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Abstract—We propose a novel approach for hyperspectral
super-resolution, that is based on low-rank tensor approximation
for a coupled low-rank multilinear (Tucker) model. We show that
the correct recovery holds for a wide range of multilinear ranks.
For coupled tensor approximation, we propose two SVD-based
algorithms that are simple and fast, but with a performance
comparable to the state-of-the-art methods. The approach is
applicable to the case of unknown spatial degradation and to
the pansharpening problem.

Index Terms—hyperspectral super-resolution, low-rank tensor
approximation, data fusion, recovery, identifiability

I. INTRODUCTION

The problem of hyperspectral super-resolution (HSR) [1]
has recenlty attracted much interest from the signal processing
community. It consists in fusing a multispectral image (MSI),
which has a good spatial resolution but few spectral bands,
and a hyperspectral image (HSI), whose spatial resolution
is lower than that of MSI. The aim is to recover a super-
resolution image (SRI), which possesses both good spatial
and spectral resolutions. This problem is closely related to
hyperspectral pansharpening [2], [3], where the HSI is fused
with a panchromatic image (i.e. an “MSI” with one spectral
band).

Many methods were developed for the HSR problem, in-
cluding coupled nonnegative matrix factorization [4] (CNMF),
methods based on solving Sylvester equations [5], Bayesian
approaches (HySure [6]), FUMI [7], to name a few. Motivated
by the widely used linear mixing model, most of these
methods are based on a coupled low-rank factorization of the
matricized hyperspectral and multispectral images. In [8], a
matrix factorization approach under sparsity conditions was
proposed, together with a proof of correct recovery of the
estimated SRI in the noiseless case.

Recently, a promising tensor-based method was proposed
that makes use of the inherent 3D nature of HSI [9]. Assum-
ing that the super-resolution image itself admits a low-rank
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canonical polyadic (CP) decomposition (CPD), the HSR is
reformulated as a coupled CP approximation. An alternating
least squares (ALS) algorithm called Super-resolution TEnsor
REconstruction (STEREO) is proposed, achieving reconstruc-
tion performance that is competitive with the state of the art. A
proof of the correct recovery of the SRI by the approach of [9]
is given provided the CPD of the MSI is unique. This approach
was also successfully used for a super-resolution problem in
medical imaging [10].

In some cases, the spatial degradation operator is unknown,
therefore blind algorithms are needed. A blind version of
STEREO was proposed in [9] that also uses an ALS algorithm
for a coupled CP model. In [11], a simple Super-resolution
CUBe Algorithm (SCUBA) based on a single CPD of the
MSI tensor and a truncated SVD of the unfolding of the HSI
is introduced. A key idea proposed in [11] is to use local
approximations by splitting the data cubes into separate blocks.
This algorithm outperforms blind STEREO and other state-of-
the-art algorithms. It also does not require separability of the
spatial degradation operator.

In this paper, we propose to use another type of low-
rank tensor factorization: multilinear (also known as Tucker)
factorization. By assuming that the super-resolution image
has approximately low multilinear rank, we reformulate the
HSR problem as a coupled Tucker approximation. First, we
propose two closed-form SVD-based algorithms: the first,
named Super-resolution based on COupled Tucker Tensor
approximation (SCOTT), is inspired by the higher-order SVD
[12] and the second (blind) is inspired by [11]. Second,
we prove that, although the Tucker decomposition is not
identifiable, the SRI can be uniquely recovered for a wide
range of multilinear ranks. While the proposed exact recovery
conditions are in general more restrictive than those of [9],
they can be specialized in situations for which nothing can be
concluded from [9]. Our experiments on a number of simulated
and semi-real examples, show that the proposed algorithms
have a performance approaching those of [9] and [11], but
the computational cost is much lower. Also, the proposed
approach is applicable to hyperspectral pansharpening [13]
(unlike [9], which requires the MSI to have at least two spec-
tral bands). Finally, the algorithms can accurately reconstruct
spectral signatures, which is of prime importance for further
processing of the HSR image.

A short version of this work [14] appears in ICASSP 2019,
presenting the SCOTT algorithm and part of the simulations.
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The current paper additionally includes new blind algorithms,
detailed analysis of the model and the algorithms, proof of the
theorem for recoverability, new simulations for synthetic and
semi-real data, examples on recovery of spectral signatures.

This paper is organized as follows. In Section II, we
introduce our notation, define basic tensor decomposition op-
erations and recall the HSR problem. In Section III, we recall
the CP-based model and the STEREO algorithm proposed in
[9]. Section IV contains our proposed coupled Tucker model
and SVD-based algorithms (SCOTT and B-SCOTT) for tensor
approximation. In Section V we prove our main recoverability
result for the coupled Tucker model. Section VI contains the
numerical experiments.

