pη0, η1, ..., ηnq, for some n P Z` and
η0, η1, ..., ηn P V̄. The local association with P ˚ of the family pψηJ0,nKqηJ0,nKPW̄

now means that

@ ηJ0,nK P W̄, @ x P V, @ x1 P supppηnq, PrψηJ0,nKpxq “ x1s “
P ˚px, x1q

ζpηJ0,nKq

where ζ : W̄Ñ p0,`8q is a positive mapping on W̄ (note that necessarily ζpηJ0,nKq “ 1 as soon as
supppηnq “ V ). Following (12), we get a random measure depending on ηJ0,nK P W̄ and given by:

@ ηJ0,nK P W̄, ΨpηJ0,nKq B pfn ˝ ψηJ0,nKqπ

where fn is the density of ηn with respect to π.
The analogue of (16) is a transition kernel from W̄ to V̄

@ ηJ0,nK P W̄,@ η1 P V̄, KpηJ0,nK, η
1q B PrΨpηJ0,nKq “ η1s
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and (18) must be transformed into a kernel from W to V:

@ ηJ0,nK PW,@ η1 P V, PpηJ0,nK, η
1q B

πpη1qζpηJ0,nKq

πpηnq
KpηJ0,nK, η

1q (28)

where W is the space

W B \nPNV
n

By working as in the introduction, define conditioned transition kernels as in (19) via

@ ηJ0,nK PW,@ η1 P V, Kx,x1pηJ0,nK, η
1q B PrΨpηJ0,nKq “ η1|ψηJ0,nKpx

1q “ xs

for any x, x1 P V with x P supppηnq and P px, x1q ą 0. As a consequence of the dependence on
ηJ0,nK PW in (28), we cannot expect in Theorem 5 that X will still be Markovian.

Nevertheless, the other parts of Theorem 5 are satisfied. Indeed, it is sufficient to replace every-
where in the previous subsection ψXn by ψXJ0,nK , ΨpXnq by ΨpXJ0,nKq and PpXn, ηq by PpXJ0,nK, ηq.

The algorithm explained after the proof of Corollary 6 is straightforwardly adapted to this
extended situation. The finite sequence XJ0,nK constructed in this way from a given trajectory xJ0,nK
is called an auxiliary measure-valued process. It can be used to construct strong stationary
times for X (see Fill and Diaconis [10]): consider

τ B inftn P Z` : Xn “ πu P Z` \ t`8u (29)

When τ is (a.s.) finite, we have that τ and Xτ are independent and the distribution of Xτ is the
invariant measure π. In the subset case, (29) has to be replaced by

τ B inftn P Z` : Xn “ V u P Z` \ t`8u (30)

and this is under this form that that strong stationary times are often met in the literature (see
the top-to-random shuffle of Aldous and Diaconis [1], recalled in Subsection 3.2 below).

An auxiliary measure-valued process can also be seen as a Markovian non-measure-valued dual
process. Indeed, use the traditional trick transforming any process into a Markov process by adding
all its history in its present state. More precisely, consider the W-valued process Y B pXJ0,nKqnPZ` .
The process Y is clearly Markovian, its transition kernel Q being given by

@ ηJ0,nK, η
1
J0,n1K PW, QpηJ0,nK, η

1
J0,n1Kq B

"

PpηJ0,nK, η
1
n`1q , if n1 “ n` 1 and ηJ0,nK “ η1J0,nK

0 , otherwise

Extend Λ into a Markov kernel from W to V via

@ ηJ0,nK PW, @ x P V, ΛpηJ0,nK, xq “
πpxq

πpηnq

As in Corollary 6, we deduce the intertwining relation

QΛ “ ΛP

showing that Y is a dual process to X. Thus from the general theory of Fill and Diaconis [10], we
know that a Markov chain with transition kernel Q can be used to construct a strong stationary
time, as soon as a.s. it ends up reaching the set tY PW : ΛpY, ¨q “ πu, which corresponds in the
above situation to the fact that τ defined in (30) is a.s. finite.

Remark 9
(a) Measure-valued processes (not necessarily Markovian) are essentially the more general inter-

twining dual processes that can be associated to X, up to a deterministic factorization. Indeed, let
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X̄ B pX̄nqnPZ` be an intertwining dual process associated to X through a Markov kernel Λ̄ going
from the state space of X̄ to the state space of X, namely such that

@ n P Z`,

#

LpX̄J0,nK|Xq “ LpX̄J0,nK|XJ0,nKq

LpXn|X̄J0,nKq “ Λ̄pX̄n, ¨q
(31)

Consider the (probability) measure-valued process X B pXnqnPZ` defined as a deterministic
function of X̄ via

@ n P Z`, Xn B Λ̄pX̄n, ¨q

We deduce from (31) that (9) and (10) are satisfied, with Λ given by (1). In general X will not
be Markovian, even when X̄ is Markovian.

(b) Consider X B pXnqnPZ` a measure-valued process, not necessarily Markovian. We say it is
algebraically intertwined with X if the following is true: for any n P Z`, given X0,X1, ...,Xn, on
one hand sample rXn according to Xn{XnpV q, then sample rXn`1 according to P p rXn, ¨q. On the other
hand, sample Xn`1 according to its conditional law knowing X0,X1, ...,Xn and next sample pXn`1

according to Xn`1{Xn`1pV q. Then rXn`1 and pXn`1 should have the same law, still conditioned on
X0,X1, ...,Xn. This condition writes down

@ n P Z`, E
” Xn`1

Xn`1pV q

ˇ

ˇ

ˇ
Xn,Xn´1, ...,X0

ı

“
Xn

XnpV q
P (32)

(of course the equality ErXn`1{Xn`1pV q|Xn,Xn´1, ...,X0s “ ErXn`1{Xn`1pV q|Xns does not imply
that X is Markovian).

Given a family pψηJ0,nKqηJ0,nKPW̄
as in this Subsection, such a measure-valued process X can

be constructed by using the transition kernel defined in (28). But it should be observed that
not all measure-valued processes algebraically intertwined with X can be constructed in this way.
Indeed, since the set V V of mappings from V to V is finite, for any given n P Z` and ηJ0,nK PW,
the distribution PpηJ0,nK, ¨q is necessarily a finite sum of Dirac masses, so the same is true for
LpXn`1|Xn,Xn´1, ...,X0q when X is constructed using a family pψηJ0,n1K

qηJ0,n1KPW̄
. But in general,

one can find measure-valued processes satisfying (32) such that LpXn`1|Xn,Xn´1, ...,X0q is a diffuse
distribution. Maybe the most general case can be obtained by replacing random mappings by
random transition kernels locally associated to P ˚.

(c) The previous argument cannot be applied to set-valued dual processes, since the set t0, 1uV

of subsets from V is finite, contrary to the set of measures on V .
˝

2.3 The Levin, Peres and Wilmer construction
Let us come back to the construction of Chapter 17 of Levin, Peres and Wilmer [18] and interpret
it in the random mapping setting, in the subset case.

In practice, a random mapping ψ is often given in the following way: let I B pIx,yqx,yPV be a
family of measurable subsets of r0, 1q such that

@ x P V, r0, 1q “
ğ

yPV

Ix,y (33)

@ x, y P V, λpIx,yq “ P ˚px, yq (34)

where λ is the Lebesgue measure. Let U be a random variable uniformly distributed on r0, 1q. A
random mapping ψ associated to P ˚ can be defined in terms of I and U by deciding that

@ x, y P V, tψpxq “ yu “ tU P Ix,yu
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Remark 10 Conversely, any random mapping associated to P ˚ has the same law as a random
mapping constructed as above. This is a consequence of the fact that the set of functions from V
to V is finite and that any probability distribution on a finite number of points can be seen as an
image of the restriction of the Lebesgue measure on r0, 1q. Thus there is no loss of generality in
only considering random mappings of the previous form.

˝

Let S P S be fixed and label the elements of V as 1, 2, ..., |V |, where |V | is the cardinal of V , in
order to insure that S “ J1, |S|K. Next define a family I B pIx,yqx,yPV via

@ x, y P V “ J1, |V |K, Ix,y B rP ˚px, J1, y ´ 1Kq, P ˚px, J1, yKqq

it is immediate to check both (33) and (34). Let φS be the globally associated to P ˚ random
mapping constructed in this way. With the notations of the introduction, we have

ΨpSq “ tx P V : φSpxq P Su

“ tx P V : U P r0, P ˚px, Sqqu

“ tx P V : U ď P ˚px, Squ

“ ΦpSq

It follows that the evolving sets of Morris and Peres [22] are a particular case of the construction via
the random mappings. The special random mapping φS has the tendency to put a maximal number
of points inside ΨpSq, when U is small, and a minimal number of points inside ΨpSq, when U is close
to 1. So it seems that among all random mappings, φS induces the maximal possible oscillation
for πpΨpSqq (e.g. measured through its variance). By analogy with the result stating that the
best way to couple two Brownian motions is the mirror symmetry coupling (see for instance Jacka,
Mijatović, and Siraj [13]), a tempting conjecture is that the evolving set construction is the best
possible choice for X to grow as fast as possible (property which is important in the construction
of strong stationary times). We believe it is true when the underlying geometry is simple (as for
birth and death processes, see Section 4, this phenomenon was encountered for one-dimensional
diffusions in [20])), but maybe not in the general setting.

Remark 11 The task of finding a “good” random mapping should be illuminated by characteri-
zations of measure-valued dual processes which are sharp in the sense of Diaconis and Fill [10]. In
a diffusion context, here is a conjecture on how to recognize sharp set-valued duals (inspired by
results from [20] and [9]): the volume (with respect to the invariant measure) of the dual process
conveniently time-changed by the square of the volume of its boundary should be a Bessel-3 process,
namely in some sense, the Pitman intertwining relation is a prototype for sharpness. It would be
instructive to state and to prove a similar result in a discrete context.

˝

2.4 Independent random iterative mappings
A particularly simple instance of globally associated to P ˚ random mappings is when they are not
allowed to depend on a measure η P V, corresponding to the current state of X. The algorithm of
the introduction then takes the following form. Let be given n P Z` and a trajectory xJ0,nK of X.
In this subsection, we assume for simplicity that X0 “ tx0u, in particular we are in the subset case,
as seen in Remark 3. Consider n independent mappings ψ1, ψ2, ..., ψn globally associated to P ˚,
which may not have the same law. For any m P J1, nK, condition ψm by ψmpxmq “ xm´1, and to

15



avoid confusion, let us call the new random mapping ϕm (it is no longer associated to P ˚, except
when P ˚pxm, xm´1q “ 1). The construction of Xn is now:

Xn “ ty P V : ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpyq “ x0u (35)

In particular, the strong stationary time defined by (30) is given by the collapsing time

τ “ inftn P Z` : @ y P V, ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpyq “ x0u (36)

Formulas (35) and (36) are valid more generally, up to the forward simultaneous definition
of the pϕ1,X1q, pϕ2,X2q, ..., pϕn,Xnq presented in the introduction. But when ψ1, ψ2, ..., ψn are
independent, a backward construction can also be envisaged. This possibility will also be satisfied
by the non-independent random mappings associated to restless birth and death chains in Section 4.
Let us describe an algorithm constructing Xn, for any fixed n P Z`, in this spirit. Label V
as ty0, y1, ..., y|V |´1u, with y0 “ xn and define X

p0q
n B txnu. We look iteratively for the first

m P J1, nK such that ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy1q “ xn´m. If there is no such m, we know
that y1 R Xn and we let X

p1q
n B txnu. Otherwise we define X

p1q
n B txn, y1u. Assume that X

plq
n

has been constructed for some l P J1, |V | ´ 2K. We look iteratively for the first m P J1, nK such
that ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpyl`1q P X

plq
n . If there is no such m, we infer that yl`1 R Xn

and let X
pl`1q
n “ X

plq
n . Otherwise we define X

pl`1q
n “ X

plq
n \ tyl`1u. At the end, we consider

Xn B X
p|V |´1q
n . This procedure can also be used to test if τ ď n, where τ is defined in (36): this is

equivalent to the fact that for all the above steps for l P J0, |V | ´ 2K, there is a m P J1, nK such that
ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpyl`1q P X

plq
n .

This test can be strongly simplified when V is endowed with a partial order admitting a unique
minimal element y^ and a unique maximal element y_ and when the independent random mappings
ψ1, ψ2, ..., ψn preserve the partial order (of course this is only possible if P ˚ is equally preserving
the partial order). Then the random mappings ϕ1, ϕ2, ..., ϕn equally preserve the partial order and
the validity of τ ď n is equivalent to the existence of m P J1, nK such that

ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy^q “ ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy_q

These observations are strongly reminiscent of the coupling-from-the-past algorithm of Propp
and Wilson [27] (see also their review in Chapter 22 of Levin, Peres and Wilmer [18]). Recall they
consider a family pψnqnP´N of independent identically distributed random mappings associated to
P . For any N P N, they test if ψ´1 ˝ ¨ ¨ ¨ ˝ψ´N`1 ˝ψ´N sends the whole state space V into a single
point. When this is true, the single point is distributed according to π. Otherwise they consider
another integer number N 1 ą N (usually N 1 “ 2N) and start again the above procedure. Their
algorithm is equally greatly simplified under the assumptions that V is endowed with a partial
order admitting a unique minimal element y^ and a unique maximal element y_ and that the
independent random mappings ψ´1, ψ´2, ..., ψ´N preserve the partial order (this is only possible if
P is equally preserving the partial order).

Of course there are big differences between the two procedures: our initial point is fixed, the final
point of coupling-from-the-past is distributed accordingly to the invariant measure, the preservation
of the partial order by P ˚ and P are not equivalent, we fix a trajectory and allow (except in this
subsection) dependence between the random mappings through the already constructed set-valued
dual etc. Nevertheless, it would be interesting to investigate further the links between the two
algorithms, e.g.:
‚ Could the convergence of the coupling-from-the-past algorithm be improved by allowing, for
N P N fixed, choices of ψ´n depending on ψ´n´1 ˝ ¨ ¨ ¨ ˝ ψ´N`1 ˝ ψ´N pV q, for n P J1, NK?
‚ What happens to the examples treated by the coupling-from-the-past algorithm if we look at
them from the intertwining/strong stationary times point of view?
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3 Classical examples
Up to now, the considerations were both abstract and simple. It is time to give some examples
showing how Theorem 5 works in practice. As it can be guessed, all the difficulty is to find nice
random mappings. The families of random mappings considered here will be globally associated to
P ˚, as mentioned in Remark 2. We will work in the subset case, since the dual processes are to
start from Dirac masses, identified with singletons (recall Remark 3).

3.1 The discrete Pitman theorem
For this example due to Pitman [25], the state space is the denumerable set Z, but we are in the
situation described in the beginning of Remark 8. The kernel P is the transition “matrix” of the
simple random walk on Z, namely,

@ x, y P Z, P px, yq B

"

1{2 , if |y ´ x| “ 1
0 , otherwise

which has finite degree 2 at every point. The counting measure π is invariant for P and is even
reversible for P . It follows that P ˚ “ P , where P ˚ is defined as in (2). Following Remark 8, we
take S to be the set of finite non-empty subsets of Z, so that the kernel Λ given in (6) is still
well-defined.

Let X B pXnqnPZ` be a random walk with transition kernel P and starting from 0. Introduce
the process X_ B pX_n qnPZ` defined by

@ n P Z`, X_n B 2Mn ´Xn

where Mn B maxtXm : m P J0, nKu. Finally consider X B pXnqnPZ` given by

@ n P Z`, Xn B tX_n ´ 2m : m P J0, X_n Ku (37)

Pitman [25] has shown that (9) and (10) hold with the above processes X and X, it is in fact the
first historical instance of such a coupling.

Let us prove that this result is a consequence of Theorem 5. Since (9) is obvious, we concentrate
our attention on (10).

Consider the function ψ given by

@ S P S, @ x P Z, @ b P t´1, 1u, ψpS, x, bq B

"

x` b , if x ą maxpSq
x´ b , if x ď maxpSq

(38)

Consider a Rademacher variable B, i.e. such that PrB “ ´1s “ PrB “ 1s “ 1{2 and for fixed
S P S, let ψS be the random mapping given by

@ x P Z, ψSpxq B ψpS, x,Bq (39)

It is clear that ψS is a random mapping associated to P ˚ “ P . So let be given a trajectory xJ0,nK of
X stopped at time n P Z` and starting with x0 “ 0. Construct the finite sequence XJ0,nK as in the
introduction, starting with X0 B t0u. Denote by pϕmqmPJ1,nK the corresponding random mappings
used in this construction, conditioned by the compatibility relations ϕmpxmq “ xm´1 form P J1, nK.
Given the stopped trajectory xJ0,nK, these random mappings are here deterministic:

@ m P J1, nK, ϕm “ ψpXm´1, ¨, bmq

with

bm B

"

´1 , if xm´1 “ maxpXm´1q and xm ´ xm´1 “ 1
xm ´ xm´1 , otherwise
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Since under these mappings the parity of the positions are alternating, we remark that

@ m P J0, nK, Xm Ă

"

2Z , if m is even
2Z` 1 , if m is odd

Consider for any m P J0, nK, Ym B minpXmq and Zm B maxpXmq. By a forward iteration on
m P J0, nK, we show that Zm “ X_n , Ym “ ´Zm and that Xm contains all the elements in JYm, ZmK
with the same parity as Zm. It proves the validity of (37). This is well-illustrated by Figure 1,
where for m P J0, n ´ 1K, the elements of Xm are represented by full disks, the elements of Xm`1

by circles, the transition from Xm to Xm`1 by a double line, the dashed lines are the actions of
the random mappings (from the right to the left), the green (respectively red) line is the transition
from Zm to Zm`1 (resp. from Ym to Ym`1).

m m ` 1 m m ` 1 m m ` 1 m m ` 1

Figure 1: Schematic proof of the discrete Pitman theorem via random mappings

The symmetry with respect 0 leads to another Pitman transformation: rather introduce the
process X^ B pX^n qnPZ` defined by

@ n P Z`, X^n B Xn ´ 2M^
n

where M^
n B mintXm : m P J0, nKu and consider rX B prXnqnPZ` given by

@ n P Z`, rXn B tX^n ´ 2m : m P J0, X^n Ku (40)

By symmetry in law of X, it is clear that (9) and (10) equally hold for processes X and rX. This
can also be obtained by replacing the mapping ψ of (38) by

@ S P S, @ x P Z, @ b P t´1, 1u, rψpS, x, bq B

"

x` b , if x ě minpSq
x´ b , if x ă minpSq

(41)

More generally, at each time n P Z`, either ψ or rψ can be chosen to construct random mappings
and this choice itself may depend on the current state Xn and on independent noise. Of course the
description of the deduced set-valued dual X will then be more tricky than (37) or (40).

