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In this paper, a non-metric extension of general relativity is developed, based on a Maxwellian approach to gravity. Harmonic quantities such as generalised Riemann curvature tensor and scalar are constructed for a combined state of space-time forms by from the metric and non-metric space-time phases. We find that the sinusoidal time variation of the gravitational constant GN can be derived from the Lagrangian of the proposed model. Furthermore, we show that the generalised harmonic curvature scalar that are responsible for the variation of the gravitational constant shift the scale of Quantum gravity at 100TeV. Quantum gravity effects are occurring at energy scales significantly beyond that of the LHC. Quantum gravity can be investigated by a 100 TeV Proton-Proton Collider.

 Klein (2015[2]) suggests that the observed discrepancies between G values determined in different experiments may be associated with a differential interpretation of Modified Newtonian Dynamics (MOND) theory applied to the galaxy rotation curves. Recent quantitative analysis (Lorenzo Iorio, 2015 [3]) rules out the possibility that the harmonic pattern observed in laboratory-measured values of G is due to some long-range modification of the currently accepted laws of gravitational interaction. This analytical approach may direct future investigations of the systematic uncertainties that plague measurements of G.

Based on Symbolic Gauge Theory (SGT), a formalism applied to General Relativity (GR) by R. Mignani, E. Pessa and G. Resconi [4,5] and further developed by I. Licata and G. Resconi, M.E. Rodrigues and E.Koorambas [8,[START_REF] Koorambas | The topological terms of interacting harmonic gravitational connections within the Maxwell-like gauge approach of gravity[END_REF][START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF], the authors recently proposed a Non-Conservative Theory of Gravity (NCTG) which can explain the observed variations of G at a 5.9-year scale [START_REF] Koorambas | The topological terms of interacting harmonic gravitational connections within the Maxwell-like gauge approach of gravity[END_REF].

The strength of the gravitational force depends on the scale at which the gravitational force is measured by Cavendish-type experiments, where two masses (one of which is a test mass) are precisely known, or by (equivalent in principle) gravitational scattering experiments [START_REF] Antoniadis | [END_REF]. At laboratory scales, the strength of gravity is characterized by the reduced Planck mass Mpl = 2.435 × 10 18 GeV, which determines Newton's constant GN = Mpl -2 . Conventionally, the Planck scale MPl is interpreted as the fundamental scale at which quantum gravitational effects become important in nature. Like all other interactions in nature, nevertheless, the effective strength of gravity is affected by quantum corrections. This effect depends on the characteristic energy of the process probing gravitational interactions (see [START_REF] Donoghue | General relativity as an effective field theory: the leading quantum corrections[END_REF][START_REF] Burgess | Quantum gravity in everyday life: general relativity as an effective field theory[END_REF] for reviews of an effective theory of gravity). Potential problems of running gravitational couplings by focusing only on physically observable quantities (e.g. amplitudes, cross sections) are discussed in [START_REF] Anber | Running couplings and operator mixing in the gravitational corrections to coupling constants[END_REF][START_REF] Anber | On the running of the gravitational constant[END_REF]. New approaches to the physics of particles with masses greater than 1TeV could offer insights to the problem of the variation of measured GN values. In such models there is no hierarchy problem [START_REF] Grojean | Beyond the standard Higgs after the 125 GeV Higgs discovery[END_REF], whereas quantum gravity can be assessed through experiments at TeV energy levels. That this can be the case in extra-dimensional models is already established [17,18]. Is such modification of gravity also possible in four dimensions [19,[START_REF] Koorambas | Recent Developments in Bosons Research[END_REF] Current data from the Large Hadron Collider (LHC) experiments at the European Laboratory for Particle Physics (CERN) do not confirm that gravity becomes stronger around 1 TeV [START_REF] Landsberg | Quantum Aspects of Black Holes[END_REF][START_REF] Giddings | High energy colliders as black hole factories: The end of short distance physics[END_REF][START_REF] Dimopoulos | Black Holes at the Large Hadron Collider[END_REF][START_REF]The case for mini black holes[END_REF][START_REF] Henderson | Stephen Hawkings 50 bet on the world the universe and the God particle[END_REF].