II. BACKGROUND AND NOTATION

A. Basic notation

In this paper we mainly follow [15] in what concerns the
tensor notation (see also [16]). The following fonts are used:
lowercase (a) or uppercase (A) plain font for scalars, boldface
lowercase (a) for vectors, uppercase boldface (A) for matrices,
and calligraphic (A) for N -D arrays (tensors). Vectors are,
by convention, one-column matrices. The elements of vec-
tors/matrices/tensors are accessed as ai, Ai,j and Ai1,...,iN
respectively. R stands for the real line.

For a matrix A, we denote its transpose and Moore-Penrose
pseudoinverse as AT and A† respectively. The notation IM is
used for the M ×M identity matrix and 0L×K for the L×K
matrix of zeroes. We use the symbol � for the Kronecker
product of matrices (in order to distinguish it from the tensor
product ⊗), and � for the Khatri-Rao product.

For a matrix X ∈ Rm×n, we denote by σmax(X) and
σmin(X) the largest and the smallest of the min(m,n)
singular values of X . We also denote by tSVDR (X) ∈ Rn×R
a matrix containing R leading right singular vectors of X .

We use vec{·} for the standard column-major vectorization
of a tensor or a matrix. Operator •p denotes contraction on the
pth index of a tensor; when contracted with a matrix, summa-
tion is always performed on the second index of the matrix,
e.g., [A •1M ]ijk =

∑
`A`jkMi`. For a tensor Y ∈ RI×J×K ,

its first unfolding is denoted by Y (1) ∈ RJK×I .

B. Tensor decompositions

For a tensor G ∈ RR1×R2×R3 and matrices U ∈ RI×R1 ,
V ∈ RJ×R2 and W ∈ RK×R3 , the following shorthand
notation is used for the multilinear product:

[[G; U ,V ,W ]] = G •
1
U •

2
V •

3
W . (1)

which means that the (i, j, k)th entry of the above array is∑
pqr

Gpqr UipVjqWkr.

If Y = [[G; U ,V ,W ]], the following identities hold for its
vectorization and unfoldings, respectively:

vec{Y} = (W �V �U) vec{G},
Y (1) = (W �V )G(1)UT.

If, in addition,

R1 = rank{Y (1)}, R2 = rank{Y (2)}, R3 = rank{Y (3)},

then the multilinear product is called Tucker decomposition of
Y and (R1, R2, R3) are called the multilinear ranks.

For matrices A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F , we
will use a shorthand notation for a polyadic decomposition
(sometimes also called rank-decomposition)

[[A,B,C]] = [[IF ; A,B,C]],

where IF ∈ RF×F×F is a diagonal tensor of ones. In other
words, if Y = [[A,B,C]], then

Yijk =
∑
r

AirBjrCkr;

moreover, the first unfolding can be expressed as

Y (1) = (C �B)AT.

Finally, if F is minimal, Y = [[A,B,C]] is called canonical
polyadic (CP) decomposition and F is called the tensor rank.

C. Hyperspectral super-resolution and degradation model

We consider a multispectral image (MSI) cube YM ∈
RI×J×KM and a hyperspectral image (HSI) cube YH ∈
RIH×JH×K acquired from existing sensors (for instance,
LANDSAT or QuickBird). The spectral resolution of the MSI
is lower than that of the HSI (KM � K) , while its spatial
resolution is higher (I > IH , J > JH ). The acquired MSI and
HSI usually represent the same target, and YM and YH are
viewed as two degraded versions of a single super-resolution
image (SRI) data cube Y ∈ RI×J×K . The hyperspectral data
fusion problem [1] consists in recovering SRI Y from YM

and YH .
In this paper, as in [9], we adopt the following degradation

model, that can be compactly written as contraction of SRI:{
YM = Y •3PM + EM ,
YH = Y •1P 1 •2P 2 + EH ,

(2)

where EM , EH denote the noise terms, PM ∈ RKM×K is the
spectral degradation matrix (for example, a selection-averaging
matrix), and P 1 ∈ RIH×I , P 2 ∈ RJH×J are the spatial degra-
dation matrices, i.e. we assume (for simplicity) that the spatial
degradation is separable. For example, the commonly accepted
Wald’s protocol [17] uses separable Gaussian blurring and
downsampling in both spatial dimensions.