One may wonder how to guess that the random mappings described by (39) or (41) are in-
teresting. It is not mere inverse engineering: the underlying idea is that they strictly satisfy the
principle put forward in Subsection 2.3: these random mappings (as well as their above variants)
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are such that the two points just outside the current discrete segment S (forgetting the points with
the “bad” parity) either both enter S or both go away from S. In the spirit and the notations of
Subsection 2.3, the above random mappings can be described via labelings of Z depending on S.
For instance for (39), maxpSq ` 1 is named 1, maxpSq is named 2, maxpSq ´ 1 is named 3, ...,
until minpSq ´ 1 is named maxpSq ´minpSq ` 3, then maxpSq ` 2 is named maxpSq ´minpSq ` 4,
minpSq ´ 2 is named maxpSq ´minpSq ` 5, maxpSq ` 3 is named maxpSq ´minpSq ` 6, etc. ((41)
corresponds to a “mirror” labeling). One can imagine other labelings (where the first labels are
given to the elements of JminpSq ´ 1,maxpSq ` 1K, or only to those of S as in Subsection 2.3,
according to any fancy rule), it will not change the law of X (starting from t0u), only the law of
the coupling pX,Xq will be modified, as in the above cases deduced from (38) and (41).

Let us present two other examples of dual processes for the usual random walk based on other
random couplings following strictly the principle of Subsection 2.3. They are discrete analogues
of intertwining couplings of subset-valued processes for diffusions on manifolds, on which we are
currently working with Marc Arnaudon and Koléhè Coulibaly-Pasquier [3]. There we use a different
approach relying on directly coupling a stochastic variant of mean curvature flow with the primal
diffusion process. At least in the discrete context and for the two examples below, this can be easily
translated in terms of random mappings.

Example 12 Looking for dual processes that will stay symmetric with respect to 0, we can consider
random mappings not depending on a finite subset S of Z (as mentioned in Subsection 2.4), by
breaking their direction exactly at 0 (and not at maxpSq or minpSq as above). More precisely, in
analogy with (38), define

@ x P Z, @ b P t´1, 1u, ψpx, bq B

"

x` b , if x ą 0
x´ b , if x ď 0

(42)

and the random mappings associated to P ˚ “ P via

@ x P Z, ψSpxq B ψpS, x,Bq

where B is a Rademacher variable B.
Denote pLnqnPZ` the local time associated to X at the transition from 1 to 0:

@ n P Z`, Ln B
n
ÿ

l“1

1pXl´1,Xlq“p1,0q

We let as an exercise of manipulations of graphics similar to Figure 1, to check that the dual
process constructed by Theorem 5 in this situation is given by

@ n P Z`, Xn “ t|Xn| ` Ln ´ 2m : m P J0, |Xn| ` LnKu

A continuous equivalent of this dual process will appear in Subsection 7.1.
In (42), instead of 0, the break of direction could be chosen at any other point k P Z. The

resulting dual process is given by

@ n P Z`, Xn “

#

tXnu , if n ă Tk

tk ` |Xn ´ k| ` L
pkq
n ´ 2m : m P J0, k ` |Xn ´ k| ` L

pkq
n Ku , otherwise

where

Tk B inftn P Z` : Xn “ ku

@ n P Z`, Lpkqn B
n
ÿ

l“1

1pXl´1,Xlq“pk`1,kq
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The volume of these subset-valued dual processes for k ‰ 0 has an initial slower growth than
in the case k “ 0, in the sense of the stochastic domination for the stopping times defined, for any
A P N, by

τA B inftn P Z` : πpXnq ě Au

It can be seen as a consequence of the fact that the principle of Subsection 2.3 is not satisfied,
until X reaches k. Note that the worst case corresponds to letting k goes to `8 or ´8: with
probability 1{2 one of the two mappings

@ x P Z, ψ´pxq B x´ 1

@ x P Z, ψ`pxq B x` 1

is chosen. Starting with X0 “ tX0u, we get that for all n P Z`, Xn “ tXnu (more generally, for
any initial law of X0 on S satisfying (8), we end up with πpXnq “ πpX0q for all n P Z`).

˝

Example 13 Random mappings are clearly stable by mixture. Thus we can consider the random
mapping which, given S P S, chooses with probability 1/2 the random mapping (39) and with
the remaining probability 1/2, the random mapping deduced from (41). Write X B pXnqnPZ` the
corresponding set-valued dual process. It remains symmetric with respect to 0, so let us write for
any n P Z`, XN C tx P J´Rn, RnK with the same parity as Rnu. Using graphics similar to Figure 1
and taking into account the independent Bernoulli variables choosing between (39) and (41), it is
not difficult to check that for any n P N, Rn´Rn´1 is independent from Xn´Xn´1 and uniformly
distributed on t´1, 1u, except in two cases:

• when Xn´1 “ Rn´1 and Xn “ Xn´1 ` 1, then Rn “ Rn´1 ` 1

• when Xn´1 “ ´Rn´1 and Xn “ Xn´1 ´ 1, then Rn “ Rn´1 ` 1

Namely, pRnqnPZ` evolves as a random walk independent from X, except when X hits the boundary
of X and tends to push it away from 0, in which case pRnqnPZ` do the only possible move keeping
X inside X: it also go away from 0 by adding 1 to its previous value.

˝

3.2 The top-to-random shuffle
The top-to-random shuffle is a simple model of shuffling cards: at each time, take the top card and
put it at a uniform random location in the deck. This stochastic evolution is described mathemat-
ically by a Markov chain X B pXnqnPZ` on the symmetric group V B SN , with N P Nzt1u, whose
transition matrix P is given by

@ σ, σ1 P SN ,

P pσ, σ1q B

"

1{N , if there exists l P J1, NK with σ1 “ p1 Ñ lÑ l ´ 1 Ñ ¨ ¨ ¨ Ñ 2q ˝ σ
0 , otherwise

where p1 Ñ l Ñ l ´ 1 Ñ ¨ ¨ ¨ Ñ 2q is the cyclic permutation, seen as the function from J1, NK to
J1, NK, transferring the card at position 1 to position l, the card at position l to position l ´ 1, ...
and the card at position 2 to position 1.

The transition matrix P is irreducible and the corresponding invariant measure π is the uniform
probability distribution on SN . The Markov chain X admits a famous dual process defined by
Aldous and Diaconis [1] in terms of the position of the last card ofX0 in the deckXn at time n P Z`.
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More precisely, represent a permutation σ by the sequence of its values pσp1q, σp2q, ..., σpNqq. Start
X from the identity: X0 “ p1, 2, ..., Nq C id and at any time n P Z`, let Yn P J1, NK be the position
of the last card defined by XnpYnq “ N . It is not difficult to check that Y B pYnqnPZ` is a Markov
chain. Define rτ B inftn P Z` : Yn “ 1u, the first time the last card arrives at the top of the deck.
It is well-known that rτ ` 1 is a strong stationary time, it is even the first historical instance of a
strong stationary time in a finite context. We modify Y by imposing that Yn “ 0 for any n ą τ .

For any σ P SN and y P J0, NK, define

Aσ,y B tσ1 P SN : σ1p1q “ σp1q, ..., σ1pyq “ σpyqu

with the usual convention that Aσ,0 “ SN . Aldous and Diaconis [1] considered the set-valued dual
rX B prXnqnPZ` deduced from pX,Y q by defining

@ n P Z`, rXn B AXn,Yn (43)

Let us construct a better set-valued dual X B pXnqnPZ` via random mappings. Note that P ˚

is the transition matrix of the random-to-top shuffle and corresponds to taking a card of the deck
at a uniform random location and putting it at the top. Consider for any x P J1, NK, the mapping
ψpxq : SN Ñ SN which acts on any permutation σ by removing the card x from the deck and
putting it at the top. Formally, we have

@ σ P SN , ψpxqpσq “ p1 Ñ 2 Ñ ¨ ¨ ¨ Ñ σ´1pxqq ˝ σ (44)

(note that σ´1pxq is the position of the card x). Let pUnqnPN be a family of independent random
variables uniformly distributed on J1, NK and for any n P N, denote by ψn the random mapping
ψpUnq, which is clearly associated to P ˚. There is no dependence on a subset S P S and we
are in the context of independent random mappings of Subsection 2.4. Let be given a trajectory
xJ0,nK, for some fixed n P Z`, starting from the identity, x0 “ id. For any m P J1, nK, let ϕm be
the conditioning of ψm by ψmpxmq “ xm´1. Remark that as in the previous subsection, ϕm is
deterministic, as we have ϕn “ ψpxn´1p1qq. Starting from X0 “ tidu, we get from (35) that

Xn “ tσ P SN : ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpσq “ idu

Let us check that X is better than the set-valued dual rX of Aldous and Diaconis [1], in the sense
that

@ n P Z`, rXn Ă Xn (45)

It is furthermore strictly better, because rX
rτ “ AX

rτ ,1 is strictly included into X
rτ “ SN , as we will

see below. It implies that τ ď rτ ă rτ ` 1, where τ is the strong stationary time associated to X as
in (36) (recall that rτ ` 1 is the strong stationary time associated to rX).

Indeed, to show (45), consider σ P rXn. By definition, we have

σ “ pσp1q, σp2q, ..., σpYn ´ 1q, N, σpYn ` 1q, ..., σpNqq

Observe that for l P J1, Yn ´ 1K, σplq “ Xnplq and for l P JYn ` 1, NK, the values σplq belongs to
txmp1q : m P J0, nKu, since they have had to be at the top of the deck before time n to be sent
below the last card N . By iteration on m P J1, nK, it follows that the Yn´m`1 first coordinates of
ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpσq and ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpXnq coincide. In particular for
m “ 1, since ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpXnq “ id, we get that σ P Xn, so that (45) is proven.

To prove that X is strictly better than rX, note that rX
rτ is the set of permutations σ P SN such

that σp1q “ N , in particular rX
rτ “ SN . Applying a reasoning similar to the proof of (45), we get

that for any σ P SN , ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕ
rτ pσq “ ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕ

rτ pXrτ q, except maybe for the last
coordinate σpNq. This is a consequence of the fact that all the values of J1, N ´ 1K will have been
placed at a same time m P J1, rτK at the top of the deck by ϕm ˝ ϕm`1 ˝ ¨ ¨ ¨ ˝ ϕ

rτ . But if all the
coordinates except the last one coincide for two permutations, it means that the permutations are
the same. It follows that X

rτ “ SN as announced.

21



Corollary 14 The first time pτ that the card N ´ 1 comes to the top and is inserted is a strong
stationary time. It is a strict improvement over the strong stationary time constructed by Aldous and
Diaconis [1], which is the first time rτ `1 that the card N comes to the top and is inserted. But this
improvement is negligible: we have Errτ s “ Erτ s `N , while as N goes to infinity, Errτ s „ N lnpNq.

This result is the content of Exercise 6.2 of the book of Levin, Peres, and Wilmer [18].

Proof
Let us show that pτ coincides with the strong stationary time τ defined in (36). Indeed, as a
consequence of the above proof that X

rτ “ SN , we see that τ is smaller than 1 plus the first
time when all the cards except N have been at the top, namely τ ď pτ . Conversely, let σ be a
permutation where the card N is above the card N ´ 1. For n ă pτ , the same is true for the
permutation ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpσq, since neither N nor N ´ 1 have been put at the top. So we get
that σ R Xn, i.e. τ ą n and it follows that pτ “ τ . Note that pτ is a sum of independent geometric
random variables of parameters 2{N , 3{N , ..., 1, which correspond respectively to the first time a
card goes under N ´ 1, the inter-time until a second card goes behind N ´ 1, etc. Similarly, rτ is a
sum of independent geometric random variables of parameters 1{N , 2{N , ..., 1. Thus Errτ s ´ Erτ s
is equal to the expectation of a geometric random variable of parameter 1{N , namely N . The last
assertion of the corollary is a consequence of the equality

Errτ s “ 1`
1

2
`

1

3
` ¨ ¨ ¨

1

N

�

One can wonder if the set-valued dual given in (43) has a random mapping representation. It
is indeed the case, the subsequent simple construction resorts to random mappings depending on
a fix set S P S (we don’t know if it is possible to devise a construction via independent random
mappings as in Subsection 2.4). The underlying random mappings rψS are described as follows.
‚ Assume S is of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N . Let pU, rUq be a

random variable taking values in t0, 1uˆ J1, NK such that PrU “ 0s “ pk´ 1q{N and knowing that
U “ 0 (respectively U “ 1), rU is uniformly distributed on J1, k´1K (resp. on J1, N´k`1K). Let be
given a permutation σ1 P SN . When U “ 0, we take rψSpσ

1q “ pψp
rUqpσ1q, where for any x P J1, NK,

@ σ1 P SN , pψpxqpσ1q “ p1 Ñ 2 Ñ ¨ ¨ ¨ Ñ xq ˝ σ1

In words, a position is chosen among the first k ´ 1 ones and the corresponding card is sent to the
top. On the contrary, when U “ 1, we choose a label of card among those whose position are in
Jk,NK according to the following procedure. Let pσp1q ă pσp2q ă ¨ ¨ ¨ ă pσpN ´ k` 1q be the ordering
of the set tσ1plq : l P Jk,NKu. We then take rψSpσ

1q B ψppσpUqqpσ1q, with the notation introduced in
(44). The mappings ψpxq and pψpxq may look similar at first view, but it is the difference between the
choice of a position and a label of card that will result in the distinction between the dual processes
X and rX. Note that rψS depends on subsets S as above only through k.
‚ Assume S is not of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N . This situation

is not important, since the algorithm will only construct subsets of the previous form (starting with
X0 “ tidu), and it would be possible to restrict S to contain only such sets. Nevertheless, for
definiteness, take for instance rψS B ψpUq where U is uniformly distributed on J1, NK.

It is immediate to check that rψS is associated to P ˚ and its interest is encapsulated in the
following result.

Lemma 15 Let S be of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N . Fix
x P J1, NK and denote by rσ the deck of cards obtained from σ by putting the top card σp1q at
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position x. Condition rψS by the fact that rψSprσq “ σ, to obtain a random mapping rϕS. The
mapping rϕS is in fact deterministic and defining

B B tσ1 P SN : rϕSpσ
1q P Su

we have

B “ A
rσ,rk

with rk B prσq´1pNq.

Proof
Let pU, rUq be the random variable appearing in the definition of rψS . The value of U can be deduced
by comparing x and k: if x P J1, k ´ 1K then U “ 0 and otherwise U “ 1. When U “ 0, rU is
determined by the relation rσprUq “ σp1q and when U “ 1, rU is determined as the rank of σp1q in
trσpkq, rσpk ` 1q, ..., rσpNqu (which is also the rank of σp1q in tσp1q, σpk ` 1q, σpk ` 2q, ..., σpNqu. It
follows that rϕS is determined, since it randomness only comes from pU, rUq.

For the assertion concerning B, let be given σ2 P S and σ1 P SN such that rϕSpσ
1q “ σ2 and

consider separately two alternatives.
‚ The case U “ 0, which is equivalent to the identity rk “ k. Necessarily we have σ1plq “ σ2plq

for l P JrU ` 1, NK and

pσ1prUq, σ1p1q, ..., σ1prU ´ 1qq “ pσ2p1q, σ2p2q, ..., σ2prUqq

Furthermore, note that

pσ2p1q, σ2p2q, ..., σ2prUqq “ pσp1q, σp2q, ..., σprUqq

“ prσprUq, rσp1q, ..., rσprU ´ 1qq

It follows that the set of σ1 obtained when σ2 runs through S is just A
rσ,rk

, as announced.

‚ The case U “ 1, which is equivalent to the identity rk “ k ´ 1. We get that

pσ1p1q, σ1p2q, ..., σ1pk ´ 1qq “ pσ2p2q, σ2p3q, ..., σ2pkqq

pσ1pkq, σ1pk ` 1q, ..., σ1pNqqσ2p1q “ pσ2pk ` 1q, σ2pk ` 2q, ..., σ2pNqq

where pσ1pkq, σ1pk ` 1q, ..., σ1pNqqσ2p1q stands for the finite sequence pσ1pkq, σ1pk ` 1q, ..., σ1pNqq
where σ2p1q has been deleted. It appears that contrary to the case U “ 0, the permutation σ1 is
not determined by σ2, as we have N ´ k` 1 possibilities for the insertion of σ2p1q in pσ1pkq, σ1pk`
1q, ..., σ1pNqqσ2p1q. Nevertheless, the set of σ1 obtained when σ2 run through S is again A

rσ,rk
.

�

Construct, as described in the introduction, a set-valued dual rX B prXnqnPZ` starting from rX0 B

tidu and using the random mappings modeled after the family p rψSqsPS. By applying iteratively
Lemma 15, we get that rX is given by (43), showing in particular that it is taking values in subsets
of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N , as forecasted.

4 Birth and death chains
The construction of the random mappings used to recover the discrete Pitman theorem is extended
here to “restless” birth and death chains. It is a discrete analogue of the results we are looking for
in the context of one-dimensional diffusions (see Subsection 7.2). As in the previous section, we
restrict our attention to the subset case (the dual processes will start from singletons) and only
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globally associated to P ˚ random mappings will be considered here: associated will mean globally
associated.

Let be given pppxqqxPZ a family of elements of p0, 1q. We are interested in the irreducible
transition kernel P given by

@ x, y P Z, P px, yq B

$

&

%

ppxq , if y “ x` 1
1´ ppxq , if y “ x´ 1
0 , otherwise

(46)

An associated Markov chain X B pXnqnPZ` is said to be a restless birth and death chain, since at
each time n P Z` it chooses to go up or down of one unity and cannot stay at the same position.
Up to a factor, a corresponding invariant measure π is given by

@ x P Z, πpxq B

$

’

&

’

%

P p0,1qP p1,2q¨¨¨P px´1,xq
P px,x´1qP px´1,x´2q¨¨¨P p1,0q , if x ě 1

1 , if x “ 0
P p0,´1qP p´1,´2q¨¨¨P px`1,xq
P px,x`1qP px`1,x`2q¨¨¨P p´1,0q , if x ď ´1

Depending on the family of coefficients pppxqqxPZ, the measure measure π may be finite or not.
Whatever the case, as in Subsection 3.1, the measure π is reversible for P , in the sense that
P ˚ “ P , where P ˚ is defined as in (2). The kernel Λ given in (6) is also well-defined, as soon as we
restrict S to be the set of finite non-empty subsets of Z.

A random mapping associated to P ˚ “ P can be constructed by mimicking the definition given
in Subsection 3.1. Define for x P Z and u P r0, 1q,

ψ`px, uq “

"

x´ 1 , if u P r0, 1´ ppxqq
x` 1 , if u P r1´ ppxq, 1q

ψ´px, uq “ ψ`px, 1´ uq

and introduce the mapping

@ S P S, @ x P Z, @ u P r0, 1q, ψpS, x, uq B

"

ψ`px, uq , if x ą maxpSq
ψ´px, uq , if x ď maxpSq

(47)

A random mapping ψS is obtained by considering ψpS, ¨, Uq, where U is uniformly distributed
on r0, 1q. It leads to the construction of a (conditioned) set-valued dual X (starting from a sin-
gleton) as prescribed after the proof of Corollary 6. More precisely, fix a finite trajectory xJ0,nK
of X with n P Z` and let U1, U2, ..., Un be independent random variables uniformly distributed
on r0, 1q, so that Xm is constructed recursively on m P J1, nK as follows. Condition the random
mappings ψpX0, ¨, U1q, ψpX1, ¨, U2q, ..., ψpXm´1, ¨, Umq by ψpX0, x1, U1q “ x0, ψpX1, x2, U2q “ x1,
..., ψpXm´1, xm, Umq “ xm´1 and call ϕ1, ϕ2, ..., ϕm the induced random mappings. We define
X0 B tx0u and iteratively

@ m P J1, nK, Xm B ty P Z : ϕmpyq P Xm´1u (48)

Our goal in this section is to simplify the description of XJ0,nK via a backward construction that
will be useful for one-dimensional diffusion processes.