Recently, E.Koorambas suggested that if the observed harmonic pattern of the laboratory-measured values of G is due to some environmental or theoretical errors, these errors must also affect the true value of momentum k transferred by the graviton in scattering experiments at the LHC [START_REF] Koorambas | Quantum Gravity at 100TeV for Environmental or Theoretical Errors[END_REF]. Furthermore, environmental or theoretical errors could shift the scale of Quantum gravity at 100TeV. Quantum gravity can be investigated by a 100 TeV Proton-Proton Collider as long as environmental or theoretical errors are present. This proposition may explain the current null results for black holes production at the LHC [START_REF] Koorambas | Quantum Gravity at 100TeV for Environmental or Theoretical Errors[END_REF].

M. [START_REF] Carmeli | [END_REF] [START_REF] Schrodinger | Space-Time Structure[END_REF] proposed an another approach to quantise the gravitational field. It is based on the observation that the quantum character of matter becomes more significant as one gets closer to the Big Bang. As the metric loses its meaning, it makes sense to consider Schrodinger's [48] three generic types of manifolds -unconnected differentiable, affinely connected and metrically connectedas a temporal sequence following the Big Bang. More recently, a non-metric approach of NCTG has been consider by the authors as dark energy candidate [8].

In this paper, based on a Maxwellian approach of gravity, a non-metric extension of general relativity is developed. Harmonic quantities, such as generalised Riemann curvature tensor and scalar, are constructed for a combined state of space-time forms by the metric and non-metric space-time phases. We find that the sinusoidal time variation of the gravitational constant GN originates in the Lagrangian of the propose model. Furthermore, we show that the generalised harmonic curvature scalar that is responsible for the variation of the gravitational constant shift the scale of Quantum gravity at 100TeV. Quantum gravity effects are at energy scales significantly beyond that of the LHC. Quantum gravity can be investigated by of a 100 TeV Proton-Proton Collider.

2.The sinusoidal variations of Newton's coupling constant

Measurements of the gravitational constant (G) are notoriously difficult due to the gravitational force being by far the weakest of the four known forces. Recent advances, making use of electronically controlled torsion strip balances at the Bureau International des Poids et Mesures (BIPM) in the last 15 years, have improved the accuracy of G measurements (see [2] for details on experimental methods). These recent measurements have also revealed a peculiar type of oscillatory variation, seemingly following a 5.9 years cycle akin to the so called Length-of-Day (LOD) [1]. Although we recognize that the correlation between G measurements and the 5.9 year LOD cycle could be fortuitous, we think that this is unlikely, given the striking match between these two (Fig. 1).

Fig. 1: Comparison of the CODATA set of G measurements ) with a fitted sine wave (solid curve) and the 5.9 year oscillation in LOD daily measurements (dashed curve), scaled in amplitude to match the fitted G sine wave. Acronyms for the measurements follow the CODATA convention. Also included are a relatively recent BIPM result from Quinn et al. [3] and measurement LENS-14 from the MAGIA collaboration [4] that uses a new technique of laser-cooled atoms and quantum interferometry, rather than the macroscopic masses of all the other experiments. The green filled circle represents the weighted mean of the included measurements, along with its one-sigma error bar, determined by minimizing the L1 norm for all 13 points and taking into account the periodic variation. Importantly, the observed correlation cannot be due to centrifugal force acting on the experimental apparatus, since changes in LOD are too small by a factor of about 10 5 to explain changes in G. This is because the Earth's angular velocity E  is by definition

  0 1, E LOD   (1) 
where 0

 is an adopted sidereal frequency equal to 72921151.467064 prad s -1 and the LOD is in ms d -1

(www.iers.org). The total centrifugal acceleration is given by 

where A is the amplitude of the 5.9 year sinusoidal LOD variation (= 0.000150/86400) and rs is the distance of the apparatus from the Earth's spin axis. The maximum percentage variation of the LOD term is 3.47 × 10 -9 of the steady-state acceleration, while dG/G is 2.4×10 -4 . Even the full effect of the acceleration with no experimental compensation changes G by only 10 -5 of the amplitude shown in Fig. 1.