III. CP-BASED DATA FUSION

In [9] it was proposed to model the SRI data cube as a tensor
with low tensor rank, i.e. Y = [[A,B,C]], where A ∈ RI×F ,
B ∈ RJ×F and C ∈ RK×F are the factor matrices of the
CPD and F is the tensor rank.
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A. The case of known spatial degradation (STEREO)

In this subsection, we consider only the case when the
degradation matrices P 1, P 2, PM are known; the case of
unknown degradation matrices is postponed to Section III-B.
In this case, the HSR problem can be formulated as

minimize
Â,B̂,Ĉ

fCP (Â, B̂, Ĉ), (3)

where fCP (Â, B̂, Ĉ) =

‖YH − [[P 1Â,P 2B̂, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

which is a coupled CP approximation problem. As in [9] we
set λ = 1 so that both degradated images have the same weight
in the cost function. Thus, we consider that the HSI and MSI
share the same level of additive noise. For the case when
there is no noise (EH ,EM = 0), the coupled CP model is
(generically) identifiable if

F ≤ min{2blog2(KMJ)c−2, IHJH},

see [9] for a proof and details of this condition.
To solve (3), an alternating optimization algorithm is pro-

posed in [9], called STEREO, as it is described in Algorithm 1.

Algorithm 1: STEREO
input : YM , YH , P 1, P 2, PM ; F , A0 ∈ RI×F ,

B0 ∈ RJ×F , C0 ∈ RK×F
output: Ŷ ∈ RI×J×K
for k = 1 : n do

Ak ← argmin
A

fCP (A,Bk−1,Ck−1),

Bk ← argmin
B

fCP (Ak,B,Ck−1),

Ck ← argmin
C

fCP (Ak,Bk,C),

end
Ŷ ← [[An,Bn,Cn]].

The updates of the factor matrices in Algorithm 1 can
be computed by using efficient solvers for the (generalized)
Sylvester equation [18], [19]. For example, the total cost of
one iteration (updating A,B,C) in Algorithm 1 becomes

• O(IJKMF + IHJHKF ) flops for computing the right
hand sides in the least-squares subproblems.

• O(I3+J3+K3+F 3) flops for solving Sylvester equations;

For more details on solving Sylvester equations, see1 [9, Ap-
pendix E] and Appendix A. The initial values in Algorithm 1
are chosen as in Algorithm 2:

Algorithm 2: TenRec
input : YM , YH , P 1, P 2; F
output: A0 ∈ RI×F , B0 ∈ RJ×F , C0 ∈ RK×F
[[A0,B0, C̃0]] = CPDF (YM ),
CT

0 = (P 2B0 � P 1A0)
†
Y

(3)
H .

1Note that in [9, Appendix E] the cost of solving the Sylvester equation is
stated as O(I3) and not O(I3 + F 3) as in [18].

where CPDF (YM ) stands for a rank-F CP approximation2

of YM , andC0 is obtained by solving a least-squares problem.
Algorithm 2 can be used as an algebraic method for solving
the HSR problem.

B. The case of unknown spatial degradation

In this subsection, we recall the CP-based methods for the
HSR problem in the case when the spatial degradation matrices
P 1, P 2 are unknown, proposed in [9] and [11]. The first
solution, called Blind-STEREO was to consider the following
coupled CP approximation problem:

min
Â,B̂,Ĉ

Ã,B̃

‖YH − [[Ã, B̃, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

where the estimated SRI is computed as Ŷ = [[Â, B̂, Ĉ]]
and the matrices Ã, B̃ represent degraded versions of Â,
B̂ by unknown spatial degradation matrices, respectively. The
conditions for correct recovery were established in [9].

In [11], an alternative approach was proposed, that uses
standard CP approximation of YM together with an SVD
of Y (3)

H , and a least squares problem. This approach, which
does not necessary need separability of the spatial degradation
operation, is summarized in Algorithm 3.

Algorithm 3: Hybrid algorithm of [11]
input : YM , YH , PM ; R, F
output: Ŷ ∈ RI×J×K
Compute CP approximation: [[Â, B̂, C̃]] = CPDF (YM ),
Z ← tSVDR

(
Y

(3)
H

)
,

Ĉ ← Z(PMZ)†C̃,
Ŷ ← [[Â, B̂, Ĉ]].

As noted in [11], Y = [[A,B,C]] can be uniquely recovered
only if rank{C} = R does not exceed the number KM of
spectral bands in the MSI. To overcome this limitation, in
[11] it was proposed to apply Algorithm 3 to corresponding
non-overlapping subblocks of the MSI and HSI (based on the
hypothesis that only a small number of materials are active
in a smaller block). This is summarized in Algorithm 4,
called SCUBA in [11]. It was shown in [11] that such an
algorithm outperforms Blind-STEREO, and other state-of-the-
art algorithms for blind HSR.