For any m P J0, nK, consider

Rm B maxpXmq

R^m B minpXmq

These numbers determine Xm:
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Lemma 16 For any m P J0, nK, Rm and R^m have the same parity and Xm is the set of integers
between Rm and R^m with the same parity as Rm.

Proof
All the mappings ϕ1, ϕ2, ..., ϕm change the parity of their argument. Since X0 “ tx0u, we deduce
that for all m P J0, nK, the parity of all the elements of Xm is the same as that of x0 when m is
even and is the other one when m is odd.

The second assertion of the lemma is proven by iteration on m P J1, nK, based on the fact that
if x and x` 2 belong to Xm´1, then necessarily x` 1 P Xm, by restlessness.

�

Before proceeding toward a simplified presentation, let us be more specific about our condition-
ing operations. For any m P J1, nK and any r P Z, consider

apxm´1, xm, rq B

"

ppxmq , if xm´1 ă xm ď r
0 , otherwise (49)

Define another number bpxm´1, xmq via

bpxm´1, xmq B

"

1´ ppxmq , if xm´1 ă xm
ppxmq , if xm´1 ą xm

(50)

The interest of these numbers is:

Lemma 17 The conditioning ψpXm´1, xm, Umq “ xm´1 a.s. amounts to the conditioning Um P

rapxm´1, xm, Rm´1q, apxm´1, xm, Rm´1q ` bpxm´1, xmqq.

Proof
We consider several cases:

• When xm ą xm´1 and xm ą Rm´1: then ψpXm´1, xm, Umq “ ψ`pxm, Umq, so for this term
to be equal to xm´1 “ xm ´ 1, we must have Um P r0, 1 ´ ppxmqq “ rapxm´1, xm, Rm´1q,
apxm´1, xm, Rm´1q`bpxm´1, xmqq, with apxm´1, xm, Rm´1q “ 0 and bpxm´1, xmq “ 1´ppxmq.

• When xm ą xm´1 and xm ď Rm´1: then ψpXm´1, xm, Umq “ ψ´pxm, Umq “ ψ`pxm, 1´Umq
so for this term to be equal to xm´1 “ xm´ 1, we must have 1´Um P r0, 1´ ppxmqq, namely
Um P pppxmq, 1s, which a.s. corresponds to Um P rapxm´1, xm, Rm´1q, apxm´1, xm, Rm´1q `

bpxm´1, xmqq, with apxm´1, xm, Rm´1q “ ppxmq and bpxm´1, xmq “ 1´ ppxmq.

• When xm ă xm´1: since xm ă xm´1 ď Rm´1, we have ψpXm´1, xm, Umq “ ψ´pxm, Umq “
ψ`pxm, 1 ´ Umq, so for this term to be equal to xm´1 “ xm ` 1, we must have 1 ´ Um P

r1´ ppxmq, 1q, namely Um P p0, ppxmqs, which a.s. corresponds to Um P rapxm´1, xm, Rm´1q,
apxm´1, xm, , Rm´1q ` bpxm´1, xmqq, with apxm´1, xm, Rm´1q “ 0 and bpxm´1, xmq “ ppxmq.

�

It follows from Lemma 17 there exist rU1, rU2, ..., rUn independent random variables uniformly dis-
tributed on r0, 1q so that

@ m P J1, nK, ϕmp¨q “ ψpXm´1, ¨, apxm´1, xm, Rm´1q ` bpxm´1, xmqrUmq (51)

where we recall that ψ is defined in (47).
Let us now show how pRmqmPJ0,nK can be constructed backwardly in the spirit of Subsection 2.4.

Similarly to ϕ1, ϕ2, ..., ϕm, we would like to consider the random mappings φ1, φ2, ..., φm obtained
by conditioning the random mappings ψptx0, x1u, ¨, U1q, ψptx1, x2u, ¨, U2q, ..., ψptxm´1, xmu, ¨, Umq
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by ψptx0, x1u, x1, U1q “ x0, ψptx1, x2u, x2, U2q “ x1, ..., ψptxm´1, xmu, xm, Umq “ xm´1. Since we
want the construction of φ1, φ2, ..., φm to be coupled with ϕ1, ϕ2, ..., ϕm, we define

@ m P J1, nK, φmp¨q B ψptxm´1, xmu, ¨, apxm´1, xm, xm´1 _ xmq ` bpxm´1, xmqrUmq

“ ψptxm´1, xmu, ¨,rapxm´1, xmq ` bpxm´1, xmqrUmq (52)

where

rapxm´1, xmq B

"

ppxmq , if xm´1 ă xm
0 , otherwise

Remark that the above definition of the φm, form P J1, nK, is using the finite trajectory XJ0,m´1K,
only through xm and xm´1, and is not recursive (φn does not need the knowledge of φn´1, ..., φ1).
More precisely, this definition coincides with (51) if we had Xm´1 “ txm´1, xmu. Denote

@ m P J1, nK, φm,n B φm`1 ˝ φm`2 ˝ ¨ ¨ ¨ ˝ φn

with the usual convention that φn,n is the identity mapping.

Proposition 18 With the above notations, we have

Rn “ maxtx ě xn : D m P J0, nK with φm,npxq “ xmu

Proof
Let us prove by iteration on m P J1, nK that

Rm “ rRm B maxtx ě xm : D l P J0,mK with φl,mpxq “ xlu

For m “ 1, by definition

rR1 “ maxtx ě x1 : D l P J0, 1K with φl,1pxq “ xlu

“ maxtx ě x1 : x “ x1 or φ1pxq “ x0u

“ maxtx P Z : φ1pxq “ x0u

“ maxtx P Z : ϕ1pxq “ x0u

“ maxpX1q

“ R1

where in the third equality we used that φ1px1q “ x0 and in the fourth, that ϕ1 “ φ1, when x1 ă x0,
and that ϕ1px1q “ φ1px1q “ x0 (as well as ϕ1px1 ` 2q ą x0 and φ1px1 ` 2q ą x0), when x1 ą x0.

Assume that Rm “ rRm for some m P J1, n´ 1K and let us show that Rm`1 “ rRm`1.
We have

rRm`1 “ maxtx ě xm`1 : D l P J0,m` 1K with φl,m`1pxq “ xlu

“ maxtx ě xm`1 : x “ xm`1 or D l P J0,mK with φl,mpφm`1pxqq “ xlu

“ maxpxm`1,maxtx ě xm`1 : φm`1pxq P Amuq

where

Am B ty P Z : D l P J0,mK with φl,mpyq “ xlu

In particular xm P Am, so that xm`1 P tx ě xm`1 : φm`1pxq P Amu, since φm`1pxm`1q “ xm. We
deduce that

rRm`1 “ maxtx ě xm`1 : φm`1pxq P Amu (53)
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Due to restlessness, the parity of the elements of Am is the parity of xm and the parity of the
elements of tx ě xm`1 : φm`1pxq P Amu is the same as the parity of xm`1. Furthermore, on the
set of odd (respectively even) integers, the mapping φm`1 is non-decreasing, thus

tx ě xm`1 : φm`1pxq P Amu “ tx ě xm`1 : φm`1pxq P Bmu

where

Bm B ty ě xm : D l P J0,mK with φl,mpyq “ xlu

It follows by our iteration assumption that maxpBmq “ rRm “ Rm.
Note also that Bm is exactly equal to the subset of elements from Jxm, RmK which have the same

parity as xm. This comes from restlessness, which implies that two trajectories pφl,mpyqqlPJ0,mK and
pφl,mpy

1qqlPJ0,mK, where y and y1 are integers with the same parity, either stay one above the other
or end up coalescing. So for any y P Jxm, RmK which has the same parity as xm, the trajectory
pφl,mpyqqlPJ0,mK is sandwiched between pφl,mpxmqqlPJ0,mK “ pxlqlPJ0,mK and pφl,mpRmqqlPJ0,mK, thus
ends up coalescing with pxlqlPJ0,mK.

It follows from this description of Bm and (53) that rRm`1 “ Rm´ 1, except if φm`1pRm` 1q “
Rm, in which case rRm`1 “ Rm ` 1. Let us show that

φm`1pRm ` 1q “ ϕm`1pRm ` 1q (54)

We consider two cases:

• When Rm ` 1 ą xm _ xm`1: we have

φm`1pRm ` 1q “ ψ`pRm ` 1,rapxm, xm`1q ` bpxm, xm`1qrUm`1q

Since Rm ` 1 ą Rm, we also get

ϕm`1pRm ` 1q “ ψ`pRm ` 1, apxm, xm`1, Rmq ` bpxm, xm`1qrUm`1q

Thus to deduce (54), it is sufficient to see that rapxm, xm`1q “ apxm, xm`1, Rmq. This is
always true when xm`1 ą xm and when xm`1 ă xm, it requires that xm`1 ď Rm, which is
implied by Rm ` 1 ą xm`1 here.

• When Rm ` 1 ď xm _ xm`1: since xm ď Rm, we get Rm “ xm ă xm`1 “ Rm ` 1. It follows
that φm`1pRm ` 1q “ φmpxm`1q “ xm “ ϕm`1pRm ` 1q.

It follows that

rRm`1 “

"

Rm ` 1 , if ϕm`1pRm ` 1q “ Rm
Rm ´ 1 , otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining Rm`1, showing that
rRm`1 “ Rm`1.

�

A first guess would be that a similar formula holds for the minima of Xn, namely that

R^n “ rR^n B mintx ď xn : D m P J0, nK with φm,npxq “ xmu

but this is wrong! Indeed, in the discrete Pitman example of Subsection 3.1, we get that rR^n “ xn
for all n P Z`, see Picture 2 showing that xn`1 ´ rR^n`1 “ xn ´ rR^n for all n P Z` (the dotted lines
correspond to the action of the mapping φn`1, to be read from the right to the left, remember it
is constructed by pretending that Xn “ txn, xn`1u): whatever the motion from xn to xn`1, rR^n
follows a parallel motion to go to rR^n`1. Since rR^0 “ x0, we deduce that rR^n “ xn for all n P Z`.
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n n ` 1

xn
xn`1

rR^n
rR^n`1

n n ` 1

xn

xn`1

rR^n

rR^n`1

Figure 2: Action of φn`1

To get a correct backward formula, we must replace φm, for m P J1, nK, by the random mapping
ϕm, using the acquired knowledge of RJ1,nK. Indeed, from (51), the mapping ϕm is completely
determined by xm´1, xm, Rm´1 and the random variable rUm. Denote

@ m P J1, nK, ϕm,n B ϕm`1 ˝ ϕm`2 ˝ ¨ ¨ ¨ ˝ ϕn

Proposition 19 With the above notations, we have

R^n “ mintx ď xn : D m P J0, nK with ϕm,npxq “ xmu

Proof
The arguments are similar to those of the proof of Proposition 18, but simpler since we just play
with the family of random mappings pϕmqmPJ1,nK. So let us prove by iteration on m P J0, nK that

R^m “ rR^m B mintx ď xm : D l P J0,mK with ϕl,mpxq “ xlu

For m “ 0, by definition

rR^0 “ mintx ď x0 : ϕ0,0pxq “ x0u

“ mintx ď x0 : x “ x0u

“ x0

“ R^0

Assume that R^m “ rR^m for some m P J0, n´ 1K and let us show that R^m`1 “
rR^m`1.

We have

rR^m`1 “ mintx ď xm`1 : D l P J0,m` 1K with ϕl,m`1pxq “ xlu

“ mintx ď xm`1 : x “ xm`1 or D l P J0,mK with ϕl,mpϕm`1pxqq “ xlu

“ minpxm`1,mintx ď xm`1 : ϕm`1pxq P A
^
muq

where

A^m B ty P Z : D l P J0,mK with ϕl,mpyq “ xlu

In particular xm P A^m, so that xm`1 P tx ď xm`1 : ϕmpxq P A
^
mu, since ϕmpxm`1q “ xm. We

deduce that

rR^m`1 “ mintx ď xm`1 : ϕmpxq P A
^
mu (55)
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Due to restlessness, the parity of the elements of A^m is the parity of xm and the parity of the
elements of tx ď xm`1 : ϕmpxq P A

^
mu is the same as the parity of xm`1. Furthermore, on the set

of odd (respectively even) integers, the mapping ϕm is non-decreasing, thus

tx ď xm`1 : ϕmpxq P A
^
mu “ tx ď xm`1 : ϕmpxq P B

^
mu

where

B^m B ty ď xm : D l P J0,mK with ϕl,mpyq “ xlu

It follows by our iteration assumption that minpB^mq “
rR^m “ R^m.

As in proof of Proposition 18, remark that B^m is equal to the subset of elements from JR^m, xmK
which have the same parity as xm. It follows from (55) that rR^m`1 “ R^m`1, except if ϕmpR^m´1q “

R^m, in which case rR^m`1 “ R^m ´ 1. Thus we have

rR^m`1 “

"

R^m ´ 1 , if ϕmpR^m ´ 1q “ R^m
R^m ` 1 , otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining R^m`1, showing that
rR^m`1 “ R^m`1.

�

To facilitate the analogy with the last section, let us summarize the procedure followed here
to construct Xn for any fixed n P Z`, given xJ0,nK. First we sample rU1, rU2, ..., rUn independent
random variables uniformly distributed on r0, 1q. Next we construct the family pφmqmPJ1,nK via
(52). Proposition 18 enables to deduce the family RJ0,nK. From the latter, we construct the family
pϕmqmPJ1,nK via (51). Then Proposition 19 enables to deduce the family R^J0,nK. Finally, Lemma 16
leads to the construction of Xn.

Remark 20 In the discrete Pitman example of Subsection 3.1, the random variables rU1, rU2, ..., rUn
are not needed. Here this extra randomness is necessary to construct the family RJ0,nK. But the
two families rUJ0,nK and RJ0,nK are sufficient to deduce R^J0,nK, namely no additional randomness is
required.

˝

5 Markov chains on Polish spaces
The construction of set-valued intertwining dual processes presented in the introduction for finite
state spaces can be extended in several directions. Here, while keeping the time discrete, we let the
state space be a general Polish space.

Let V be a Polish space endowed with a Markov kernel P . We assume that P admits an
invariant probability π, so that P can be extended as a bounded operator on L2pπq. Let P ˚ be its
adjoint operator. It is an abstract Markov operator: P ˚ preserves non-negativity as well as 1V .
The probability measure π is invariant for P ˚ in the sense that πrP ˚rf ss “ πrf s, for any f P BpV q,
the space of bounded and measurable functions defined on V . We used a traditional notation for
integration: πrf s B

ş

f dπ. The motivation for the Polish assumption on V is that P ˚ can also be
seen as a Markov kernel. More precisely, consider on V ˆ V the coordinate mappings X0 and X1

and the probability measure πpdx0qP px0, dx1q. Note that by the invariance of π, the law of X1 is
π. Using that V ˆ V and V are Polish spaces we get that the conditional law of X0 given X1 can
be described by a Markov kernel M from V to V (see for instance Section V.8 of Parthasarathy
[24]). It follows that πpdx0qP px0, dx1q “ πpdx1qMpx1, dx0q. It is now easy to see that P ˚ is the
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extension of M as an operator on L2pπq. From now on, M will be denoted P ˚. Let us extend the
definitions of the introduction to the present setting.

A random mapping ψ from V to V is a measurable mapping

ψ : Ωˆ V Ñ V

where pΩ,F ,Pq is an auxiliary probability space. Since we want to insure the existence of conditional
distributions, let us furthermore impose that pΩ,Fq is the Borel σ-field associated to a Polish space.
The random mapping ψ is said to be associated with P ˚, when for any x P V , the law of ψpxq
is P ˚px, ¨q. As in the finite state space case, we want to allow for the dependence of ψ on some
subsets S Ă V . Let S be a set of measurable subsets S Ă V such that πpV q ą 0. We assume
that S is endowed with a Polish space topology and that the mapping V ˆ S Q px, Sq ÞÑ 1Spxq
is measurable with respect to the corresponding product Borelian σ-field. This hypothesis will
be called (H1). Define Λ the mapping associating to any S P S the probability measure ΛpS, ¨q
which is the conditioning of π on S. This is an elementary conditioning, since πpV q ą 0. It is
straightforward to deduce from the measurability part of Fubini’s theorem and from the above
assumption on S that for any f P BpV q, the mapping S Q S ÞÑ ΛpS, fq is measurable. It follows
that Λ can be seen as a Markov kernel from S to V .

A measurable mapping

ψ : ΩˆSˆ V Q pω, S, xq ÞÑ ψSpω, xq

is called a S-random mapping and is said to be locally associated to P ˚ when for any fixed
S P S, any measurable A Ă S and any x P V , we have

PrψSpxq P As “
P ˚px,Aq

ζpSq
(56)

where ζ : SÑ p0,`8q is a measurable and positive mapping on S (as in the finite case, we must
have ζpV q “ 1). As it is customary, the dependence on ω P Ω will often not be written explicitly.
When for any fixed S P S, ψSp¨q is a random mapping associated to P ˚, ψ is said to be globally
associated to P ˚.

As in (12), to a S-random mapping ψ, we associate

@ ω P Ω, @ S P S, Ψpω, Sq B ty P V : ψSpω, yq P Su

A priori ΨpSq is a measurable subset of V for any S P S. We furthermore make the assumption,
subsequently called (H2), that S, its topology and ψ have been chosen so that Ψ is a random
mapping from S to S. We would like to extend the definition given in (19), but the conditioning
by ψSpx1q “ x is no longer an elementary one. Nevertheless, our topological hypotheses make it
possible, for any given x1 P V and S P S, to find a Markov kernelKx1,S from V toS such that for any
px, x1, Sq P V ˆV ˆS, Kx1,Spx, ¨q is a regular version of the conditional law PrΨpSq P ¨|ψSpx1q “ xs.
Introduce Assumption (H3), asserting that Kpx, x1, S, ¨q B Kx1,Spx, ¨q is a Markov kernel from
V ˆ V ˆS to S, i.e. we are furthermore requiring that for any measurable A Ă S, the mapping
V 2 ˆ S Q px, x1, Sq ÞÑ Kx1,Spx,Aq is measurable. This technical assumption is needed to be able
to use Kpx, x1, S, ¨q to construct associated Markov chains, via Ionescu-Tulcea’s theorem. It is
automatically satisfied when V is denumerable. When the measurability assumptions (H1) (H2)
and (H3) are satisfied, we say that the S-random mapping ψ locally associated to P ˚ is standard.