3.The Maxwellian approach to gravity

Recently, G. Resconi, I. Licata and C. Gorda proposed a generalization of gauge theories based on the analysis of the structural characteristics of Maxwell theory, which can be considered as the 'prototype' of such theories Maxwellian theory [6]. Theories of this type are based on A small number of principles related to different orders of commutators between covariant derivatives. We know that the Maxwell equations in the tensor form are 4 0

FJ c F F F                  (3) 
where the controvariant four-vector which combines electric current density and electric charge density.

 

, , ,

x y z J cp J J J   is the four-current, the electromagnetic tensor is F A A         . The four- potential   , A , A , A x y z A  
contains the electric potential and vector potential.

Using the covariant derivative notation defined by

D ieA       (4) 
we have the classic relation

[ , ] D D D D D D ieF            (5) 
Thus, we have

FF    (6) 
In order to write the extension of the Maxwell equations, we define the general commutators as in eq. ( 5)

where F  is the general form for any field generated by the transformation. Using eq. ( 5), the equation

[ ,[ , ]] [ ,[ , ]] [ ,[ , ]] 0 D D D D D D D D D              (7) 
can be rewritten as

[ , ]] [ , ]] [ , ]] 0 D F D F D F            (8) 
We also have the equation

[ ,[ , ]] [ , ]] D D D D F J           (9) 
In conclusion, the Maxwell scheme for a general gauge transformation is

[ , ]] [ , ]] [ , ]] 0 [ , ]] D F D F D F D F J                    ( 10 
)
where J  are the currents of the particles that generate the gauge field F. Such currents have the conservation rule

/ / / 0 J J J          (11) 
A modification of GR by Camenzind [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF] was constructed as an analogy to the Yang-Mills theory, with the symmetry group SO (3.1). In the same vein, inspired by the foundations of gauge theory, Resconi et al. [7][8][START_REF] Koorambas | The topological terms of interacting harmonic gravitational connections within the Maxwell-like gauge approach of gravity[END_REF] constructed a modified theory of gravity in which the algebra of the covariant derivatives operators adds a term to the equations of motion. In the framework of this Maxwellian approach to gravity, we can obtain the general equation of motion by applying the commutator of with the commutator of with to a vector field . This is achieved through the following steps:

First, it has been shown in [7] that

[ , ]V R V           (12)
where the Riemann tensor is

R xx                           (13)
With application of the double commutator we have the dynamic equation

[ ,[ , ]] ( [ , ]) [ , ]( ) K K K R V                             (14) 
where k  is the covariant derivative and is the vacuum field. Now we connect the commutator with the gravity current in this way:

( ) ( ) J K R K R K               (15) 
Then, for the conservation of the current we have after contractions the of motion equation

[7] ( 16 
)       K  K    1 0 2 R k T g T K R K                    
In the particular case where , considering the validity of Einstein's equations, we re-obtain the second Bianchi identity for a non-zero vector field [6].

The dynamical equation ( 16) can be represented by a wave equation with particular source where the variables are symmetric and anti-symmetric gravitational connections (including torsion

T          
in one geometric picture). The dynamic equation for non-conservative gravity can be obtained by the SGT as follows [5][6][7][8][START_REF] Koorambas | The topological terms of interacting harmonic gravitational connections within the Maxwell-like gauge approach of gravity[END_REF]:

22 ,, 22 
( , ) ( , ) x t x t V R J xt                     [5,6] (17) 
We thus obtain the interesting result that the derivative of the gravitational connection ,  

 has wave behavior. The non-linear reaction of the self-coherent system produces a current that justifies the complexity of the gravitational field and non-linear properties of the non-metric gravitational waves. In analogy with non-linear optic, therefore, we can model gravitational phenomena as optic of tensor potentials. Equations (17) in the free field of the medium contain the Proca terms,   , the Chern-Simons terms, (   )  , and the Maxwell-like terms (   ) (   ). In other words, we have the mass terms, the topologic terms and the electromagnetic field-like terms [13.14].