Algorithm 4: SCUBA
input : YM , YH , PM ; R, F
output: Ŷ ∈ RI×J×K
Split YM , YH in L blocks along spatial dimensions.
for k = 1 : L do

Apply Algorithm 3 to each pair of blocks in YM ,
YH , and store the result in the corresponding block
of Ŷ .

end

2A low tensor rank approximation does not always exist in general, but is
guaranteed to exist if all terms are imposed to be entry-wise nonnegative [20].
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IV. TUCKER-BASED DATA FUSION

A. Model and approximation problem

In this paper, we propose a Tucker-based coupled model3

as an alternative to STEREO. Let R = (R1, R2, R3) be the
multilinear ranks of the SRI Y , and let Y = [[G; U ,V ,W ]]
be its Tucker decomposition, where U ∈ RI×R1 , V ∈ RJ×R2

andW ∈ RK×R3 are the factor matrices and G ∈ RR1×R2×R3

is the core tensor.
With these notations, Equation (2) becomes{

YM = [[G; U ,V ,PMW ]] + EM ,
YH = [[G; P1U ,P2V ,W ]] + EH ,

(4)

thus the HSR task can be performed by estimating4 the factor
matrices U , V , W and the core tensor G in the Tucker
decomposition of the SRI.

As in Section III, one of the possible ways is to reformulate
the HSR problem as an optimization problem:

minimize
Ĝ,Û ,V̂ ,Ŵ

fT (Ĝ, Û , V̂ , Ŵ ), where (5)

fT (Û , V̂ , Ŵ , Ĝ) =‖YH − [[Ĝ; P1Û ,P2V̂ , Ŵ ]]‖2F
+λ‖YM − [[Ĝ; Û , V̂ ,PMŴ ]]‖2F .

(6)

Rather than finding a (local) minimum of (5), we propose two
(semi-algebraic) closed-form solutions that are suboptimal, but
are fast and easy to calculate.

B. An SVD-based algorithm for known spatial degradation

A two-stage approach inspired by the high-order SVD
(HOSVD) [12] consists in:
• using the truncated SVD of MSI and HSI to obtain the

factors Û , V̂ , Ŵ in (4);
• performing the data fusion by minimizing the objective

(6) only with respect to the core tensor Ĝ.
This method, called SCOTT, is given in Algorithm 5.

Note that, under conditions provided in Section V, Al-
gorithm 5 gives a solution to the algebraic decomposition
problem (4) in the noise-free case (EM = 0, EH = 0).

Algorithm 5: SCOTT
input : YM , YH , P 1, P 2, PM ; (R1, R2, R3),
output: Ŷ ∈ RI×J×K

1. Û ← tSVDR1

(
Y

(1)
M

)
, V̂ ← tSVDR2

(
Y

(2)
M

)
,

Ŵ ← tSVDR3

(
Y

(3)
H

)
,

2. Ĝ ← argmin
G

fT

(
G, Û , V̂ , Ŵ

)
,

3. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].

3Note that another method based on Tucker factorization and sparse
approximation was proposed in [21]. However, no recoverability condition
is available for that method.

4Note that our final goal is not parameter estimation, but rather the recovery
of the SRI tensor. We use the word “estimating” just to underscore that it is
not necessary to formulate the recovery problem as an optimization problem.

Step 2 of Algorithm 5 is the least squares problem[
Ŵ �P 2V̂ �P 1Û√
λPMŴ � V̂ � Û

]
︸ ︷︷ ︸

X

vec{Ĝ} ≈
[

vec{YH}√
λ vec{YM}

]
︸ ︷︷ ︸

z

that can be solved through normal equations of the form(
XTX

)
vec{Ĝ} =XTz. (7)

The matrix on the left-hand side of (7) can be written as

XTX = IR3 �
(
V̂

T
P T

2P 2V̂
)
�
(
Û

T
P T

1P 1Û
)

+λ
(
Ŵ

T
P T
MPMŴ

)
� IR1R2

,
(8)

and the vector on the right-hand side is

XTz = vec{[[YH ; Û
T
P T

1 , V̂
T
P T

2 , Ŵ
T
]]}

+λ vec{[[YM ; Û
T
, V̂

T
, Ŵ

T
P T
M ]]}.