Remarks 21
(i) LetMbpV q be the set of signed measures on V with finite total absolute weight. From (H1)

and the measurability part of Fubini’s theorem, we have that for any µ PMbpV q, the mapping

@ S P S, FµpSq B
ş

S dµ

30



is measurable.
If we have that the Borel σ-field on S is generated by these mappings, then (H2) follows from

(H1). Indeed, it is then sufficient to check that for any µ PMbpV q, the mapping ΩˆS Q pω, Sq ÞÑ
FµpΨpω, Sqq is measurable. This is again a consequence of (H1) and of the measurability part of
Fubini’s theorem, since the mapping ΩˆSˆ V Q pω, S, xq ÞÑ 1Spψpω, S, xqq is measurable.

We believe (H3) should equally follow from (H1), under the same assumption on the Borel
σ-field on S, but we prefer not entering such measurability questions here.

(ii) A priori (H2) and (H3) depend on S and ψ, but we rather see these conditions as relative
to the the topology of S, in the sense they should be satisfied for all S-random mappings ψ. In
this situation, S is said to be a standard subset topological space.

˝

Similarly, (22) is replaced by

@ px, Sq P V ˆS, Qppx, Sq, dpx1, S1qq B P px, dx1qKpx, x1, S, dS1q (57)

As in (21), we are interested in the set A of probability measures m on V ˆ S which can be
decomposed under the form

mpdx, dSq “ µpdSqΛpS, dxq (58)

where µ is the marginal law of m on S. When considering Markov chains starting from initial
distributions in A and evolving according to Q, it is possible to reduce the state space V ˆS to

W B tpx, Sq P V ˆS : x P Su (59)

as in (20), since for x P S, Kpx, x1, S, ¨q should be supported by tS1 P S : x1 P S1u. But in the
definition of the regular version of a conditional expectation, one has to be careful with negligible
subsets, that is why the justification of this restriction will only be given below, in the proof of
Theorem 22. Note that W is a Borelian subset, according to (H1).

Finally, extend (16) and (18) by defining the kernels K and P on S via:

@ S P S,

#

KpS, dS1q B PrΨpSq P dS1s
PpS, dS1q B πpS1qζpSq

πpSq KpS, dS1q
(60)

Both K and P are Markovian: it is obvious for K and it is a consequence of the following general-
ization of Theorem 5 to the present framework:

Theorem 22 Assume that we are given a standard S-random mapping ψ locally associated to P ˚.
Let pXn,XnqnPZ` be a Markov chain on V ˆ S whose initial distribution LpX0,X0q belongs to A
and whose transitions are given by Q, constructed as in (57). Then X B pXnqnPN and X B pXnqnPN
are Markov chains whose respective transitions are given by P and P. Furthermore the conditions
(9) and (10) are fulfilled and a.s. for all n P Z`, pXn,Xnq PW .

Proof
The arguments are essentially the same as those of the proof of Theorem 5, to make them rigorous
we just have to resort to conditional expectations.

The first part of the proof, namely that X B pXnqnPN is a Markov chain whose transitions
are given by P and the validity of (9), is very simple, as well as checking pA0q and pB0q, with
the notation from the proof of Theorem 5. Thus we concentrate our attention to the deduction of
pAn`1q and pBn`1q from pAnq and pBnq, for some given n P Z`.
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Let G : V ˆSÑ R be a bounded and measurable test function. We have

ErGpXn`1,Xn`1q|XJ0,nKs “

ż

V
ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKsPrXn P dy|XJ0,nKs

“

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKsPrXn P dy|XJ0,nKs

since due to pBnq, PrXn P ¨|XJ0,nKs is supported by Xn. The reformulation of (27) in the present
context is that for any bounded measurable test function h : V Ñ R, we have

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKshpyqπpdyq

“ ζpXnq

ż

V
EψXn
Xn
rGpx,ΨpXnqqhpψXnpxqqsπpdxq (61)

where the exponent of the expectation of the r.h.s. indicates that the integration is only with respect
to the randomness of the random mapping ψXn , while Xn is fixed, as told by its presence as an
index. In this equality, h can depend on Xn (even on XJ0,nK), it will be written hXn in the following
computations. Let us prove (61). By the Markov property, we have that the l.h.s. is equal to

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XnshXnpyqπpdyq

“

ż

XnˆVˆS
πpdyqP py, dxqKpy, x,Xn, dS

1qGpx, S1qhXnpyq

“

ż

XnˆV
πpdyqP py, dxqEψXn

Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq

“

ż

VˆXn

πpdxqP ˚px, dyqEψXn
Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq (62)

Recall that by local association, P ˚px, ¨q{ζpXnq and the law of ψXnpxq coincide when they are
restricted on Xn, so that

1

ζpXnq

ż

Xn

P ˚px, dyqEψXn
Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq

“ EψXn
Xn
rEψXn

Xn
rGpx,ΨpXnqq|ψXnpxqshXnpψXnpxqqs

“ EψXn
Xn
rGpx,ΨpXnqqhXnpψXnpxqqs (63)

The announced equality (61) follows. Taking into account pBnq, asserting that

PrXn P dy|XJ0,nKs “ ΛpXn, dyq

“ 1Xnpyq
πpdyq

πpXnq
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we deduce from (61), with h “ hXn B 1Xn{πpXnq,

ErGpXn`1,Xn`1q|XJ0,nKs “

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKs
πpdyq

πpXnq

“

ż

Xn

E
“

GpXn`1,Xn`1q|Xn “ y,XJ0,nK
‰ 1Xnpyq

πpXnq
πpdyq

“ ζpXnq

ż

V
EψXn
Xn
rGpx,ΨpXnqq1XnpψXnpxqqs{πpXnqπpdxq

“ ζpXnq

ż

V
EψXn
Xn
rGpx,ΨpXnqq1ΨpXnqpxqs{πpXnqπpdxq

“ ζpXnq

ż

VˆS
πpdxqKpXn, dSqGpx, Sq1Spxq{πpXnq

“

ż

VˆS
πpdxqPpXn, dSqGpx, Sq1Spxq{πpSq (64)

where we used the definitions from (60). When G does not depend on the first variable, i.e. is of
the form

@ px, Sq P V ˆS, Gpx, Sq B gpSq

for a bounded and measurable test function g : V Ñ R, we get

ErgpXn`1q|XJ0,nKs “

ż

S
PpXn, dSq gpSq

which amounts to (An`1).
Next consider G of product form:

@ px, Sq P V ˆS, Gpx, Sq B hpxqgpSq

where g : V Ñ R and h : SÑ R are bounded and measurable test functions. We compute that
ż

VˆS
πpdxqPpXn, dSqGpx, Sq1Spxq{πpSq “

ż

S
PpXn, dSqgpSqΛrhspSq

Let F : SJ0,nK Ñ R be another bounded and measurable test function. From the above considera-
tion, we get

ErF pXJ0,nKqgpXn`1qhpXn`1qs “ ErF pXJ0,nKqErgpXn`1qhpXn`1q|XJ0,nKss

“ ErF pXJ0,nKqPrgΛrhsspXnqs

“ ErF pXJ0,nKqgpXn`1qΛrhspXn`1qs

Since F and g are arbitrary bounded and measurable functions, it follows that

ErhpXn`1q|XJ0,n`1Ks “ ΛrhspXn`1q

namely (Bn`1), due to the fact that h is equally an arbitrary bounded and measurable function.
It remains to show that a.s. for all n P Z`, pXn,Xnq P W . For n “ 0, this is an immediate

consequence of the belonging of the initial distribution to A. For n P Z`, successively apply (64)
with the mappings G : V ˆS Q px, Sq ÞÑ 1Spxq and G B 1VˆS to get

PrXn`1 P Xn`1|XJ0,nKs “

ż

VˆS
πpdxqPpXn, dSq1Spxq1Spxq{πpSq

“

ż

VˆS
πpdxqPpXn, dSq1Spxq{πpSq

“ Er1VˆSpXn`1,Xn`1q|XJ0,nKs

“ 1
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It is straightforward to generalize Corollary 6 to the present framework. In the statement of
this result, π is seen as the measurable mapping S Q S ÞÑ πpSq P p0, 1s.

In the applications we have in mind, the state space S is too small since we would like that
it contains the singletons, which in practice are often negligible with respect to π when V is not
denumerable. Consider for instance rX B p rXtqtě0 an elliptic diffusion on a compact Riemannian
manifold V . For fixed ε ą 0, we are interested in the time-skeleton Markov chain X B p rXεnqnPZ` .
Its invariant probability measure π is also the invariant probability measure of rX, which gives zero
mass to every singleton, since it admits a density with respect to the Riemannian measure. Never-
theless, we are looking for a set-valued dual X B pXnqnPZ` starting from X0 B tX0u, constructed
via some random mappings (e.g. to escape the difficulties encountered in [20] and [9] to get single-
tons as starting points). In discrete time, the problem is only in the initial step, since for n P N, Xn
should be a “nice” compact subset of V with πpXnq ą 0. So to end this section, we show a way to
enlarge S to include the singletons. Again, random mappings are very helpful in this respect, but
they will no longer be locally associated to P ˚ and we need a slight generalization of this notion,
see Remark 23(a) below. Unfortunately, this approach will not receive here the full treatment it
deserves and this lack of development will prevent it from being useful in the next section.

We come back to the general setting of this section and begin by presenting some straightforward
modifications of the definitions. Consider

S̄ B SY ttxu : x P V u (65)

(here the notation differs substantially from that of the introduction, where S̄ was the set of all
subsets of V and S B S̄ztHu). Assume that S̄ is endowed with a Polish topology such that S is
a measurable subset of S̄ and such that the mapping V ˆ S̄ Q px, Sq ÞÑ 1Spxq is measurable.

Extend Λ into a Markov kernel Λ̄ from S̄ to V , via the convention that when S is the singleton
txu, then Λptxu, ¨q B δx, the Dirac mass at x (this definition is coherent with the conditioning when
πptxuq ą 0). The state space W has to be enlarged into

W̄ B tpx, Sq P V ˆ S̄ : x P Su

“ W Y tpx, txuq : x P Su

The set of initial distribution we are interested in is Ā, the set of probability measure on W̄ which
can be decomposed as in (58).

Consider a measurable mapping

ψ̄ : Ωˆ S̄ˆ V Q pω, S, xq ÞÑ ψ̄Spω, xq

Assume that the restriction ψ of ψ̄ to ΩˆSˆV is a standard S-random mapping locally associated
with P ˚. Replacing S by S̄, we could define similarly a notion of a S̄-random mapping ψ̄ locally
associated with P ˚, nevertheless the condition (56) on singletons tx0u P S̄ would just mean

Prψ̄tx0upxq “ x0s “ P ˚px, tx0uq{ζptx0uq (66)

where ζ has been extended on S̄ as a measurable and positive function. In our present context,
the r.h.s. often vanishes and the requirement that Prψ̄tx0upxq “ x0s “ 0 is not appropriate for our
purposes. In some sense, we need a density equivalent of (66), which leads us to strengthen our
assumption on the Markov kernel P . So introduce Hypothesis (H4) asking for the existence of a
measurable function p : V ˆ V Ñ R` such that

@ x, y P V, P px, dyq “ ppx, yqπpdyq

34



This density assumption implies immediately that P ˚ is given by

@ x, y P V, P ˚px, dyq “ ppy, xqπpdyq

Condition (56) has to be amended with

@ x0, x P V, Prψ̄tx0upxq “ x0s “ ppx0, xq{ζptx0uq (67)

where ζ : S̄Ñ p0,`8q is a measurable function. When (67) is satisfied (in addition to ψ being a
standard S-random mapping locally associated with P ˚), we say that ψ̄ is S̄-random mapping
locally associated with P ˚.

Remarks 23
(a) As observed above and strictly speaking, ψ̄tx0u is not locally associated to P ˚, since it does

not satisfy (66) in general. Nevertheless, Equation (67) can be seen as a limit of (56), when S
converges to tx0u and ζpSq{πpSq converges to ζptx0uq. This point of view inspired the notion of
local association to P ˚. It also explains the expression obtained in (69) below.

(b) The measurability of ζ in (67) plays no role when we start with X0 “ x0 and X0 “ tx0u, for
some fixed x0 P V . Anyway, it seems quite natural to assume that V Q x ÞÑ txu P S̄ is a measurable
bijection, as well as its inverse (i.e. V can be identified as a measurable space to ttxu : x P V u), so
that one can go from the measurability of S Q S ÞÑ ζpSq to the measurability of S̄ Q S ÞÑ ζpSq via
the additional condition that V Q x ÞÑ ζptxuq is measurable.

˝

The mapping ψ̄ will be said to be standard, when the following extensions (H̄2) and (H̄3) of
Assumptions (H2) and (H3) hold:

• (H̄2) requires that the mapping

@ S P S̄, Ψ̄pSq B ty P V : ψ̄Spyq P Su

is measurable from S̄ to S. In particular, Ψ̄ptx0uq must have positive mass for any x0 P V .

• (H̄3) provides us with a Markov kernel K̄ from V ˆ V ˆ S̄ to S, which, as in (57), enables
us to define a Markov kernel Q̄ from V ˆ S̄ to V ˆS via

@ px, Sq P V ˆ S̄, Q̄ppx, Sq, dpx1, S1qq B P px, dx1qK̄px, x1, S, dS1q (68)

Next let us come to the analogue of (60). The kernel K̄ is defined similarly to K:

@ S P S̄, K̄pS, dS1q B PrΨ̄pSq P dS1s

Due to (H̄2), K̄ is a Markov kernel from S̄ to S. One has to be more careful with the definition of
P̄:

@ S P S̄, P̄pS, dS1q B

#

πpS1qζpSq
πpSq K̄pS, dS1q , if πpSq ą 0

πpS1qζptx0uqK̄pS, dS
1q , if S “ tx0u is a singleton

(69)

Now we have all the ingredients necessary for stating the extension of Theorem 22:

Theorem 24 Assume that we are given a standard S̄-random mapping ψ̄ locally associated to P ˚.
Let pX̄n, X̄nqnPZ` be a Markov chain on V ˆ S̄ whose initial distribution LpX̄0, X̄0q belongs to Ā
and whose transitions are given by Q̄, constructed in (68). Then X̄ B pX̄nqnPN and X̄ B pX̄nqnPN
are Markov chains whose respective transitions are given by P and P̄. Furthermore the conditions
(9) and (10) are fulfilled and a.s. for all n P Z`, pX̄n, X̄nq P W̄ .

As in Corollary 6, we deduce the following consequences.
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Corollary 25 The kernel P̄ is Markovian and the intertwining relation (7) is satisfied. When ζ ” 1
(in particular for globally associated to P ˚ random mappings), π is harmonic for K̄. Furthermore,
S̄zS is an entrance boundary for X̄, in the sense that for any n ě 1, X̄n P S, namely after time 1,
pX̄n, X̄nqnPN is a Markov chain on V ˆS of the same type as those considered in Theorem 22.

Proof of Theorem 24
Let us come back to the proof of Theorem 22 and review the changes to be made. They correspond
to the situation where X̄n is a singleton and it is sufficient to consider the time n “ 0. Fix some
x0 P V and assume that X̄0 “ tx0u. Equation (61) is to be replaced by

ErGpX̄1, X̄1q|X̄0 “ x0, X̄0 “ tx0us “

ż

V
Eψ̄tx0urGpx, Ψ̄ptx0uqq1ψ̄tx0upxq“x0u

sπpdxq

where G : V ˆ S̄ Ñ R is a bounded and measurable test function. Its proof, justifying Condi-
tion (H4), is the following modification of (62):

ErGpX1, X̄1q|X̄0 “ x0, X̄0 “ tx0us “ P px0, dxqK̄px0, x, tx0u, dS
1qGpx, S1q

“

ż

V
P px0, dxqEψ̄tx0urGpx, Ψ̄ptx0uqq|ψ̄tx0upxq “ x0s

“

ż

V
ppx0, xqEψ̄tx0urGpx, Ψ̄ptx0uqq|ψ̄tx0upxq “ x0sπpdxq

“ ζptx0uq

ż

V
Eψ̄tx0urGpx, Ψ̄ptx0uqq1tψ̄tx0upxq“x0u

sπpdxq

“ ζptx0uq

ż

V
Eψ̄tx0urGpx, Ψ̄ptx0uqq1Ψ̄tx0u

pxqsπpdxq

The definition of P̄ is dictated by the analogue of (64), which now writes:

ErGpX̄1, X̄1q|X̄0s “ ErGpX̄1, X̄1q|X̄0 “ x0, X̄0 “ tx0us

“ ζptx0uq

ż

V
Eψ̄tx0urGpx, Ψ̄ptx0uqq1Ψ̄tx0u

px0qsπpdxq

“ ζptx0uq

ż

VˆS
πpdxqK̄ptx0u, dSqGpx, Sq1Spxq

“

ż

VˆS
πpdxqP̄ptx0u, dSqGpx, Sq1Spxq{πpSq

The end of the proof readily follows the arguments given in the proof of Theorem 22.
�

Remark 26 As in the finite situation, the law of the random mapping enabling to construct X̄n`1

(or Xn`1 in Theorem 22) from pXn, X̄n, Xn`1q may depend on the time n P Z`. Indeed the proofs
of Theorems 22 and 24 are only concerned with a transition from n to n ` 1. One can even go
further, by considering different state spaces Vn at each time n P Z`. The invariant probability
π has then to be replaced by a family pπnqnPZ` of probability measures which are related by the
underlying Markov kernels: πnPn “ πn`1, for any n P Z`, where Pn is the transition kernel between
times n and n` 1. Corresponding Markov kernels pΛnqnPN have to be considered.

˝
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6 Markov processes
Here we leave the discrete-time setting for a continuous-time framework, with the purpose of extend-
ing the construction of set-valued intertwining duals given by Theorem 22 to diffusion processes.
The full development of this theory is out of the scope of the present paper and we hope to pro-
vide more details in future works. Nevertheless, below we outline the principles underlying such
extensions. An illustration will be given in the next section, where we will also discuss further
applications, up to the availability of convenient stochastic flows.

Let V be a Polish space endowed with a probability distribution π. Let S be a set of certain
measurable subsets of V which are given a positive weight by π. For any S P S, let ΛpS, ¨q be the
elementary conditioning of π on S. Assume that S is endowed with a Polish topology such that
the mapping V ˆS Q px, Sq ÞÑ 1Spxq is measurable. It follows that Λ, the mapping associating to
any S P S the probability ΛpS, ¨q, is a Markov kernel from S to V .

Let X B pXtqtě0 be a time-homogeneous V -valued diffusion (i.e. a Markov process with
continuous paths), whose semigroup P B pPtqtě0 admits π as an invariant probability measure.
Denote P ˚ B pP ˚t qtě0 the adjoint Markov semi-group in L2pπq. As in Section 5, our topological
assumptions insure that the semi-group is given by Markov kernels. By our hypotheses below, the
Markov processes associated to P ˚, X˚ B pX˚t qtě0, will admit versions that are diffusions. For any
x P V , X˚pxq will stand for such a process starting from x.

We want to consider stochastic flows on V extending the random mappings of the previous
sections. We will need a notion of stochastic flow more general than that considered in a series of
papers by Le Jan and Raimond [14, 15, 16, 17] (see also Tsirelson [30]), since typically, due to the
possible dependence on subsets of S, we would like the increments of the flow to be non-stationary.
It is even worse, since once the time has been returned, the subset on which the construction depends
is in the future of the flow, fortunately there is an important independence property helping us, see
Lemma 29 below. In some sense, there is the same difference between the stochastic flows of Le
Jan and Raimond and those we would like to construct as the coupling-from-the-past technique of
Propp and Wilson [27] and the random mappings considered in the introduction. So a lot remains
to be investigated in this direction.