Recently, it has been proved by the authors that in the limit of vanish torsion the interactions between harmonic gravitational connections are independent of metric [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF]. The topological properties of these interactions are represented by knots and links. The size, exact shape, location etc of these knots and links are not of immediate concern for the problem at hand (interaction between dark mater/energy and gravitons) [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF].

4.The gravity in a non-metric extension of space-time

Following Moshe Carmeli (1999) [START_REF] Schrodinger | Space-Time Structure[END_REF], we consider the following three generic phases leading to metric space-times [48]:

(1) General differentiable manifold (unconnected);

(2) Affinely connected manifold;

(3) Metrically connected manifold.

In addition, there is an intermediate phase between (2) and ( 3): space-time with a rudimentary metric structure (STRMS) in metrically connected space-time:

  , () ( ) ln ( ) y y g y y               , (18) 
where

0 K   K  y      , (19) 
are the derivatives.

It follows that, for the STRMS phase, it is possible to define the harmonic scalar () y  as the potential of the harmonic gravitational connections () y    and let () y e  play the role of √-g. Equation (18) determines the volume element up to an overall multiplicative factor. STRMS is metric only in the sense of having a volume element; ds 2 is not defined in it [START_REF] Schrodinger | Space-Time Structure[END_REF]. The latter leads to the existence of non-metric regions of space-time:

1 2 3 ( ) 1 2 { ( , ) | , , , , 0,1,2,3, 1,2,3} y U y y y y y                  , (20) 
where ( , )

yy    , 0 ,1,2,3, 1,2,3 

 

the coordinate frame where ds 2 is not defined in it. Here,  and

y  , 1,2,3  
are time and space states in which metric time and metric space lose their meaning. Covariant, contravariant and mixed tensors, tensor densities and spinors can be defined in the y U regions. However, the usual relationship between covariant and contravariant components does not hold: there is no metric tensor to connect them [START_REF] Schrodinger | Space-Time Structure[END_REF]48].

In a non-metric region y U of space-time, the wave equation ( 17) for the harmonic gravitational connections becomes:

  , ( ) ln ( ) ( ) 0 y g y y               , (21) 
where () y  is a harmonic scalar by definition:

( ) ( ) 0 yy         , ( 22 
) 2 2 2 2 2 2 2 2 (1)2 (2)2 (3)2 y y y                        , (23) 
is the wave operator in a non-metric region y U of space-time. The solution of the equation ( 22) is given by 0 ( ) 2 cos( )

y k y        (24) 
where ( , )

G kk    , G
 is the frequency of the oscillation, k  is the wave vector, 0  is the amplitude of the oscillation. Substituting equation ( 24) to (18), we obtain the solution of the wave equation ( 21):

0 ( ) ( ) 4 sin( ) y y k k y              . (25) 
Now, by using equation ( 25) we calculate the Proca terms, the Chern-Simons terms, and the Maxwell-like terms in equation ( 17 

k k y k k y k k k y k y k y k y                                       , where 0 11 sin( )4 sin( ) cos[( )] cos[( 2 )] 22 k y k k y k y k y k y k y                            , 00 2 0 ( ) 4 cos( )4 sin( ) 11 16 sin[( )] sin[( 2 )] 22 k k k y k k y k k k k y k y k y k y                                        
k k y k k y k k k k k y k y k y k y k y k y                                                        , where 0 11 cos( )4 cos( ) cos[( )] cos[( 2 )] 22 k y k k y k y k y k y k y                            .
For equation (25) we observe that the gravitational connections are a pure gauge in the non-metric region y U of space-time. Following S. Weinberg (1996 [61]), gauge field is called pure gauge field if there exists a gauge transformation which makes it vanish everywhere. It is not difficult to show that the condition that the gravitational field-strength:

( ) ( ) ( ) R y y y             (26)
should vanish everywhere is not necessary but also sufficient for the gravitational connection ()

y  
 to be expressible in any simply non-metric connected region y U as pure gauge field. Let a metric region x U of space-time be defined as follows:

1 2 3 ( ) 1 2 { ( , ) | , , , , 0,1,2,3, 1,2,3} x U x t x t t t x x x             , ( 27 
)
where ( ) ( , ) tensor in such a region is given by:

x x t x   , 0,1,2,
  , , , 1 ( ) ( ) 
( ) ( ) ( ) 2 x g x g x g x g x              . ( 28 
)
From the derivatives of the connection [START_REF] Birrell | Quantum Fields In Curved Space[END_REF] we construct the quantity:

( ) ( ) ( ) ( ) ( ) ( ) ( ) xx R x x x x x xx                          [61], (29) 
which transforms as s tensor, the Riemann-Christoffel curvature tensor (equation.( 13)), of the metric region x U of space-time. The commutator of two derivatives   and   may be expressed in terms of the gravitational field strength tensor given by equation ( 26) in the non-metric region y U of space-time. Similarly, the commutator of two covariant derivatives with respect

x  and x  may be expressed in terms of the curvature: 

T T R T R T                      . ( 30 
)
The necessary and sufficient condition for the existence of a gauge in which the gravitational connection

() y  
 vanishes in a finite simply connected non-metric region y U is the vanishing of the gravitational field strength tensor. The necessary and sufficient condition for the existence of a coordinate system in which the affine connection () x    vanishes in a finite simply connected metric region x U is the vanishing of the Riemann-Christoffel curvature tensor [START_REF] Weinberg | The quantum theory of fields[END_REF].

In General Relativity, the affine connection () x    is itself constructed by the first derivatives of the metric tensor equation [START_REF] Balian | [END_REF]. In the non-metric region of space-time, the harmonic connection () y

 
 is constructed by the first derivatives of the harmonic scalar () y  equation (25).

Let a combined state of space-time formed by the metric and non-metric regions. In this combined state the metric{} x equation ( 27) and non-metric{} y equation( 20) coordinates are linearly independent if { } { } 0 a x b y  when 0 ab . Therefore, the common space-time of the combined state has 8dimensions [START_REF] Abbott | Flatland: A Romance of Many Dimensions[END_REF][START_REF] Banchoff | Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions, Second Edition[END_REF] but 4-dimensional Riemannian-metric structure G G du du

   [].
From the physical point of view, the{} y coordinates are just the non-metric description of the time and space and not additional space-time dimensions as in extra dimensional models or multiple time dimensions models {e.g. 17,18,51-60]. The generalized gravitational connections in a common space-time are defined as follows:

( , ) ( ) ( ) x y x y             , (31) () x   
 is the affine connection ( 29) and () y

   harmonic connection (25); , 0 ,1, 2,3   
 is a constant vector field. From the derivatives of the generalize connection (31) with respects x  and x  we construct the quantity:

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 
x y x y R x y x y x y x y x y xx

                         , (32) 
which transforms as s tensor: the generalised curvature tensor in common space-time. Using equations ( 31), ( 24), (25) the generalized curvature tensor (32) becomes:

  2 0 ( ) ( ) ( , ) ( ) ( ) ( ( ) ( ( ) ( )) ( ) ( ) | ( ) ( ) | 4 ( ) | sin( ) 4 ( ) | sin( ) ( ) | ( 
PP P G P P xx R x y y O y x x xx x x y R x y R x R x k k y A R x k y R x                                                                           ) y , (33) 
where:

( ) ( ) ( ) | P xx Rx xx               , (34) 
( ) 2 sin( )

G y A k y       , ( 35 
) 0 G Ak     , (36) 
Figure. 2 Comparison of the set of GN measurements with a fitted sine wave predicted by our model [START_REF] Carmeli | [END_REF] with the 5.9 year LOD oscillation cycle. The black dots are the experimental measurements of GN, the red curve is the theoretical variation of GN predicted by model [START_REF] Carmeli | [END_REF]. The black dust curve is the set of GN measurements fitted by the sine wave predicted by model [START_REF] Carmeli | [END_REF]. (Ref [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF]).