(9)

The normal equations can be viewed as a (generalized)
Sylvester equation and (as in the case of STEREO) efficient
solvers can be used (see Appendix A for more details). Thus
the total cost of SCOTT algorithm becomes
• O(min(R1, R2)IJKM + R3IHJHK) flops for comput-

ing the truncated SVDs and computing XTz;
• O(min(R3

3+(R1R2)
3, R3

1+(R2R3)
3)) flops for solving

the Sylvester equation.
It is easy to see that the computational complexity of SCOTT
is comparable to that of one iteration of STEREO and can be
smaller if the multilinear ranks are small.

C. An algorithm for unknown spatial degradation

In this subsection, we show that is also possible to develop a
blind SVD-based algorithm, in the same spirit as Algorithm 3.
The algorithm does not need knowledge of P 1, P 2 and is
based on the HOSVD of the MSI tensor.

Algorithm 6: Blind version of SCOTT
input : YM , YH , PM ; (R1, R2, R3)
output: Ŷ ∈ RI×J×K
1. Compute the (R1, R2, R3) HOSVD of YM

[[Ĝ; Û , V̂ , W̃ ]]
HOSVD≈ YM ,

2. Z ← tSVDR3

(
Y

(3)
H

)
,

3. Ŵ ← Z(PMZ)†W̃ ,
4. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].

The total computational complexity of Algorithm 6 is

O (min(R1, R2)IJKM +R3IHJHK) flops

and is dominated by the cost of the truncated SVD, because
step 3 is very cheap. However, a specific drawback of Algo-
rithm 7, similarly to Algorithm 3, is that R3 should not exceed
KM , since the multilinear rank is employed in the HOSVD
of subblocks of YM .
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Finally, similarly to SCUBA, we can use a block version
of Algorithm 6, which we call B-SCOTT (which stands for
“Blind SCOTT”). There is no confusion, as Algorithm 6 is a
special case of Algorithm 7 where the degraded image cubes
are not split into blocks.

Algorithm 7: B-SCOTT (block version of Algorithm 6)
input : YM , YH , PM ; (R1, R2, R3)
output: Ŷ ∈ RI×J×K
Split YM , YH in L blocks along spatial dimensions.
for k = 1 : L do

Apply Algorithm 6 to each pair of blocks in YM ,
YH , and store the result in the corresponding block
of Ŷ .

end

V. RECOVERABILITY OF THE TUCKER MODEL

In this section, we establish conditions for correct SRI ten-
sor recovery in the coupled Tucker model. The proof of such
conditions for the CP model in [9] relied on the uniqueness
(identifiability) property of the CPD of the MSI. We show that,
although the Tucker decomposition is not unique, the correct
recovery is still possible. Moreover, we prove that in some
cases where the CPD in [9] is not unique, the SRI tensor is
still uniquely recovered using the CP model.

A. Deterministic exact recovery conditions

We begin with a deterministic result on recoverability5.

Theorem V.1. Let a Tucker decomposition of Y be

Y = [[G; U ,V ,W ]], (10)

where G ∈ RR1×R2×R3 , and U ∈ RI×R1 , V ∈ RJ×R2 ,
W ∈ RK×R3 have full column rank. We also assume that
EM ,EH = 0 in (2).

1) If

rank{Y (1)
M } = R1, rank{Y (2)

M } = R2,

rank{Y (3)
H } = R3,

(11)

and one of the following conditions holds true:
a) either rank{P 1U} = R1 and rank{P 2V } = R2;
b) or rank{PMW } = R3.

Then there exists only one Ŷ with multilinear rank
at most (R1, R2, R3) such that Ŷ •3PM = YM and
Ŷ •1P 1 •2P 2 = YH .

2) If U , V , W none of the conditions a) and b) are
satisfied, then there exist infinitely many Ŷ of the form

Ŷ = [[Ĝ; Û , V̂ , Ŵ ]],

Û ∈ RI×R1 , V̂ ∈ RJ×R2 , Ŵ ∈ RK×R3 ,

such that Ŷ •3PM = YM and Ŷ •1P 1 •2P 2 = YH ;
in fact, ‖Ŷ −Y‖ can be arbitrary large for such Ŷ .

5In this paper, we prefer to use the term “recoverability of the SRI” rather
than “identifiability of the SRI” used in [9], in order to avoid confusion with
identifiability of the low-rank model.