It is convenient to be quite explicit about the underlying probability space, so we are led to the
following definitions.

We assume that we are given RpV q a vector space of measurable functions from V to V endowed
with a Polish topology such that the mapping V ˆRpV q Q px, ψq ÞÑ ψpxq is measurable (all product
spaces are endowed with the product measurable structure). Let 4 stand for tps, tq P R2

` : s ď tu
and more generally for any I Ă R`, we define 4I B tpu, vq P I

2 : u ď vu. Define the space Ωp5q as
the set of all measurable mappings

ψ : 4ˆ V Q ps, t, xq ÞÑ ψs,tpxq P V (70)

such that for any fixed ps, tq P 4, the restricted mapping ψs,t belongs to RpV q. The notation
ψ “ pψs,tpxqq0ďsďt,xPV will designate the canonical coordinates on Ωp5q. The space Ωp5q is endowed
with the sigma-field generated by the canonical coordinates.

Remark 27 The space Ωp5q is too large to be endowed with a Polish structure. It would be nicer
to define Ωp5q as the space of mappings of the form (70) such that

4 Q ps, tq ÞÑ ψs,t P RpV q

is continuous. Unfortunately this assumption is for the moment too strong and would not enable
us to rely on the results of Le Jan and Raimond [17] in Subsection 7.1 below, where V “ R and
RpRq will be the space of non-decreasing càdlàg mappings from R to R, endowed with the Skorohod
topology.
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The above presentation differs from that of Le Jan and Raimond [15] by the introduction of the
space RpV q (in the same spirit as that of S) to avoid the handling of measurable representations.

˝

A stochastic flow on the state space V is a probability distribution Pp5q on Ωp5q such that for all
0 ď s ď t ď u, a.s. ψs,s is the identity operator and ψs,t ˝ψt,u “ ψs,u. Given such a probability Pp5q,
the sigma-field of Ωp5q is completed with all its negligible subsets. By a slight abuse of terminology,
we will also say that the canonical ψ on Ωp5q is a stochastic flow (implicitly under Pp5q). The
stochastic flow is said to be associated to P ˚ if for any fixed t ě 0 and x P V , pψt´s,tpxqqsPr0,ts
has the same finite-dimensional marginal laws, over the time domain r0, ts, as a diffusion associated
to P ˚ and starting from x. Namely ψ (or Pp5q) provides a coupling of the X˚

r0,tspxq, for any x P V
and t ě 0. Let us ask more, since we are rather interested in the notion of global association with
P ˚, where there is an underlying dependence on subsets of S. To proceed toward its definition, let
us extend (H2) into (H5): for any 0 ď s ď t, the mapping

Ωp5q ˆS Q pψ, Sq ÞÑ ψ´1
s,t pSq

takes values inS\tHu and is measurable (whereS\tHu is endowed with the sigma-field generated
by that of S and tHu).

Enlarge Ωp5q into Ωp4q B S ˆ Ωp5q, the canonical coordinate on S will be denoted X0. A
probability distribution Pp4q on Ωp4q will be said to be a stochastic flow when the coordinates X0

and ψ are independent and the distribution of ψ is a stochastic flow. On pΩp4q,Pp4qq, we define

@ t ě 0, Xt B ψ´1
0,t pX0q (71)

It follows from (H5) that X B pXtqtě0 is a S-valued stochastic process whose initial variable X0

is independent from the stochastic flow ψ. Note that no regularity is assumed with respect to the
time (to go into this direction, one should improve the time regularity of the flow, for instance
by considering the condition mentioned in Remark 27), X is only a collection of random variables
indexed by the time.

For any A Ă 4ˆ V , denote ψA B pψu,vpxqqpu,v,xqPA and for any t ě 0, let Gt be the sigma-field
generated by ψ4r0,tsˆV and X0. The stochastic flow ψ is said to be a S-stochastic flow when

@ t ě 0, @ x P V, Lrψ4rt,`8qˆV |Gts “ Lrψ4rt,`8qˆV |Xts (72)

Since Ωp5q is not endowed with a Polish topology, we have to be more careful about the meaning
of the above identity: the signification is that any corresponding conditional expectations are a.s.
equal. With the same convention, a S-stochastic flow is said to be globally associated to P ˚,
when

@ 0 ď s ď t, @ x P V, Pp4qrψs,tpxq P dy|Gss “ P ˚t´spx, dyq (73)

In particular such a flow ψ is associated to P ˚.

Remark 28 By analogy with the definitions of the previous sections, a S-stochastic flow ψ is said
to be locally associated to P ˚, when for any 0 ď s ď t, any x P V and any measurable A Ă Xs,
we have

Pp4qrψs,tpxq P A|Gss “ P ˚t´spx,Aq{ζps, t,Xsq

where ζ : 4 ˆ pS \ tHuq Ñ p0,`8q is a measurable mapping. But to avoid technicalities and
since we will not need it in the next section, we will not investigate this promising notion in the
time-continuous setting.

˝
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Enlarge the probability space pΩp4q,Pp4qq into pΩp3q,Pp3qq, with

Ωp3q B Ωp4q ˆ V

Pp3q B Pp4q b π (74)

and denote Z for the canonical coordinate on V .
An important consequence of global association to P ˚ is:

Lemma 29 For any ps, tq P 4, Xs and ψs,tpZq are independent under Pp3q as soon as Pp4q is a
S-stochastic flow globally associated to P ˚. It follows that ψ4r0,ssˆV and ψs,tpZq are independent.

Proof
Let F and G be bounded and measurable functions defined respectively on S and V . By definition,
we compute that

Ep3qrF pXsqGpψs,tpZqqs “

ż

V
πpdzqEp4qrF pXsqGpψs,tpzqqs

“

ż

V
πpdzqEp4qrF pXsqEp4qrGpψs,tpzqq|Xsss

“

ż

V
πpdzqEp4qrF pXsqP ˚t´srGspzqs

“ Ep4qrF pXsqs
ż

V
πpdzqP ˚t´srGspzq

“ Ep3qrF pXsqsπrGs

where we used (73) in the third equality and the invariance of π for the semi-group P ˚ in the last
equality. Considering F ” 1 in the above computation, we also get that πrGs “ Ep3qrGpψs,tpZqqs,
so that finally

Ep3qrF pXsqGpψs,tpZqqs “ Ep3qrF pXsqsEp3qrGpψs,tpZqqs

and the wanted independence of Xs and ψs,tpZq.
Note that the construction of ψs,tpZq depends only on Z and ψ4rs,`8qˆV , so it follows from (72)

that ψs,tpZq is in fact also independent from Gs.
�

A more interesting enlargement of Ωp4q is

Ω2 B Ωp4q ˆ V r0,`8q

The canonical coordinates on Cpr0,`8q, V q are denoted by the process Y B pYtqtě0. For fixed
t ě 0, let Ht be the sigma-field generated by Gt and Yr0,ts. We consider the probability P2t on
pΩ2,Htq which is the image of Pp3q by the mapping

Ωp3q Q pX0, ψ, Zq ÞÑ pX0, ψ, pψs,tpZqqsPr0,tsq

Lemma 29 insures that the probability spaces pΩ2,Ht,P2t q, for t ě 0, satisfy the Kolmogorov
compatibility criterion. We get there exists a probability P2 on Ω2 endowed with its natural sigma-
field, so that P2 coincides with P2t on Ht, for any t ě 0. Note furthermore that under P2, the process
Y is a stationary diffusion associated to the semi-group P starting with Y0 distributed according
to π and that we have

@ ps, tq P 4, P2rYs “ ψs,tpYtqs “ 1 (75)
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For any measurable functional F defined on Ω2, which is either bounded or non-negative, we are
interested in the conditional expectation, E2rF |Xs, Yrs,tss, of F knowing the sigma-field generated by
Xs and the Yu, for u P rs, ts. We denote E2S,xrs,tsrF s B E2rF |Xs “ S, Yrs,ts “ xrs,tss, keeping in mind

that it is only defined a.s. with respect to a set S P S and a trajectory xrs,ts P V rs,ts, distributed
according to the law of pXs, Yrs,tsq. Recall from Lemma 29 that Xs and Yrs,ts are independent and
that the law of the latter is that of a stationary diffusion. Since neither Ω2 nor V rs,ts are Polish
spaces, we cannot represent the above conditional expectation via integration w.r.t. a Markov kernel
from Sˆ V rs,ts to Ω2.

Here is another compatibility consequence of global association that will be important in the
sequel.

Lemma 30 Assume the S-stochastic flow ψ is globally associated to P ˚. Then for any 0 ď s ă t,
any u ě 0 and any bounded and Gt-measurable functional F , we have

E2S,xrs,t`usrF s “ E2S,xrs,tsrF s

where the equality holds a.s. with respect to S P S and xrs,t`us P V rs,t`us independently distributed
according to the law of Xs and to a stationary Xrs,t`us.

Proof
To get the above a.s. identity, it is sufficient to show that for any bounded and Gt-measurable
functional F , for any bounded and measurable functions G1 : S Ñ R, G2 : V rs,ts Ñ R and
G3 : V rt,t`us Ñ R, we have

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs “ E2rE2Xs,Yrs,tsrF sG1pXsqG2pYrs,tsqG3pYrt,t`usqs (76)

So let us start with the l.h.s. and condition it by Gt:

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs “ E2rFG1pXsqE2rG2pYrs,tsqG3pYrt,t`usq|Gtss
“ E2rFG1pXsqE2rG2ppψv,tpYtqqvPrs,tsqG3pYrt,t`usq|Gtss

Note that under the conditioning by Gt, the mappings pψv,tp¨qqvPrs,ts are fixed and that pYt`vqvPr0,us
is a stationary diffusion associated to P . It follows that

E2rG2ppψv,tpYtqqvPrs,tsqG3pYrt,t`usq|Gts “

ż

G2ppψv,tpxqqvPrs,tsqErG3ppXv´tpxqqvPrt,t`usqsπpdxq

where Xpxq is a diffusion associated to P starting from x.
It leads us to introduce the measurable mapping

H : V rs,ts Ñ R
yrs,ts ÞÑ G2pyrs,tsqErG3ppXv´tpytqqvPrt,t`usqs

since we can write, once again taking into account the independence property of Lemma 29,

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs “

ż

E2rFG1pXsqHppψv,tpxqqvPrs,tsqsπpdxq

“ E2rFG1pXsqHppψv,tpYtqqvPrs,tsqs

“ E2rFG1pXsqHpYrs,tsqs

“ E2rE2Xs,Yrs,tsrF sG1pXsqHpYrs,tsqs

To get (76), it remains to reverse the above computations, or more precisely, to apply them with
F ” 1 and the mapping Sˆ V rs,ts Q pS, yrs,tsq ÞÑ G1pSqG2pyrs,tsq replaced by

Sˆ V rs,ts Q pS, yrs,tsq ÞÑ G1pSqG2pyrs,tsqE2S,yrs,tsrF s
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Given a full trajectory xr0,`8q P V
r0,`8q and a set S P S, we can consider conditional ex-

pectations ES,xr0,`8qr¨s as before Lemma 30, corresponding to the conditioning by X0 “ S and
Y “ xr0,`8q. The conditional expectations ES,xr0,`8qr¨s are only defined a.s. with respect to
pS, xr0,`8qq distributed according to the tensor product of the law of X0 and the stationary law of
X. These conditionings are the time-continuous version of the conditioning of the random map-
pings by the Markov chain pXnqnPZ` encountered in the previous sections. As we have done before,
when working under ES,xr0,`8qr¨s or under its integrated version P defined in the next paragraph,
the flow ψ B pψs,tq0ďsďt will be denoted ϕ B pϕs,tq0ďsďt (to avoid the error of thinking that ϕ is
globally associated to P ˚).

Assume that X0 is deterministic and let X B pXtqtě0 be a diffusion process associated to P
starting from ΛpX0, ¨q, say defined on a probability space pΩ1,P1q. We endow Ω B Ω1ˆΩ2 with the
probability measure P whose marginal distribution on Ω1 is P1 and whose conditional distribution on
Ω2 knowing the coordinate X on Ω1 is PX0,Xr¨s. This is well-defined through expectations, since the
law of X is then absolutely continuous with respect to the stationary law of a diffusion associated
to P (the Radon-Nikodym density being 1X0pX0q{πpX0q). More generally, this construction has to
be integrated with respect to the law of X0. This is possible when the initial law of X has the form
ş

S ΛpS, ¨qµpdSq, where µ is a probability measure on S. In this case the law of pX0,X0q belongs
to A, namely is of the form described in (58), or equivalently, we have

LpX0|X0q “ ΛpX0, ¨q (77)

When P is constructed as above starting with Pp5q, a stochastic flow globally associated to P ˚,
we say that P is a pP ˚,Sq-conditioned stochastic flow. We deduce from Lemma 30 that under
such a probability, the analogue of (9) is satisfied:

Lemma 31 Under a pP ˚,Sq-conditioned stochastic flow P, we have

@ t ě 0, LpXr0,ts|Xq “ LpXr0,ts|Xr0,tsq

Proof
Let us first compute the conditional expectation under P knowing X. Consider a bounded and
G8-measurable functional F (i.e. F is measurable with respect to X0 and ϕ), as well as a bounded
and measurable mapping G : V r0,`8q Ñ R. Denote µ the law of X0. By definition, we have

ErFGpXqs “

ż

SˆV
µpdSqΛpS, dxqE1xrGpXqE2S,XrF ss

where under P1x, X starts from x P V and is associated to the semi-group P . The previous r.h.s.
can be written under the following form, with Sx B tS P S : x P Su

ż

V
πpdxq

ż

Sx

µpdSq
E1xrGpXqE2S,XrF ss

πpSq

Since the distribution of X0 admits

V Q x ÞÑ

ż

Sx

µpdSq
1

πpSq

as density with respect to π, we get that the conditional expectation of F knowing X “ xr0,`8q P

V r0,`8q is given by

ErF |X “ xr0,`8qs “

ş

Sx0
µpdSqE2S,xr0,`8qrF s
ş

Sx0
µpdSq 1

πpSq

(78)
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Note that by the martingale convergence theorem, we have

lim
sÑ`8

E2S,Xr0,ssrF s “ E2S,Xr0,`8qrF s

(a priori a.s. with respect to a stationary X, but equally under P, by absolute continuity). Fix
t ě 0 and assume now that F is furthermore Gt-measurable. We deduce from Lemma 30 that

E2S,Xr0,`8qrF s “ E2S,Xr0,tsrF s

so that

ErF |X “ xr0,`8qs “

ş

Sx0
µpdSqE2S,xr0,tsrF s

ş

Sx0
µpdSq 1

πpSq

In particular, the l.h.s. only depends on xr0,ts. By the tower property of conditional expectation,
we get that

ErF |Xr0,8qs “ ErF |Xr0,tss

Since this is true for any Gt-measurable F , we deduce the wanted equality.
�

To go further in the description of P, especially to show that the analogue of (10) equally holds,
we try to come back to the setting of the previous section by considering discrete-time skeletons.

More precisely, for ε ą 0, consider the Markov kernel Pε from V to V . Associated Markov chains
are the ε-skeleton Xpεq B pXεnqnPZ` . For n P Z`, let ψ

pεq
n,Xn

be ψεn,εpn`1q conditioned by Gεn. The

family pψpεqn,SqSPS has to be understood in the following sense: let F be a bounded or positive measur-

able function on R, by definition, the expectation of F pψpεqn,Sq is equal to E2rF pψεn,εpn`1qq|Xεn “ Ss,
a.s. in S distributed according to the law of Xεn. Here our notations may be slightly confusing, so
let us review the construction considered in Section 5, taking into account Remark 26, since the
family pψpεqn,SqnPZ`, SPS is inhomogeneous with respect to the time n P Z`. Starting from X

pεq
0 B X0,

we define

X
pεq
1 B pψ

pεq
0,X0

q´1pX0q

“ pψ0,εq
´1pX0q

“ Xε

What is important is that the law of Xpεq1 knowing X
pεq
0 is exactly the law of Xε knowing X0, so that

the law of pXpεq0 ,X
pεq
1 q is equal to the law of pX0,Xεq. Construct Xpεq B pX

pεq
n qnPZ` via the induction

@ n P Z`, X
pεq
n`1 B pψ

pεq
n,Xn

q´1pXpεqn q

By iteration of the above argument and taking into account (72), we end up with Xpεq having the
same law as pXεnqnPZ` . We will identify Xpεq with pXεnqnPZ` , since above all we are interested in
their law, to be conditioned below. Besides, our previous assumptions on ψ insure that for any
n P Z`, the random mapping ψpεqn,S is, a.s. in S with respect to the law of Xεn, a S-random mapping
globally associated to P ˚ε . Assumption (H1) was assumed at the beginning of this section and (H5)
implies (H2) for the discrete-time random mappings ψpεqn,S , for n P Z` and S P S. To go in the
direction of (H3), let us define, for any 0 ď s ă t, x, x1 P V and S P S, E2S;s,x;t,x1r¨s the conditional
expectation under P2 knowing that Xs “ S, Ys “ x and Yt “ x1. Next, let KppS; s, x; t, x1q, ¨q be the
image of P2S;s,x;t,x1r¨s by the mapping ψ ÞÑ ψ´1

s,t pSq. For fixed 0 ď s ă t, we can see it as a Markov
kernel from S ˆ V ˆ V to S, since it corresponds to the conditioning of Xt by pXs, Xs, Xtq and
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we can work on the Polish space Sˆ V ˆ V ˆS endowed with the law of pXs, Xs, Xt,Xtq. When
s “ εn and t “ εpn ` 1q, KppS; εn, x; εpn ` 1q, x1q, ¨q can almost play the role of Kpx, x1, S, ¨q in
Condition (H3) for the discrete-time random mapping ψpεqn,S , except that KppS; εn, x; εpn`1q, x1q, ¨q

is maybe not a Markov kernel corresponding to the conditional distribution of pψpεqn,Sq
´1pSq knowing

ψ
pεq
n,Spx

1q “ x, for all fixed S P S and x1 P S (and a.s. in x with respect to the law of ψpεqn,Spx
1q),

but only a.s. for S distributed as Xεn and for px, x1q distributed (independently) according to
πpdxqPεpx, dx

1q “ πpdx1qP ˚ε px
1, dxq. Nevertheless, this extension of Condition (H3) is sufficient for

the validity of Theorem 22, as it is checked by a direct examination of its proof. Indeed, (62) and
(63) have now to be understood a.s., respectively w.r.t. the law of Xεn and in x w.r.t. π.

Remark 32 The above construction of the process pYtqtě0 could also be performed in the discrete-
time setting of Section 5 for globally associated to P ˚ random mappings to get a stationary chain
pYnqnPZ` associated to the transition kernel P and satisfying the analogue of Property (75). In the
restricted setting of global association, it leads to a variant of Theorem 22 where Condition (H3) has
been removed and replaced by the hypothesis that the random mappings belongs to some Polish
functional space R. It would be interesting to get similar constructions in the context of local
association.