A thermodynamic interpretation of () y  (equation. (35)) supported by the Ref [START_REF] Resconi | [END_REF], [67] in multidimensional entropic space is under investigation [START_REF] Koorambas | On the thermodynamic Maxwell-like non-metric approach of gravity[END_REF].

The scale of quantum gravity in the presence of the variations of the Newton constant

It has become a convention to interpret the Planck scale MP as a fundamental scale of nature: the scale at which quantum gravitational effects become important. However, Newton's constant 2

N pl GM   in natural units 1 c
 is measured in very low-energy experiments, and its connection to physics at short distancesin particular, quantum gravity -is tenuous. If the strength of gravitational interactions is scaledependent, the scale *  at which quantum gravity effects are significant is one at which: * ()

G  ≈ 2 *   (47) 
This condition implies that at length scales 1 *   gravity will be unsuppressed. Below we show that condition [START_REF] Schrodinger | Space-Time Structure[END_REF] can be satisfied in models with *  as small as a 100TeV ( [45]).

To propose gravity, we consider a coupled scalar field S and adopt the following notation: Consider the gravitational potential between two heavy, non-relativistic sources, which arises through graviton exchange (Fig. 3. [19]). The leading term in the gravitational Lagrangian (48) is:

2 1 1 2 2 ( ) ( ) ( ) G y R G y h h t        , ( 49 
)
where

gh     . (50) 
We can interpret quantum corrections to the massless gravitons propagators from the loop (similar to those given in Ref [19]) as a renormalization of δG(y). Ignoring the index structure, the massless graviton propagator with one-loop correction is:

() c Dk ≈ 2 2 2 ( ) ( ) ( ) ...., i G y i G y i G y k k k       ( 51 
)
where k is the momentum carried by the graviton in this model. The term in Σ proportional to k 2 can be interpreted as a renormalization of δG(y), and is easily estimated from the Feynman diagram (see Fig. 

where D(p) is the propagator of the particle in the loop. In the case of a scalar field, the loop integral is quadratically divergent. By absorbing equation ( 52) into a redefinition of G in the usual way, one obtains an equation of the form: ,

where

2 11 ren bar c GG    [19], (54) 
Λ is the ultraviolet UV cutoff of the loop and : 32 10 ordinary scalars or fermions with masses below 1 TeV (which can run in the loop). This observation has already been made by Dvali et al. [23,24,25], although in [23] the argument is expressed in terms of a consistency condition from black hole evaporation rather than as a renormalization of group behaviour [19,[START_REF] Koorambas | Recent Developments in Bosons Research[END_REF]. The number of new degrees of freedom that we are required to introduce may seem high, but it is of the same order as in models with large extra-dimensions [17,18].

Pl Pl Pl Error ren G ren G re s n ren hift M t M t M G A G a t G t G t          
For equation [START_REF] Craig | On determinism and well-posedness in multiple time dimensions[END_REF], the square of reduced Planck mass on Earth is given as follows:

,

Substituting equation [START_REF] Albrecht | A Time Varying Speed of Light as a Solution to Cosmological Puzzles[END_REF] to equation (55) we obtain; ,

where [START_REF] Mcdonald | John's Book Reviews: An Experiment with Time[END_REF] is the time-dependent shift of quantum gravity scale for the theoretically predicted value in TeV theories of gravity on Earth due to the generalised harmonic curvature scalar () Ry [START_REF] Koorambas | Recent Developments in Bosons Research[END_REF].