Proof. First of all, we note that by [22, Theorem 13.16], the
singular values of the matrix XTX = IR3

�A+D� IR1R2

in (8) are all sums of the pairs of eigenvalues of(
V̂

T
P T

2P 2V̂
)
�
(
Û

T
P T

1P 1Û
)

︸ ︷︷ ︸
A

, λŴ
T
P T
MPMŴ︸ ︷︷ ︸
D

. (12)

We also assume without loss of generality that U ,V ,W have
orthonormal columns.
• Proof of 2) Assume that rank{P 1U} rank{P 2U} <
R1R2 and rank{PMW } < R3. If we set Û = U ,
V̂ = V , Ŵ =W , then rank{A} < R1R2, rank{D} <
R3 and rank{XTX} < R1R2R3. Therefore the system
(7) is underdetermined, and there is an infinite number
of solutions Ĝ ∈ RR1×R2×R3 . Note that if we define
Ŷ = [[Ĝ; U ,V ,W ]], then it is an admissible solution,
i.e., Ŷ •3PM = YM and Ŷ •1P 1 •2P 2 = YH .
On the other hand, due to orthogonality of the bases,
‖Ŷ − Y‖F = ‖Ĝ − G‖F , which can be made arbitrary
large due to nonuniqueness of the solution to (7).

• Proof of 1) Let us choose Û ∈ RI×R1 , V̂ ∈ RJ×R2 , and
Ŵ ∈ RK×R3 to be orthogonal bases of the row spaces
of Y (1)

M , Y (2)
M and Y (3)

H respectively. First, by (11), the
rank of unfoldings does not drop after degradation, hence

Û = UQU , V̂ = V QV , Ŵ =WQW ,

where QU , QV , QW are some rotation matrices. Next,
due to conditions on the ranks of P 1U , P 2U and
PMW , we get that rank{XTX} = R1R2R3 because
of (12). Hence the solution Ĝ of (7) is unique. Finally,
we note that the reconstructed tensor can be expressed as

vec{Ŷ} = (Ŵ � V̂ � Û)(XTX)−1XTz,

where the right-hand side does not depend on the rotation
matrices QU , QV , and QW due to the definition of X .
Hence, the reconstructed tensor Ŷ is unique.

Corollary V.2. If the conditions of Theorem V.1 (part 1) hold,
then any minimizer of (5) recovers Y , i.e.

Y = [[Ĝ; Û , V̂ , Ŵ ]].

In addition, Algorithm 5 recovers Y for all cases of recover-
ability in Theorem V.1.

The recoverability results derived in Theorem V.1 are valid
if a Tucker decomposition is used, and if its core tensor
is dense. But they still remain valid if the core tensor is
diagonal or block diagonal. For this reason, they also apply
to CPD or BTD decompositions if the tensor rank is smaller
than dimensions. In particular, recoverability can be ensured
under mild conditions when the CPD is not unique, e.g. in
the presence of collinear factors, as shown in the following
corollary.

Corollary V.3 (Recoverability for CPD model with partial
uniqueness). Assume that the SRI has a CPD Y = [[A,B,C]]
of rank F ≤ min(IH , JH), such that

rank{A} = rank{P 1A} = rank{B} = rank{P 2B} = F
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and PMC does not have zero columns. We also assume that
EM ,EH = 0 in (2). Then any minimizer of (3) recovers Y .

Proof. Since the original factors A,B,C yield zero error in
(3), hence any global minimizer (Â, B̂, Ĉ) of (3), satisfies

[[P 1Â,P 2B̂, Ĉ]] = YH and [[Â, B̂,PM Ĉ]] = YM .

Due to the conditions of the corollary, [[P 1A,P 2B,C]] and
[[A,B,PMC]] satisfy partial uniqueness conditions in [23,
Theorem 2.2]. Hence (after permutations and rescaling of
factors), we have Ĉ = C and

rank{C} = rank{Ĉ} = rank{Y (3)
H } = R3.

Moreover, since

Y
(1)
M = (PMC �B)AT, Y

(2)
M = (PMC �A)BT,

and PMC does not have zero columns, we have that

rank{A} = rank{Â} = rank{Y (1)
M } = R1 = F,

rank{B} = rank{B̂} = rank{Y (2)
M } = R2 = F.

Therefore, both (A,B,C) and (Â, B̂, Ĉ) are particular so-
lutions of Problem (5) with an additional constraint that the
tensor rank of G is at most F . Since, by Theorem V.1, any
solution of (5) recovers Y uniquely, the proof is complete.

Note that the conditions of Corollary V.3 are quite restric-
tive for real applications. But, they probably can be relaxed by
using Kruskal ranks and a more general formulation in [23,
Theorem 2.1] (see also [24]).

B. Exact recoverability for generic tensors

From the deterministic recovery conditions, we can establish
the generic recoverability results.