˝

These considerations lead to the following continuous-time extension of (10):

Theorem 33 Under a pP ˚,Sq-conditioned stochastic flow P, we have

@ t ě 0, LpXt|Xr0,tsq “ ΛpXt, ¨q (79)

Proof
According to the above observations, we are in position to apply Theorem 22 to the time-inhomoge-
neous random mappings induced by the family pψpεqn,SqnPZ`, SPS. More precisely, let us come back
to the kernel described by KppS; εn, x; εpn` 1q, x1q, ¨q, for S P S, n P Z` and x, x1 P V . The tower
property of conditional expectation implies that

E2S;εn,x;εpn`1q,x1r¨s

“

ż

Cprεn,εpn`1qs,V q
E2S,xrεn,εpn`1qs

r¨sPεn,x;εpn`1q,x1pdxrεn,εpn`1qsq (80)

where Pεn,x;εpn`1q,x1 is the law of the bridge Xrεn,εpn`1qs associated to P and conditioned by Xεn “ x
and Xεpn`1q “ x. Here we don’t need the results of Fitzsimmons, Pitman and Yor [12] for the
existence for such bridge laws, since we just require their existence πpdxqPεpx, dx1q-a.s. and not for
every x, x1 P V .

Let rXpεq B p rX
pεq
n qnPZ` be a Markov chain with transition kernel Pε and starting from ΛpX0, ¨q,

first assuming that X0 is deterministic. As in Section 5, let rXpεq B prX
pεq
n qnPZ` be obtained from

pψ
pεq
n,SqnPZ`, SPS through its iterative conditionings:

@ n P Z`, ψ
pεq

n,rX
pεq
n

p rX
pεq
n`1q “ rXpεqn

The law of p rXpεq, rXpεqq coincides with the law of pXpεq,Xpεqq. Indeed, by iteration, it is sufficient to
see that for any n P Z`, the conditional law of p rXpεqn`1,

rX
pεq
n`1q knowing p rX

pεq
m , rX

pεq
m qmPJ0,nK is equal

to the law of pXεpn`1q,Xεpn`1qq knowing pXεm,XεmqmPJ0,nK. On one hand, by definition, by taking
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into account (80) and with the kernel K defined above Remark 32, we have

Prp rXpεqn`1,
rX
pεq
n`1q P pdx, dSq|p

rXpεqm , rXpεqm qmPJ0,nKs

“ Pεp rX
pεq
n , dxqKprXpεqn ; εn, rXpεqn ; εpn` 1q, xq, dSq

“ Pεp rX
pεq
n , dxq

ż

Cprεn,εpn`1qs,V q
Kpp rXpεqn , xrεn,εpn`1qsq, dSqPεn, rXpεqn ;εpn`1q,x

pdxrεn,εpn`1qsq

“

ż

Cprεn,εpn`1qs,V q
Kpp rXpεqn , xrεn,εpn`1qsq, dSqδxεpn`1q

pdxqP
εn, rX

pεq
n
pdxrεn,εpn`1qsq

where

• KppS;xrεn,εpn`1qsq, ¨q is the image of P2S;xrεn,εpn`1qs
r¨s by the mapping ψ ÞÑ ψ´1

εn,εpn`1qpSq,

• Pεn,x1p¨q is the law of Xrεn,εpn`1qs associated to P , starting at time εn from x1 P V .

On the other hand, with arguments similar to those of Lemmas 30 and 31, we check that

PrpXεpn`1q,Xεpn`1qq P pdx, dSq|Xr0,εns,Xr0,εnss (81)

“

ż

Cprεn,εpn`1qs,V q
KppXr0,εns, xrεn,εpn`1qsq, dSqδxεpn`1q

pdxqPεn,Xεnpdxrεn,εpn`1qsq

It follows that

PrpXεpn`1q,Xεpn`1qq P pdx, dSq|pXεm,XεmqmPJ0,nKs

“

ż

Cprεn,εpn`1qs,V q
KppXr0,εns, xrεn,εpn`1qsq, dSqδxεpn`1q

pdxqPεn,Xεnpdxrεn,εpn`1qsq

and this ends the proof of the equality in law of p rXpεq, rXpεqq and pXpεq,Xpεqq. At least when X0 is
deterministic, but this identity in law is next extended by integration with respect to LpX0q.

Taking into account Remark 26, Theorem 22 now implies that

@ n P Z`, LpXεn|X0,Xε, ...,Xεnq “ ΛpXεn, ¨q (82)

If we had some time regularity for the process X, the announced result would follow by usual ap-
proximations. To go further, let us remark that in the above arguments, the time mesh 0, ε, 2ε, ..., nε
can be replaced by any finite sequence t0 ď t1 ď t2 ď ¨ ¨ ¨ ď tn. The Markov chain pXt0 , Xt1 , Xt2 , ...,
Xtnq is no longer time homogeneous, but as pointed out in Remark 26, this is not crucial in the
deduction that

LpXtn |Xt0 ,Xt1 ,Xt2 ...,Xtnq “ ΛpXtn , ¨q (83)

Now fix t ě 0 and consider two bounded and measurable functions F : V Ñ R and G : Sr0,ts Ñ
R, We want to show that

ErF pXtqGpXr0,tsqs “ ErΛrF spXtqGpXr0,tsqs (84)

Due to the product measurable structure of Sr0,ts, there exists a sequence psnqnPZ` of distinct
elements from r0, ts such that GpXr0,tsq only depends on the values pXsnqnPZ` .

For N P N, consider

GN ppXsnqnPJ0,NKq B ErGpXr0,tsq|pXsnqnPJ0,NKs

The martingale convergence theorem implies that GN ppXsnqnPJ0,NKq converges for large N toward
GpXr0,tsq in L2pPq, so to prove (84), it is sufficient to see that

ErF pXtqGN ppXsnqnPJ0,NKqs “ ErΛrF spXtqGN ppXsnqnPJ0,NKqs (85)
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Let t0 ď t1 ď t2 ď t3 ď ¨ ¨ ¨ tN`1 be the ordering of the elements s0, s1, s2, ..., sN , t, (83) implies (85)
via the conditioning by the sigma-field generated by pXsnqnPJ0,NK.

�

Other parts of Theorem 22 can be extended to the continuous-time framework: of course under
P, X remains a diffusion process associated to the semi-group P . The process X B pXtqtě0 is
Markovian, but in general it will no longer be time-homogenous. The associated semi-group P B
pPs,tq0ďsďt is given by

@ 0 ď s ď t, @ S P S,

#

Ps,tpS, dS
1q B

πpS1q
πpSqKs,tpS, dS

1q

Ks,tpS, dS
1q B Pp4qrXt P dS1|Xs “ Ss

Furthermore, the process pXt,Xtqtě0 is Markovian, indeed, a version of this property was used
in (81). Concerning the setW defined in (59), we get that for any sequence ptnqnPZ` of non-negative
times, we have

Pr@ n P Z`, pXtn ,Xtnq PW s “ 1 (86)

To go further and deduce that W can be taken as state space of pX,Xq under P, we would need
further regularity conditions, e.g. that there is version of X which is continuous and W is closed.

As in Theorem 22, the initial X0 in Theorem 33 have positive weights with respect to π. We
cannot go around this drawback by following the approach leading to Theorem 24, since we did
not investigate the local association in the continuous time setting. Instead of trying to develop an
alternative general approach to get a set-valued dual process starting from a singleton, we refer to
the particular case presented in Subsection 7.1.

7 One-dimensional diffusion processes
As already alluded to, we would like to apply the analysis of the previous section to diffusion
processes. Unfortunately and despite the works of Le Jan and Raimond [14, 15, 16, 17], the theory
of stochastic flows has not been developed in the direction needed by our purposes. The next
subsection presents a treatment of the Brownian case starting from 0 based on a stochastic flow
due to Le Jan and Raimond [16], it leads to a segment-valued dual process directly coupled with the
primal Brownian motion through its local time at 0. It turns out to be equivalent to the classical
Pitman’s theorem [25], which is thus recovered in this way. In the second subsection, we show
how to extend this analysis to simple one-dimensional diffusions, if we had at our disposal nice
stochastic flows. Subsection 7.2 ends by a conjecture about the existence of the strange stochastic
flows we would like to use, as a first step for one-dimensional processes. In Appendix A, we will
take advantage of classical transformations of the state space to transfer the considerations of
Subsection 7.2 to more general elliptic one-dimensional diffusions.

7.1 The Brownian motion case
Here we give a first illustration of how to put in practice the abstract considerations of the previous
section.

Let X B pXsqsě0 be a Brownian motion and let P B pPsqsě0 be the associated semi-group,
whose generator is half the Laplacian B2{2. Note that the Lebesgue measure λ is reversible for P ,
we also interpret P as a self-adjoint semi-group on L2pλq, so that P ˚ “ P .

A priori we are not in the framework of Section 6, since λ cannot be renormalized into a
probability measure. Nevertheless Theorem 33 can be extended to this situation when the elements
of S are furthermore assumed to have a finite weight under λ. Indeed, in (74), Pp3q must be
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replaced by the sigma-finite measure Pp4q b λ and the following expectations have to be changed
into integrations with respect to the corresponding measures (the test functions have to be assumed
to be integrable or non-negative). We end up with a probability measure P, since in its construction,
P2 is conditioned by the event tX0 P X0u, which has the finite weight λpX0q P p0,`8q.

Let B B pBsqsě0 be another Brownian motion, it is not important to specify its initial condition,
since only the associated white noise will be needed. For fixed t ě 0, we consider the following
system of equations, for all y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyqqdB

ptq
s , @ s P r0, ts

Y
ptq

0 pyq “ y
(87)

where sgn is the sign function on R taking the value ´1 on p´8, 0s and 1 on p0,`8q and where
Bptq B pB

ptq
s qsPr0,ts B pBt´sqsPr0,ts is the time-reversed process associated to B at time t ě 0.

Le Jan and Raimond [16] provide a coalescing stochastic flow solution to (87), but it is non-
Wiener, meaning that extra-randomness, in addition to the Brownian motion B, is necessary to its
construction. For the general meaning of a (Wiener) coalescing stochastic flow solution, we refer to
Le Jan and Raimond [15]. Define ψ B pψs,tpyqqps,t,yqP4ˆR via

@ x P R, @ 0 ď s ď t, ψs,tpyq B Y
ptq
t´spyq (88)

(be careful that our convention for the direction of the time is reversed with respect to that of
Le Jan and Raimond [15]: ψs,t should be seen as acting on the state space at time t toward the
state space at time s). The stochastic flow ψ is associated to P , as an immediate consequence of
(87) and of Lévy’s characterization of the Brownian motion. Since the state space is the real line,
the regularity of ψ can be made more precise, bringing us back to the assumptions of Section 6.
Let RpRq stands for the set of mapping from R to R which are non-decreasing and càdlàg.

Lemma 34 There exists a version of ψ which is such that a.s., for any ps, tq P 4, ψs,t P RpRq.

Proof
Due to the temporal continuity and coalescing property of the solution Y B pY ptqs pxqqps,tqP4,xPR of
(87), we get that for any given x ď y P R, we have Y ptqs pxq ď Y

ptq
s pyq a.s. for any ps, tq P 4. So we

can extend pY ptqs pxqqps,tqP4, xPQ into rY B prY
ptq
s pxqqps,tqP4, xPR by

@ ps, tq P 4, @ x P R, rY ptqs pxq B lim
yÑx, yąx, yPQ

Y ptqs pyq

Let rψ be obtained from rY as in (88). By construction, rY is such that a.s. for all ps, tq P 4,
rψs,t P RpRq. Furthermore, according to the point (e) in the Definition 1.6 of Le Jan and Raimond
[15], we have that for any ps, tq P 4 and any x P R, a.s. rY ptqs pxq “ Y

ptq
s pxq. It follows that rY is also

a solution of (87) and thus rψ provides the wanted version of ψ.
�

Remark 35 The validity of Lemma 34 is not related to the choice of sgnp0q. With a similar proof,
one could deduce a version of ψ which is a.s. càglàd. In fact the definition of sgnp0q is irrelevant,
as Er

şt
0 1t0upY

ptq
s pyqq dss “ 0, for all y P R.

˝

From now on, we will only consider a version of ψ as in Lemma 34. As announced in Remark 27,
RpRq is endowed with the Skorohod topology, which insures the measurability of the mapping
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R ˆRpRq Q px, ψq ÞÑ ψpxq. To apply the results of the previous section, we must equally specify
the space of nice subdomains S. As it will become apparent later, it is convenient to consider:

S B tra, bq : a ă b P Ru (89)

This set S is endowed with the topology inherited from R2 and satisfies the properties required in
Section 6. Indeed, let us check the following property, relating Lemma 34 to our choice of S.

Lemma 36 For any ps, tq P 4 the mapping

S Q S ÞÑ ψ´1
s,t pSq P S\ tHu (90)

is measurable.

Proof
First, for given ps, tq P 4, we verify that for ra, bq P S, the set ψ´1

s,t pra, bqq belongs to S\tHu. This
is a consequence of ψs,t P RpRq: to see that ψ´1

s,t pra, bqq is a segment, let x ď y belong to ra, bq. For
z P rx, ys, we have a ď ψs,tpxq ď ψs,tpzq ď ψs,tpyq ă b, so that z P ψ´1

s,t pra, bqq. Next let pxnqnPZ`
be a decreasing family of elements from ψ´1

s,t pra, bqq converging toward some x P R. Then we have
limnÑ8 ψs,tpxnq “ ψs,tpxq and since the l.h.s. belongs to ra, bq, we deduce that x P ψ´1

s,t pra, bqq and
that the segment ψ´1

s,t pra, bqq is closed on the left side. To see that it is open on the right side,
consider x P ψ´1

s,t pra, bqq. As y ą x decreases toward x, we have that ψs,tpyq converges toward
ψs,tpxq, so that for y sufficiently close to x, we have ψs,tpxq ď ψs,tpyq ă a, i.e. y P ψ´1

s,t pra, bqq.
It follows from these observations that for any x ă y P R, we have ψ´1

s,t prx, yqq “ ra, bq, with

a B inftu P R : ψs,tpuq ě xu

b B inftu P R : ψs,tpuq ě yu

Fix u ă v P R and consider A B tra, bq : a ď u, b ą vu Ă S. We compute that

tS P S : ψ´1
s,t pSq P Au “ trx, yq P S : x ď ψs,tpuq and y ą ψs,tpvqu

It follows without difficulty that the mapping defined in (90) is measurable.
�

Note that the Lebesgue measure λ, invariant for the Brownian semi-group P , takes positive and
finite values on S. As in Subsection 3.1, we get that the corresponding conditioning kernel Λ can
be seen as a Markov kernel from S to R.

Fix t ě 0 and a Brownian trajectory Xr0,ts. Conditioning ψ by the event

@ s P r0, ts, ψs,tpXtq “ Xs (91)

implies in particular that

@ s P r0, ts, dXptqs “ ´sgnpXptqs qdB
ptq
s (92)

but it is not clear what happens to the extra-randomness, since this Tanaka’s stochastic differential
equation does not admit a strong solution either (see for instance Exercise 1.19 of Chapter 9 from
Revuz and Yor [28]). Nevertheless we deduce that

@ s P r0, ts, dBptqs “ ´sgnpXptqs qdX
ptq
s (93)

and it follows that the conditioned flow, denoted ϕ B pϕs,tpyqqps,t,yqP4ˆR in Section 6, is given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq (94)
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where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzqqsgnpX

ptq
s qdX

ptq
s

Z
ptq
0 pzq “ z

(95)

This system is the same as (87), once we have replaced Bptq by p´
şs
0 sgnpX

ptq
v q dX

ptq
v qsPr0,ts which

is a standard Brownian motion. In particular the resolution of (95) also requires some extra-
randomness, but this is not a shortcoming for our present purpose since we just need a solution.
Indeed, for any given r ą 0, assume that the initial law of X is υr, the uniform distribution on
r´r, rq. Define for any t ě 0,

$

’

’

’

&

’

’

’

%

R_,rt B inf
!

z P R : Z
ptq
0 pzq ď r

)

“ sup
!

z P R : Z
ptq
0 pzq ă r

)

R^,rt B inf
!

z P R : Z
ptq
0 pzq ě ´r

)

X
prq
t B rR^,r, R_,rq “ ϕ´1

0,t pr´r, rqq

(96)

where for the last equality we took into account the proof of Lemma 36. Remark that Xprq B

pX
prq
t qtě0 remains non-trivial, namely that it never collapses to a singleton or to the empty set: this

is a consequence of the fact that Xt P Xt and of the structure of the elements of S. We are now in
position to apply Theorem 33 to deduce:

Theorem 37 For any r ą 0, the process Xprq is a set-valued dual for the Brownian motion X
starting from υr.

We would like to let r go to zero to be able to get X starting from 0. It will also provide a more
explicit set-valued dual. Indeed, assume that X starts from 0 and consider the coalescing flow ϕ
defined by (94) and (95). By analogy with (96), define the process X B pXptqqtě0 via

@ t ě 0, Xptq B ϕ´1
0,t pt0uq (97)

We still have that for any t ě 0, Xptq is a segment closed on the left. We will see in the proof of
Proposition 38 that for any t ą 0, the right boundary of Xptq is open (but it is closed at time 0,
since Xp0q “ t0u). Anyway, the closure of Xptq is rR^, R_s with

R_t B suptz P R : Z
ptq
0 pzq “ 0u

R^t B inftz P R : Z
ptq
0 pzq “ 0u

and these quantities can be described explicitly:

Proposition 38 We have for any t ě 0,

R_t “ L0
t pXq ` |Xt|

R^t “ ´pL0
t pXq ` |Xt|q

where L0pXq B pL0
t pXqqtě0 is the local time of X at 0.

Proof
Due to the fact that ϕ is a coalescing flow and that X0 “ 0 we have

R_t B suptz P R : D s P r0, ts with Zptqs pzq “ Xptqs u

R^t B inftz P R : D s P r0, ts with Zptqs pzq “ Xptqs u
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From (95), we have for any z P R,

@ s P r0, ts, sgnpZptqs pzqqdZ
ptq
s pzq “ sgnpXptqs qdX

ptq
s (98)

and Tanaka’s formula (see e.g. Chapter 6 of Revuz and Yor [28]) implies that

@ s P r0, ts, d|Zptqs pzq| ´ dL
0
spZ

ptqpzqq “ d|Xptqs | ´ dL
0
spX

ptqq (99)

where L0pZptqpzqq B pL0
spZ

ptqpzqqqsPr0,ts and L0pXptqq B pL0
spX

ptqqqsPr0,ts are respectively the local
times of Zptqpzq and Xptq at 0.