For equations ( 53) and (55), we observe that the possible () Ry that shifts the true value of renormalized gravitational constant Gren in Cavendish-type experiments at low energy scales is also responsible for the shift of the predicted value of the bare gravitational constant Gbare=1/k 2 bare in gravitational scattering experiments at high energy scales. Here, kbare is the bare momentum carried by the graviton. From equation [START_REF] Mcdonald | John's Book Reviews: An Experiment with Time[END_REF], we find that the shift of quantum gravity for predicted value of 1TeV has the global minima: 

        , ( 58 
) at 2, 2 G a t n         for integer n, (59) 
where (Anderson et al. 2015a) [1], and [17,18,19].

The generalised harmonic curvature scalar () Ry that is responsible for the variation of the gravitational constant shifts the scale of Quantum gravity at 100TeV. Quantum gravity effects are at energy scales significantly beyond that of the LHC [START_REF] Herr | Concept of luminosity cds[END_REF]. These effects can thus be investigated by a 100 TeV Proton-Proton Collider [31][START_REF] Shipsey | Vision and Outlook: The Future of Particle Physics 38th International Conference on High Energy Physics[END_REF][START_REF] Apollonio | LHC: Integrated Luminosity and Availability Proceedings of IPAC[END_REF]. 

Conclusion

In this paper, we follow a Maxwellian approach to gravity to develop a non-metric extension of general relativity. Harmonic quantities, namely generalised Riemann curvature tensor and scalar, are constructed emerge for a combined state of space-time forms by the metric and non-metric space-time phases. We find that the sinusoidal time variation of the gravitational constant GN originates the Lagrangian of the propose model. Furthermore, we show that the generalised harmonic curvature scalar that is responsible for the variation of the gravitational constant shifts the scale of Quantum gravity at 100TeV. Quantum gravity effects are at energy scales significantly beyond that of the LHC. These effects can thus be investigated by a 100 TeV Proton-Proton Collider.
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 3 Fig. 3: Contributions to the running of Newton's constant.

  Newton constant measured in low-energy experiments, for time scales t<<τ. Fermions contribute with the same sign to the running of Newton's constant, whereas gauge bosons contribute with the opposite sign to scalars. the loop cutoff coincides with the onset of quantum gravity)

  

  

is harmonic in common space-time. The generalised harmonic Ricci tensor and the curvature scalar are constructed in common space-time by the metric and equation (36), as follows:

where:

is the usual Ricci tensor and () y  is given by equation (35).

Where:

is the usual curvature scalar. The latter yields to the relation:

Using equation [START_REF] Giddings | High energy colliders as black hole factories: The end of short distance physics[END_REF], the Lagrangian for the gravitational field is given by:

where the Einstein-Hilbert Lagrangian density is:

R is the Ricci scalar and GN is Newton's gravitational constant.

In analogy with a closed systems in mechanics, where the Lagrangian does not depend explicitly on time, the mathematical expression of a closed system is the absence of any express of the Lagrangian in terms of coordinates.. Hence the gravitational Lagrangian [START_REF] Dimopoulos | Black Holes at the Large Hadron Collider[END_REF] corresponds to the open sector, while the Lagrangian [START_REF]The case for mini black holes[END_REF] to the closed sector.

Following our previous work [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF], for the time variation of gravitational constant GN [1], the gravitational Lagrangian (42) can be written as follows:

() 16 ( )

( ) ( ) 2 sin( )

and () y  is given by equation (35). Thus, we have ( ) 4 sin( )

Equation. ( 46) is analogous to the model proposed in our previous paper [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF], a non-conservative theory of gravity with an effective scale of 5 years. From a general expansion of multiple commutators, it is possible to extract second-order perturbation terms. The latter lead to corrections of source terms that reveal a characteristic harmonic oscillation term. As Fig. 2 shows, the proposed nonconservative theory of gravity can explain the observed variations of G at 5.9-year scale (for details see Ref [START_REF] Koorambas | The variations of Gravitational Constant for Harmonic Gravitational Connections within the Maxwell-like gauge Approach of Gravity[END_REF]).