Theorem V.4. Assume that P 1 ∈ RIH×I , P 2 ∈ RJH×J , and
PM ∈ RKM×K are fixed full row-rank matrices. Let Y have
decomposition (10), where R1 ≤ I , R2 ≤ J , R3 ≤ K, and
G ∈ RR1×R2×R3 , U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3

are random tensors and matrices, distributed according to an
absolutely continuous probability distribution. We also assume
that EM ,EH = 0 in (2).

1) If R3 ≤ KM or (R1, R2) ≤ (IH , JH) and
R1 ≤ min(R3,KM )R2,

R2 ≤ min(R3,KM )R1,

R3 ≤ min(R1, IH)min(R2, JH),

(13)

then with probability 1 there exists a unique tensor Ŷ
with multilinear rank at most (R1, R2, R3) such that
Ŷ •3PM = YM and Ŷ •1P 1 •2P 2 = YH .

2) If R3 > KM and (R1 > IH or R2 > JH ), then with
probability 1 the reconstruction is non-unique, i.e. there
exist infinitely many Ŷ of the form

Ŷ = [[Ĝ; Û , V̂ , Ŵ ]],

Û ∈ RI×R1 , V̂ ∈ RJ×R2 , Ŵ ∈ RK×R3 ,

such that Ŷ •3PM = YM and Ŷ •1P 1 •2P 2 = YH ;
in fact, ‖Ŷ −Y‖ can be arbitrary large for such Ŷ .

Proof. • Proof of 2) follows from Theorem V.1 (part 2)
• Proof of 1) First, without loss of generality, we can

replace P 1, P 2, PM with the following of same size:

P̃ 1 =

[
IIH
0

]T
, P̃ 2 =

[
IJH
0

]T
, P̃M =

[
IKM

0

]T
. (14)

Indeed, let us explain why it is so, for example for P 1 ∈
RIH×I . There exists a nonsingular matrix6 T such that

P 1T =
[
IIH 0

]
.

If we take Ũ = T−1U then P 1U = P̃ 1Ũ . Note that a
nonsingular transformation preserves absolute continuity
of the distribution; hence U has an absolutely continuous
distribution if and only if Ũ has one.
Therefore, under the assumptions on distribution of U ,
V , W the following implications hold with probability 1

R1 ≤ IH ⇒ rank{U1:IH ,:} = R1,

R2 ≤ JH ⇒ rank{V 1:JH ,:} = R2,

R3 ≤ KM ⇒ rank{W 1:KM ,:} = R3.

Next, we are going to show how the other set of con-
ditions imply (11). We will prove it only for the first
condition (the others are analogous).
Note that the first unfolding can be written as

Y
(1)
M = (W 1:KM ,: �V )G(1)UT.

Due to the dimensions of the terms in the product, this
matrix is at most rank R1. Due to semicontinuity of the
rank function, Y (1)

H will be generically of rank R1 if
we can provide just a single example of U , V , W , G,
achieving the condition rank{Y (1)

M } = R1. Indeed, if
R1 ≤ min(R3,KM )R2, such an example is given by

U =

[
IR1

0

]
,V =

[
IR2

0

]
,W =

[
IR3

0

]
,G(1) =

[
IR1

0

]
,

which completes the proof.

We illustrate the statement of Theorem V.4 for the case
I = J , IH = JH and R1 = R2. In Figure 1 we show that the
space of parameters (R1, R3) is split into two regions: recov-
erable and non-recoverable. The hatched area corresponds to
the parameters where condition (13) is not satisfied.

Remark V.5. In the proof of Theorem V.4 it was shown that
we can assume that the degradation operators are given in
(14). In that case, the degraded tensors YM and YH are just
the subtensors (slabs) i.e.

YM = Y :,:,1:KM
, YH = Y1:IH ,1:JH ,:.

Hence the recoverability of Tucker super-resolution model
is equivalent to uniqueness of tensor completion [25], that
is the recovery of Y from known subtensors Y :,:,1:KM

and
Y1:IH ,1:JH ,:, shown in Figure 2.

We note that for the coupled CP approach (STEREO), the
connection with tensor completion was recently used in [26]
for accelerated reconstruction of fMRI images.

6For example, T = [P †1 F ], where F ∈ RI×(I−IH ),P 1F = 0.
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Fig. 2. Recovery of Y from Y :,:,1:KM
(pink), Y1:IH ,1:JH ,: (blue)

C. Recoverability in the blind case

Similarly to Theorem V.1, we can prove correct recovery for
Algorithm 6 under relaxed degradation model. We assume that
the MSI is degraded as before, and HSI is degraded slicewise
by an unknown linear operator Ps : RI×J → RIH×JH .{

YM = Y •3PM ,

(YH):,:,k = Ps(Y :,:,k).
(15)

Then it is easy to prove the following analogue of Theo-
rem V.1.