Fix z ą x B X
ptq
0 “ Xt, assume that x ě 0 and define

τz B infts P r0, ts : Zptqs pzq “ 0u

(with the convention that infpHq “ `8). Consider the case τz ă `8 and let us show thatXptqτz “ 0.
The argument is by contradiction, assuming that Xptqτz “ 0. Define

γ B supts P r0, τzs : Xptqs “ 0u

with the convention that γ “ ´8 if the set in the r.h.s. is empty. For s P r0 _ γ, τzq, we have
Z
ptq
s pzq ą 0, L0

spZ
ptqpzqq “ 0 and L0

spX
ptqq “ L0

0_γpX
ptqq. It follows from (99) that

Z
ptq
0_γpzq ´ |X

ptq
0_γ | “ Zptqτz pzq ´ |X

ptq
τz |

“ ´|Xptqτz |

ă 0

i.e. Zptq0_γpzq ă |X
ptq
0_γ |. Note that depending on γ P r0, ts or γ “ ´8, we have Xptq0_γ “ 0 or Xptq0_γ ą 0

(since when γ “ ´8, Xptq keeps the same sign on r0, τzs, which is the sign of x). In any case, we
end up with Zptq0_γpzq ă X

ptq
0_γ , which is in contradiction with the fact that Zptqpxq remains above

Xptq by the coalescing property.
Define

σz B infts P r0, ts : Zptqs “ Xptqs u

Due to the fact that Xptqτz “ 0 when τz ă `8, we deduce that σz ď τz. Integrating (99) between
the times 0 and σz, we thus get

σz ă `8 ñ |Zptqσz | ´ z “ |Xptqσz | ´ x´ L
0
σzpX

ptqq

ñ z “ x` L0
σzpX

ptqq (100)

Since

R_t “ maxtz ě x : σz ă `8u

we get that

R_t “ x` L0
σR_t

pXptqq (101)

Let us show that σ B σR_t is equal to t. Again the argument is by contradiction: assume that
σ ă t. Define

τ B infts P rσ, ts : Xptqs “ 0u
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Since 0 is an accumulation point of ts P r0, ts : Xs “ 0u, we get that τ ă t. Let us show that
Xt´τ contains a right neighborhood of 0, namely that for z sufficiently close to 0`, we have that
Zpt´τqpzq coalesces with Xpt´τq. Indeed, if this was not true, according to the first part of the proof
above, we would have that Zpt´τqpzq does not touch 0 for any z ą 0. From (95), we deduce that

@ z P p0,`8q, @ s P r0, τ s, Zpt´τqs pzq “ z ` βs

where β B pβsqsPr0,τ s is the Brownian motion defined by

@ s P r0, τ s, βs B

ż s

0
signpXpt´τqu q dXpt´τqu

This shows that Zpt´τqpzq touches 0 for any z P p0,´ infsPr0,τ s βss, a contradiction.
Using the right continuity of our stochastic flows, we get

lim
zÑR_t

Zptqτ pzq “ Zptqτ pR
_
t q

“ Xptqτ

“ 0

Thus for z in a right neighborhood of R_t , we get that Zptqτ pzq belongs to Xt´τ and by consequence
that z P Xt. This is in contradiction with the definition of R_t and we finally conclude that σ “ t.

Coming back to (101), we get that

R_t “ x` L0
t pX

ptqq

“ Xt ` L
0
t pXq (102)

under the previous assumption that Xt “ x ě 0.
When Xt ă 0, consider

ς B infts P r0, ts : Xptqs “ 0u

We deduce from (98) that

@ s P r0, ςs, Zptqs p´xq “ ´Xptqs pxq

In particular, we get

R_t “ suptz ě ´x : Zptqς P Xt´ςu

Note that for all z ě ´x, we have

@ s P r0, ςs, Zptqs pzq ´ z “ Zptqs p´xq ´ p´xq

so that

R_t “ ´x`R_t´ς

“ |Xt| `R
_
t´ς (103)

Using (102) with t replaced by t´ ς, we get

R_t´ς “ Xt´ς ` L
0
t´ςpXq

“ 0` L0
t pXq

Recalling (103), we conclude to the validity, in all cases, of

R_t “ |Xt| ` L
0
t pXq
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By symmetry, the expression for R^t is easily deduced:

R^t B ´ supt´z P R : D s P r0, ts with Zptqs pzq “ Xptqs u

“ ´ suptz P R : D s P r0, ts with Zptqs p´zq “ Xptqs u

“ ´ suptz P R : D s P r0, ts with Zptqs pzq “ ´X
ptq
s u

“ ´p| ´Xt| ` L
0
t p´Xqq

“ ´p|Xt| ` L
0
t pXqq

�

In particular, we get that for any t ą 0, Xt P S and is not reduced to a singleton. This property
is in fact sufficient to deduce the following variant of Pitman’s theorem.

Theorem 39 The process X “ pr´pL0
t pXq ` |Xt|q, L

0
t pXq ` |Xt|qqtě0 is a set-valued dual for the

Brownian motion X starting from 0.

Proof
The property

@ t ě 0, LpXr0,ts|Xq “ LpXr0,ts|Xr0,tsq

is obvious from the explicit expression for X.
The important point is to prove that

@ t ě 0, LpXt|Xr0,tsq “ ΛpXt, ¨q (104)

To take advantage from Theorem 37, enlarge the underlying probability space for X so that it
contains a random variable U independent from X and uniformly distributed on r0, 1s. For any
n P Z`, let tn B 1{pn` 1q and define the random variable Un P p|Xtn |,`8q by

ż Un

|Xtn |
u exp

ˆ

X2
tn ´ u

2

2tn

˙

du

tn
“ U (105)

The interest of Un is that, denoting X
pnq
tn B r´Un, Unq P S, the law of pXtn ,X

pnq
tn q on RˆS is given

by

PrXtn P dx, X
pnq
tn P dSs “ νpnqpdSqΛpS, dxq (106)

where νpnq is the probability distribution on Ssym B tr´u, uq : u ě 0u Ă S described by

νpnqpdr´u, uqq B 2u2 expp´u2{p2tnqqdu{
a

2πt3n

Indeed, we compute that
ż

Ssym

νpnqpdSqΛpS, dxq “ expp´x2{p2tnqqdx{
?

2πtn

“ PrXtn P dxs

and (106) is a consequence of Bayes’ formula.
Shifting the origin of time to tn, we apply the considerations preceding Theorem 37 to the

trajectory Xrtn,`8q and to the initial set-valued variable X
pnq
tn to construct

@ t ě tn, X
pnq
t B ϕ´1

tn,tpX
pnq
tn q

“ tz P R : ϕtn,tpzq P r´Un, Unqu
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According to Theorem 37, we have

@ t ě tn, LpXt|X
pnq
rtn,ts

q “ ΛpX
pnq
tn , ¨q (107)

For any t ą 0 and n P Z`, denote

r´U
pnq
´ ptq, U

pnq
` ptqq B X

pnq
t

According to Lemma 40 below, we have a.s.
#

limnÑ8 U
pnq
´ ptq “ R_t

limnÑ8 U
pnq
` ptq “ R_t

(108)

Consider p P N, 0 ă s1 ă s2 ă ¨ ¨ ¨ ă sp “ t and g1, g2, ..., gp some continuous and bounded functions
from R2 to R. We associate to these ingredients the mapping

G : Sp0,ts Q pras, bsqqsPp0,ts ÞÑ g1pas1 , bs1qg2pas2 , bs2q ¨ ¨ ¨ gppasp , bspq

Let h : RÑ R be a measurable and bounded function. From (108), considered with t replaced by
the s1, s2, ..., sp, we get the a.s. convergence of GpXpnq

rtn,ts
q toward GpXr0,tsq for n large. We deduce

that

lim
nÑ8

ErhpXtqGpX
pnq
rtn,ts

qs “ ErhpXtqGpXr0,tsqs

Next, taking into account that Xt P S, we also deduce from (108) the a.s. convergence of ΛrhspX
pnq
t q

toward ΛrhspXtq and consequently

lim
nÑ8

ErΛrhspXpnqt qGpX
pnq
rtn,ts

qs “ ErΛrhspXtqGpXr0,tsqs

It follows from (107) that

ErhpXtqGpXr0,tsqs “ ErΛrhspXtqGpXr0,tsqs

Since this is true for all h and G as above and that X0 “ t0u is deterministic, we get (104).
�

Lemma 40 For any t ą 0, the convergences (108) are satisfied a.s.

Proof
Since X

pnq
t “ r´U

pnq
´ ptq, U

pnq
` ptqq and X “ r´R_t , R

_
t q, it is sufficient to see that for any z P R

z R Xt ñ lim
nÑ8

1
X
pnq
t
pzq “ 0 (109)

z P p´R_t , R
_
t q ñ lim

nÑ8
1
X
pnq
t
pzq “ 1 (110)

Let us come back to (105), which is equivalent to

expp´U2
n{p2tnqq “ p1´ Uq expp´pXtnq

2{p2tnqq

namely

U2
n “ pXtnq

2 ´ 2tn lnp1´ Uq

where we see that limnÑ8 Un “ 0.
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We begin by showing (109): when z R Xt, we have ϕ0,tpzq “ 0. So since limnÑ8 ϕtn,tpzq “
ϕ0,tpzq, it appears that for n P Z` large enough, we cannot have ϕtn,tpzq P r´Un, Unq, i.e. z ends
up not belonging to X

pnq
t .

We now come to (110). From (100) we deduce that for z in the open set p´R_t , R_t q, we have
σz ă t, meaning that the trajectory r0, ts Q s ÞÑ ϕs,tpzq is equal to Xs for s small enough. Thus for
n large enough, we have

|ϕtn,tpzq| “ |Xtn |

ă
a

pXtnq
2 ´ 2tn lnp1´ Uq

“ Un

so that z belongs to X
pnq
t .

�

Remark 41 Define

@ t ě 0, Mt B maxtXs : s P r0, tsu

The classical Pitman’s theorem [25] states that the process rX “ pr´p2Mt ´Xt, 2Mt ´Xtqqtě0 is a
set-valued dual for the Brownian motion X starting from 0 and that p2Mt ´Xtqtě0 is a Bessel-3
process. The process pL0

t pXq ` |Xt|qqtě0 is also a Bessel-3 process, as a consequence of Lévy’s
theorem (see e.g. Theorem 2.3 of Chapter 6 of Revuz and Yor [28]).

A segment-valued process pYtqtě0 is said to be more λ-expansive than another segment-valued
process ppYtqtě0, when for any fixed t ě 0, the volume λppYtq is stochastically dominated by λpYtq.
Thus the processes X and rX are iso-λ-expansive. It can be proven, by extending the arguments of
the Remark 2.39 of Diaconis and Fill [10] (see also Fill and Lyzinski [11] or [20]), that if pYtqtě0 is
a set-valued dual for the Brownian motion X starting from 0, then it is less expansive than rX, i.e.
X and rX are two examples of the most expansive set-valued duals for X.

˝

Let us deduce more precisely the classical Pitman’s theorem [25] from Theorem 39. With the
notations of the above remark, Lévy’s theorem asserts the identity in law

pMt ´Xt,Mtqtě0
L
“ p|Xt|, L

0
t pXqqtě0

We infer for any t ě 0 the identity in law

ppL0pXq ` |X|qr0,ts, |Xt|q
L
“ pp2M ´Xqr0,ts,Mt ´Xtq

“ pp2M ´Xqr0,ts, p2Mt ´Xtq{2´Xt{2q

From Theorem 39, the distribution of |Xt| knowing pL0pXq ` |X|qr0,ts is the uniform distribution
over r0, L0

t pXq`|Xt|s. It follows that the distribution of p2Mt´Xtq{2´Xt{2 knowing p2M´Xqr0,ts
is the uniform distribution over r0, 2Mt ´ Xts. To get Pitman’s theorem, it remains to note that
for any constant r ě 0, when U is a random variable such that r{2´ U{2 is uniformly distributed
on r0, rs, then U is uniformly distributed on r´r, rs.

These arguments can be reversed to conversely deduce Theorem 39 from Pitman’s theorem.
This implication is succinctly mentioned by Yor [32] (at the end of page 4).

Remark 42 Despite the set-valued dual processes X B pr´pL0
t pXq ` |Xt|q, L

0
t pXq ` |Xt|sqtě0 and

rX B pr´p2Mt ´Xtq, 2Mt ´Xtsqtě0 are iso-λ-expansive, some of their features are quite different:
the Brownian motion X never hits the boundary of X except at time 0 (since for t ą 0, we have
L0
t pXq ą 0), while X recurrently hits the upper boundary of rX.
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˝

An potential advantage of the stochastic flow approach to set-valued dual processes is its ex-
pected flexibility in the choice of the stochastic flow. In the next section, we will present a con-
jectural but promising stochastic flow associated to the Brownian motion, which should enable to
directly recover the classical Pitman theorem by mimicking the random mapping proof considered
in the finite setting. But one can imagine a lot of other examples, here is another one, which is a
Wiener solution to a system of coalescing stochastic flow equations.

Let B B pBsqsě0 and W B pWsqsě0 be two independent Brownian motions. For fixed t ě 0, we
consider the following system of equations, for any y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq `W

ptq
s qdB

ptq
s , @ s P r0, ts

Y
ptq

0 pyq “ y
(111)

where W ptq B pW
ptq
s qsPr0,ts B pWt´sqsPr0,ts and Bptq B pB

ptq
s qsPr0,ts B pBt´sqsPr0,ts are time-reversed

processes. Again define ψ B pψs,tpyqqps,t,yqP4ˆR via

@ x P R, @ 0 ď s ď t, ψs,tpyq B Y
ptq
t´spyq (112)

With the help of Le Jan and Raimond [17], we get

Proposition 43 There exists a Wiener solution of (111) such that ψ is coalescing stochastic flow
associated to P and such that a.s., for any ps, tq P 4, ψs,t P RpRq.

To be a Wiener solution of (111) means that the filtration generated by the stochastic flow is
included into the filtration generated by the white noises associated to B and W .

Proof
Consider Z´ B pZ´psqqsě0 and Z` B pZ`psqqsě0 two independent Brownian motions (not as-
sumed to be standard). Le Jan and Raimond [17] show there is coalescing stochastic flow ξ B
pξu,vpxqqpu,v,xqP4ˆR solution to the following system of equations, for any x P R and 0 ď u ď v,

"

dvξu,vpxq “ 1ξu,vă0dZ´pvq ` 1ξu,vě0dZ`pvq
ξu,upxq “ x

(113)

Furthermore the coalescing stochastic flow ξ is a.s. unique and a Wiener solution: it is con-
structed without resorting to extra-randomness outside Z´ and Z`. Fix t ě 0 and consider the
two independent Brownian motions Zptq´ and Zptq` over the time interval r0, ts given by

@ s P r0, ts,

$

&

%

Z
ptq
` psq “

W
ptq
s ´B

ptq
s?

2

Z
ptq
´ psq “

W
ptq
s `B

ptq
s?

2

(114)

Let pξptqu,vpxqqpu,v,xqP4r0,tsˆR be the corresponding solution of (113) and define

@ y P R, @ s P r0, ts, Y ptqs pyq B
?

2ξ
ptq
0,s

ˆ

y `Wt
?

2

˙

´W ptq
s

Via immediate substitution, we check that pY ptqs pyqqsPr0,ts, yPR is a solution of (111).
Let t ě 0 be a free variable again. From (112), we deduce a family of random variables

ψ B pψs,tpyqqps,t,yqP4ˆR. To check that it is a stochastic flow, let us first remark that

@ x P R, @ t ě 0, @ s P r0, ts, @ v P r0, ss, ξ
psq
0,s´vpξ

ptq
0,t´spxqq “ ξ

ptq
0,t´vpxq (115)
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Indeed, consider for any fixed x P R, t ě 0 and s P r0, ts,

@ u P r0, ss,

#

χu B ξ
psq
0,upξ

ptq
0,t´spxqq

ζu B ξ
ptq
0,t´s`upxq

By definition, we have

dχu “ 1χuă0dZ
psq
´ puq ` 1χuě0dZ

psq
` puq

“ 1χuă0dZ´ps´ uq ` 1χuě0dZ`ps´ uq

“ 1χuă0dZ
ptq
´ pt´ s` uq ` 1χuě0dZ

ptq
` pt´ s` uq

where Z˘ are defined as in (114), with the exponents ptq removed. Thus pχuquPr0,ss and pζuquPr0,ss
satisfy the same evolution equation. Since we also have χ0 “ ξ

ptq
0,t´spxq “ ζ0, we get (115) from the

uniqueness result of Le Jan and Raimond [17] (see also Prokaj [26]).
Let us deduce from (115) the flow property of ψ. Indeed, we have for y P R, t ě 0, s P r0, ts and

v P r0, ss,

ψv,spψs,tpyqq “ Y
psq
s´vpY

ptq
t´spyqq

“
?

2ξ
psq
0,s´v

˜

Y
ptq
t´spyq `Ws

?
2

¸

´W
psq
s´v

“
?

2ξ
psq
0,s´v

˜?
2ξ
ptq
0,t´sppy `Wtq{

?
2q ´W

ptq
t´s `Ws

?
2

¸

´Wv

“
?

2ξ
psq
0,s´v

ˆ

ξ
ptq
0,t´s

ˆ

y `Wt
?

2

˙˙

´Wv

“
?

2ξ
ptq
0,t´v

ˆ

y `Wt
?

2

˙

´W
ptq
t´v

“ Y
ptq
t´vpyq

“ ψv,tpyq

Finally, the association of ψ to P is an immediate consequence of (111) and of Lévy’s charac-
terization of the Brownian motion and the last assertion of the lemma is proven as in Lemma 34.

�

Most of the previous arguments for the stochastic flow defined in (88) can now be extended to the
stochastic flow considered in (112). E.g. fix t ě 0 and a Brownian trajectory Xr0,ts. Conditioning
ψ by the event described in (91) amounts to asking that Br0,ts satisfies

@ s P r0, ts, dXptqs “ ´sgnpXptqs `W ptq
s qdB

ptq
s

Indeed, Prokaj [26] has shown (taking into account a transformation similar to that used in the
proof of Proposition 43) that this equation in Xptq admits a unique strong solution. We get that

@ s P r0, ts, dBptqs “ ´sgnpXptqs `W ptq
s qdX

ptq
s

and it follows that the conditioned flow ϕ B pϕs,tpyqqps,t,yqP4ˆR is given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq

where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzq `W

ptq
s qsgnpX

ptq
s `W

ptq
s qdX

ptq
s

Z
ptq
0 pzq “ z
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Then Theorem 37 is still valid, with Xprq defined as in (96), for any r ą 0. The troubles begin
with the process uX defined as in (97), for which we did not find an explicit expression. Nevertheless
we believe that this process uX is still a set-valued dual for the Brownian motion X starting from 0
and not reduced to a singleton, for all positive times. Furthermore, we think that this uX is strictly
less λ-expansive (in the sense of Remark 41) than the process X described in Theorem 39.

More generally, for any η ą 0 it should be possible to solve the coalescing stochastic flow
equation

@ y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq ` ηW

ptq
s qdB

ptq
s

Y
ptq

0 pyq “ y
(116)

and to show that the corresponding segment-valued are less and less λ-expansive as η increases (see
[20] for certain families of segment-valued dual processes satisfying this monotonicity property, with
λ replaced by the underlying invariant probability). Unfortunately and despite the work of Prokaj
[26] giving us a strong solution Y ptqpyq for any fixed y P R, we did not find a reference insuring the
existence of a coalescing stochastic flow solution for (116), for η P p0,`8qzt1u.

7.2 Conjectures about one-dimensional diffusions processes
Here we propose an extension of Pitman’s theorem [25] (see also Rogers and Pitman [29]) to simple
one-dimensional diffusion processes. The considerations of this subsection remain hypothetical since
they assume the existence of convenient coalescing stochastic flows, see in particular Conjecture 47.

Let be given a smooth and bounded mapping b : RÑ R. We consider the stochastic differential
equation

dXt “ dWt ` bpXtqdt (117)

where W B pWtqtě0 is a standard Brownian motion.
The process X is reversible with respect to the measure π, whose density, still denoted π, with

respect to the Lebesgue measure on R is given by

@ x P R, πpxq B exp

ˆ

2

ż x

0
bpyq dy

˙

(118)

Again the measure π gives an infinite weight to R and we must take the same precautions as in
the previous subsection.

Let P B pPtqtě0 be the semi-group associated to X, it is self-adjoint in L2pπq, so that P ˚ “ P .
We renew Definition (89) for the set of nice subsets. The kernel Λ is still Markovian from S to R,
corresponding to the elementary conditioning operation under π.

Let B B pBsqsě0 be another Brownian motion. For fixed x0 P R and t ě 0, we consider the
following system of equations, for all y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq ´ x0qdB

ptq
s ` bpY

ptq
s pyqqds, @ s P r0, ts

Y
ptq

0 pyq “ y
(119)

with the same conventions as in Subsection 7.1, in particular for the sign. Let us assume we have
at our disposal a coalescing flow solution to (119). Lemma 34 enables us to get a version which is
such that for any s P r0, ts, the mapping R Q y ÞÑ Y

ptq
s pyq is non-decreasing and càdlàg. Again to

such a version we associate ψ B pψs,tpyqqps,t,yqP4ˆR via

@ 0 ď s ď t, @ y P R, ψs,tpyq B Y
ptq
t´spyq (120)
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Subsequently, we can partially adapt the strategy of the previous subsection. Fix t ě 0 and a
trajectory Xr0,ts associated to P and whose initial distribution is ΛpX0, ¨q. Conditioning ψ by the
event (91) implies that we have

@ s P r0, ts, dXptqs “ ´sgnpXptqs ´ x0qdB
ptq
s ` bpXptqs qds

We deduce that

@ s P r0, ts, dBptqs “ ´sgnpXptqs ´ x0qpdX
ptq
s ´ bpXptqs qdsq (121)

and it follows that the conditioned flow, denoted ϕ B pϕs,tpyqqps,t,yqP4ˆR in Section 6, is given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq (122)

where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzq ´ x0qsgnpX

ptq
s ´ x0qpdX

ptq
s ´ bpX

ptq
s qdsq ` bpZ

ptq
s pzqqds

Z
ptq
0 pzq “ z

(123)

The observations mentioned after (95) are still valid. For given r^, r_ ą 0, assume that the initial
law of X is Λprr^, r_q, ¨q. Define for any t ě 0,

$

’

’

’

&

’

’

’

%

R_t B inf
!

z P R : Z
ptq
0 pzq ď r_

)

“ sup
!

z P R : Z
ptq
0 pzq ă r_

)

R^t B inf
!

z P R : Z
ptq
0 pzq ě r^

)

Xt B rR^, R_q “ ϕ´1
0,t prr

^, r_qq

where for the last equality we took into account the proof of Lemma 36, which can also be ap-
plied here. Thus the process X B pXtqtě0 remains non-trivial and as in the previous subsection,
Theorem 33 would lead to the following result, if we had at our disposal a solution to (119):

Conjecture 44 The process X is a set-valued dual for the diffusion process X starting from the
distribution Λprr^, r_q, ¨q.

˝

The above conjecture should hold for any x0 P R, but we would like the dual process X to be
quite large and this requires a good choice of x0. In Subsection 7, we could have replaced sgnp¨q by
sgnp¨ ´ x0q, but the corresponding dual process X would have stayed trivial until the first time τ
that X, the Brownian motion starting from 0, hits x0:

@ t P r0, τ s, Xt “ tXtu

When, as in Theorem 37, the Brownian motion starts from the uniform distribution on r´r, rq for
some r ą 0, the set valued dual is a translation of X0 “ r´r, rq until the closure of Xt contain x0,
in particular the volume of Xt remains constant until the occurrence of this event.

In the setting of this subsection, we expect similar behaviors. In particular if we want Xt to be
quite large for small times t ě 0, it seems preferable to take x0 P X0. Conjecture 47 below can be
seen as an attempt to keep x0 in the closure of X, by letting x0 evolve and be the supremum of X.

We are equally wondering about letting X start from a deterministic point. From the above
observation, it seems wise to take x0 equal to this initial point. So let us assume that (119) admits
a solution when X0 “ tx0u. As in Subsection 7.1, we are led to introduce

R_t B suptz P R : Z
ptq
0 pzq “ x0u

R^t B inftz P R : Z
ptq
0 pzq “ x0u

Xt B rR_t , R
^
t q
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Unfortunately, we did not found a nice explicit expression of X in terms of X, as in Proposi-
tion 38, this prevents us from to conclude, as in Proposition 39 that X is a non-trivial set-dual
associated to X starting from x0. Nevertheless, here is an indication going in this direction.

Lemma 45 For any t ą 0, Xt is a right neighborhood of Xt.

Proof
Fix t ą 0 as well as ε P pmintXs : s P r0, tsu, x0q. Define

τ B infts ą 0 : Xs “ εu P p0, tq

γ B supts P r0, τ s : Xs “ x0u

Consider the flow pF ptqs pzqqzPR, sPr0,ts solution of the system
#

dF
ptq
s pzq “ ´pdX

ptq
s ´ bpX

ptq
s qdsq ` bpF

ptq
s pzqqds

F
ptq
0 pzq “ z

(124)

It is a regular flow: for any s P r0, ts, the mapping R Q x ÞÑ F
ptq
s pxq is a diffeomorphism of R. This

is also true for the random times τ and γ: the mapping R Q x ÞÑ F
pτq
τ´γpxq is a diffeomorphism.

Consider the unique ξ P R such that F pτqτ´γpξq “ x0.
Let us show that for s ą 0 sufficiently small, F pτqτ´γ´spξq ą x0. Indeed, we have

F
pτq
τ´γ´spξq ´ x0 “ ´pF

pτq
τ´γpξq ´ F

pτq
τ´γ´spξqq

“

ż τ´γ

τ´γ´s
dXptqu ´

ż τ´γ

τ´γ´s
bpXptqu q ` bpF

ptq
u pzqq du

“ x0 ´X
pτq
τ´γ´s ´

ż τ´γ

τ´γ´s
bpXptqu q ` bpF

ptq
u pzqq du (125)

If Xr0,ts was a Brownian motion, the process x0 ´Xrγ,τ s would be a Bessel-3 process starting from
0 and stopped when it reaches ´ε, according to Williams’ Brownian path decomposition (see e.g.
Theorem 4.9 of Chapter 7 of Revuz and Yor [28]). From Wichura [31], we would then be able to
get that a.s.

lim inf
sÑ0`

x0 ´Xγ`s
a

s{ lnplnp1{sqq
ą 0

This behavior is shared by the diffusion process Xr0,ts, since Girsanov theorem insures that its law is
equivalent to that of the Brownian motion on the time interval r0, ts, see also Bass and Erickson [6].
Furthermore, we have that

ˇ

ˇ

ˇ

ˇ

ż τ´γ

τ´γ´s
bpXptqu q ` bpF

ptq
u pzqq du

ˇ

ˇ

ˇ

ˇ

ď 2 }b}8 s

thus (125) implies that for s ą 0 small,

F
pτq
τ´γ´spξq ´ x0 „ x0 ´Xγ`s

ą 0

As a consequence, consider σ P p0, τ ´ γq such that

@ s P p0, σs,

#

X
pτq
τ´γ´spξq ă x0

F
pτq
τ´γ´spξq ą x0
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From (123), we deduce that

@ s P p0, σq, F
pτq
τ´γ´spξq “ Z

pτq
τ´γ´spξq

Define

ζ B F
pτq
τ´γ´σpξq

so that

Zpγ`σqσ pζq “ F pγ`σqσ pζq

“ x0

“ Xpγ`σqσ

We deduce that ζ P Xγ`σ. Note that ζ ą x0 ą Xγ`σ, it follows that Xγ`σ is a right neighborhood
of Xγ`σ. Finally, taking into account the right continuity of R Q z ÞÑ Z

ptq
t´γ´σpzq, we obtain that

Xt is a right neighborhood of Xt.
�

Remarks 46
(a) The above proof can be adapted to show that for any t ą 0, there exists s P p0, tq such

that Xs is a neighborhood of Xs. But this is not sufficient to get that Xt is a neighborhood of Xt.
Nevertheless, we believe it is true. This is specific to the set-valued duals to be constructed with
flows of the form (119), it is not true for the classical Pitman’s dual, recall Remark 42, and cannot
be expected for set-valued duals to be constructed with flows of the form (126) below.

(b) Proposition 38 is still valid in the particular case where b is given by the non-regular drift

@ x P R, bpxq B c signpxq

where c P R is a fixed constant. Indeed, in general (98) should be replaced by

@ s P r0, ts, sgnpZptqs pzqqpdZ
ptq
s pzq ´ bpZ

ptq
s pzqqdsq “ sgnpXptqs qpdX

ptq
s ´ bpXptqs qdsq

and one exactly recovers (98) with b of the above form.
˝

The existence of a convenient coalescent flow solution to the system (119) seems a reasonable
conjecture and hopefully could be worked out using the techniques of Le Jan and Raimond [15, 16,
17], but is out of the scope of this paper. What we really would like to do is to solve the following
more challenging one. It will probably require a fixed point approach and thus a global topological
structure on an adequate set of flows, in the spirit of Remark 27. The conjecture below is a direct
transposition of the approach presented in Section 4 for birth and death chains and it would enable
to construct set-valued dual processes for one-dimensional diffusions in a similar way.

Conjecture 47 As at the beginning of this subsection, let B B pBsqsě0 be a Brownian motion and
fix some X0 P S. We are interested in the following system of equations, for all t ě 0 and y P R,

$

’

&

’

%

dY
ptq
s pyq “ sgnpR_t´s ´ Y

ptq
s pyqqdB

ptq
s ` bpY

ptq
s pyqqds, @ s P r0, ts

Y
ptq

0 pyq “ y

R_t´s B supty P R : Y
pt´sq
t´s pyq ď maxpX0qu

(126)

Obviously there is a measurability problem in (126), since R_t´s belongs to the future at time s of
the filtration generated by Bptq. Nevertheless, we believe that for any s ě 0, Rs will be independent
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from the white noise of B after time s, namely from the sigma-field generated by the Bv´Bu, for v ě
u ě s. In particular, the solution will be such that the process p

şs
0 sgnpY

ptq
u pyq´R_t´uqdB

ptq
u qsPr0,ts is a

Brownian motion in the filtration generated by Bptq, so that for any y P R, Y ptqpyq B pY ptqs pyqqsPr0,ts
is a diffusion associated to P . This solution should be sufficiently regular and in particular the
process R_ B pR_t qtě0 should be a continuous semi-martingale.

˝

A Reduction of one-dimensional diffusion processes
The purpose of this appendix is to show that it is not very restrictive to only consider diffusions of
the form (117).

Consider the second order operator L B aB2 ` bB on C8pIq, where a ą 0 and b are smooth
functions on the open interval I B pι´, ι`q Ă R. Up to performing a shift, assume that 0 P I. The
corresponding scale and speed functions ν and µ are defined by

@ x P I,

#

νpxq B exp
`

´
şx
0
b
apyq dy

˘

µpxq B 1
2apxqνpxq

(127)

By a usual abuse of notation, ν and µ will also stand for the the scale and speed measures
which admit respectively the scale and speed functions as densities with respect to the Lebesgue
measure restricted to I.

Let pXtqtPr0,τq be a diffusion whose generator is L (in the sense of martingale problems), where
τ ą 0 is its (random) explosion time, which is such that

lim
tÑτ´

Xt “ ι´ or lim
tÑτ´

Xt “ ι`

To simplify the notation, we extend the above diffusion to all times via

@ t P rτ,`8q, Xt B lim
sÑτ´

Xs

so that X B pXtqtě0 is V -valued with V B rι´, ι`s Ă R. The process X is absorbed at ι´ and ι`

(if it reaches them). It is sometimes called a minimal Markov process associated to L and its law
is determined by its initial law LpX0q.

Denote

S B trz´, z`q : z´, z` P V and z´ ă z`u

S̄ B S\ ttzu : z P V X Ru

and as usual, define the Markov kernel Λ from S̄ to V via

@ z B rz´, z`q P S̄, Λprz´, z`q, ¨q B

$

&

%

δx , if z` “ z´

µprz´,z`qX¨q
µpzq , otherwise

We are looking for a Λ-spreading forX, namely a set-valued dual process X B pXtqtě0 such that
for any t ą 0, we have Xt P S. We show below how to come back to the setting of Subsection 7.2.

First, let us check that the problem of finding a Λ-spreading is invariant by diffeomorphisms.
More precisely, let φ be a smooth function from I to R, whose derivative is positive (in particular it

60



never vanishes). There will be no loss of generality in assuming that φp0q “ 0. Let rI B prι´,rι`q B
φpIq and also interpret φ as an operator Φ from C8prIq to C8pIq via

@ f P C8prIq, Φrf s B f ˝ φ (128)

Consider the operator rL B Φ´1 ˝L ˝Φ on C8prIq. It is not difficult to check that if X is a diffusion
associated to L, then rX B pφpXtqqtě0 is a diffusion associated to rL (where φ has been extended to
rV by φpι´q B rι´ and φpι`q B rι`).

Lemma 48 Assume that X is a Λ-spreading for X. Then rX B pφpXtqqtě0 is a rΛ-spreading for rX.

Proof
Since φ is an homeomorphism between I and rI, all the defining properties of a Λ-spreading are
immediate to obtain, except (79), which requires the knowledge of rΛ. So let us compute rL. Recall
that we have

@ f P C8pIq, @ F P C8pfpIqq, LrF ˝ f s “ F 1rf sLrf s ` F 2rf sΓrf s

(this property is equivalent to the fact that L generates processes with continuous trajectories),
where the carré du champ operator Γ is defined by

@ f P C8pIq, Γrf s B
1

2
pLrf2s ´ 2fLrf sq

“ apBfq2

It follows that for any F P C8prIq, we have the change of coordinate formula:

LrF ˝ φs “ ΓrφsF 2rφs ` LrφsF 1rφs

so that

rLrF s “ pΓrφs ˝ φ´1qF 2 ` pLrφs ˝ φ´1qF 1

namely

ra “ Γrφs ˝ φ´1 “ papφ1q2q ˝ φ´1 (129)
rb “ Lrφs ˝ φ´1 “ paφ2q ˝ φ´1 ` pbφ1q ˝ φ´1 (130)

We deduce that

@ x P rI, rνpxq “ exp

˜

´

ż x

0

rbpyq

rapyq
dy

¸

“ exp

˜

´

ż φ´1pxq

0

rbpφpyqq

rapφpyqq
φ1pyqdy

¸

“ exp

˜

´

ż φ´1pxq

0

ˆ

φ2

pφ1q2
pyq `

b

aφ1
pyq

˙

φ1pyqdy

¸

“ exp

˜

´

ż φ´1pxq

0

φ2

φ1
pyq `

bpyq

apyq
dy

¸

“
φ1p0q

φ1pφ´1pxqq
νpφ´1pxqq

“ φ1p0qνpφ´1pxqqpφ´1q1pxq
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Similarly, we get

@ x P rI, rµpxq “
1

2rapxqrνpxq

“
1

2papφ1q2q ˝ φ´1φ1p0qνpφ´1pxqqpφ´1q1pxq

“ µpφ´1pxqqpφ´1q1pxq{φ1p0q

It just means that rν and rµ are the images of ν and µ by φ, up to the factors φ1p0q and 1{φ1p0q. It
follows that

@ z B rz´, z`q P r̄S, rΛprz´, z`q, ¨q “ Λppφ´1pz´q, φ´1pz`qq, φ´1p¨qq (131)

Denote also by φ the mapping S̄ Q rz´, z`q ÞÑ pφpz´q, φpz`qq P r̄S and by Φ the corresponding
functional operator, as in (128), transforming measurable mappings on r̄S into measurable mappings
on S̄. At the operator level, the relation (131) translates into the intertwining relation

ΦrΛ “ ΛΦ (132)

From these invariance relations and from the fact that the σ-field generated by rXr0,ts contains
the same events as the one generated by Xr0,ts, we deduce that for any t ě 0,

Lp rXt|rXr0,tsq “ LpφpXtq|Xr0,tsq

“ ΦpLpXtq|Xr0,tsq

“ ΦpΛpXt, ¨qq

“ rΛpφpXtq, ¨q

“ rΛp rXt, ¨q

where in the second and third lines, Φ stands for the natural action induced on measures by the
mapping φ, obtained by duality from the action of Φ on the functions, and the fourth equality
corresponds to (132).

�

As a consequence, we get:

Corollary 49 To know how to find a Λ-spreading for all initial distributions LpX0q and for all
generators L as above is equivalent to know how to solve this problem when a ” 1{2.

Proof
Note that conversely in Lemma 48, the diffeomorphism φ´1 from rI to I enables to go from p rX, rXq to
pX,Xq. Thus, taking into account (129), the proof of the above corollary is reduced to the finding
of increasing diffeomorphism φ on I such that ra ” 1{2, namely φ1 “ 1{

?
2a. This is solved by

considering

@ x P I, φpxq B

ż x

0

1
a

2apyq
dy

From a geometric point of view, this amounts to changing the usual metric on I so that 2aB2

corresponds to the second order terms of the Laplacian for the new metric.
�

Similarly, we can also removed the drift:
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Corollary 50 To know how to find a Λ-spreading for all initial distributions LpX0q and for all
generators L as above is equivalent to know how to solve this problem when b ” 0.

Proof
By the same reasoning as in the proof of Corollary 49, it is suffisant to find an increasing diffeo-
morphism φ on I such that rb ” 0. From (130), this amounts to Lrφs “ 0. This is solved by
considering

@ x P I, φpxq B νpr0, xsq

�

Except when Lr1{
?
as “ 0, it is not possible to perform the two operations of the proofs of Corol-

lary 49 and 50 simultaneously, to end up with the generator of the Brownian motion on I (absorbed
at the boundary when it is reached). Namely, not every search for Λ-spreadings can be reduced
to Pitman’s theorem [25]. Nevertheless, by Corollary 49, the one-dimensional processes considered
at the beginning of this appendix can be reduced to the case of Subsection 7.2, up to relaxing the
hypotheses on the drift b there and to assume here that ι´ and ι` are natural boundaries.

Remark 51 In Subsection 7.2 we preferred to work with the reduction of Corollary 49. We also
tried the reduction of Corollary 50 but it did not led to more explicit set-valued dual processes,
that is why the computations are not presented in this paper. The reductions of one-dimensional
diffusions deduced in Corollaries 49 and 50 are the simplest ones, but other ones can be imagined
and maybe among them there is one leading to more natural couplings.

˝
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