Proposition V.6. Let Y have a Tucker decomposition

Y = [[G; U ,V ,W ]],

where G ∈ RR1×R2×R3 , and U ∈ RI×R1 , V ∈ RJ×R2 ,
W ∈ RK×R3 are full column rank.

If rank{Y (3)
H } = R3 and rank{PMW } = R3, then

Algorithm 6 recovers Y correctly.

Proof. Indeed, YM = [[G; U ,V ,PMW ]]. Therefore, since
rank{PMW } = R3, the multilinear rank of YM is equal to
the one of Y and

Y = YM •
3
(W (PMW )†).

Finally, due to the condition rank{Y (3)
H } = R3, step 2 of

Algorithm 6 recovers W up to a change of basis, i.e., Z =
WO, where O ∈ RR3×R3 is an orthogonal matrix. Finally,
due to the properties of the pseudoinverse

(WO(PMWO)†) =W (PMW )†,

which completes the proof.

VI. NUMERICAL EXPERIMENTS

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. The code is implemented in
MATLAB. For basic tensor operations we used TensorLab 3.0
[27]. The results are reproducible and the codes are available
online at https://github.com/cprevost4/HSR Software.

A. Degradation model

Experiments are conducted on a set of semi-real and syn-
thetic examples, in which the groundtruth SRI is artificially
degraded to YH and YM by the degradation matrices P 1,
P 2 and PM according to model (2).

For spatial degradation, we follow the commonly used
Wald’s protocol [17]. The matrices P 1, P 2 are computed
with a separable Gaussian blurring kernel of size q = 9. Then,
downsampling is performed along each spatial dimension with
a ratio d = 4 between I, J and IH , JH , as in [9]. We refer to
Appendix B for more details on the construction of P 1, P 2.

In this paper, we consider two spectral responses used
to generate the spectral degradation matrix PM . In all the
semi-real examples, available online at [28], the bands cor-
responding to water absorption are first removed as in [9].
The LANDSAT sensor spans the spectrum from 400nm to
2500nm for the HSI and produces a 6-band MSI corresponding
to wavelengths 450–520nm (blue), 520–600nm (green), 630–
690nm (red), 760–900nm (near-IR), 1550-1750nm (shortwave-
IR) and 2050–2350nm (shortwave-IR2). The second response
corresponds to a QuickBird sensor, which spans the spectrum
from 430nm to 860nm for the HSI and produces a 4-band MSI
which bands correspond to wavelengths 430–545nm (blue),
466–620nm (green), 590–710nm (red) and 715–918nm (near-
IR). The spectral degradation matrix PM is a selection-
averaging matrix that selects the common spectral bands of
the SRI and MSI.

B. Metrics

As for the experimental setup, we follow [9]; we compare
the groundtruth SRI with the recovered SRI obtained by the
algorithms. The main performance metric used in comparisons
is reconstruction Signal-to-Noise ratio (R-SNR) used in [3]:

R-SNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
. (16)

In addition to R-SNR, we consider different metrics from [3]
described below:

CC =
1

IJK

(
K∑
k=1

ρ
(
Y :,:,k, Ŷ :,:,k

))
, (17)

https://github.com/cprevost4/HSR_Software
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where ρ(·, ·) is the Pearson correlation coefficient between the
estimated and original spectral slices;

SAM =
180

π

1

IJ

IJ∑
n=1

arccos

 Y (3)
n,:

T
Ŷ

(3)

n,:

‖Y (3)
n,:‖2‖Ŷ

(3)

n,:‖2

 , (18)

which computes the angle between original and estimated
fibers;

ERGAS =
100

d

√√√√ 1

IJK

K∑
k=1

‖Ŷ :,:,k −Y :,:,k‖2F
µ2
k

, (19)

where µ2
k is the mean value of Ŷ :,:,k. ERGAS represents the

relative dimensionless global error between the SRI and the
estimate, which is the root mean-square error averaged by the
size of the SRI. We also show the computational time for each
algorithm, given by the tic and toc functions of MATLAB.

C. Semi-real data: comparison with other methods

In this subsection, we showcase the capabilities of SCOTT
and B-SCOTT and compare them with state-of-the-art meth-
ods.

1) Non-blind algorithms: We compare the performance
of non-blind algorithms (i.e STEREO and its initialization
algorithm TenRec, and SCOTT). We test various ranks for
both algorithms. For STEREO and TenRec, we use the imple-
mentation7 of [9], available online at [30]. In other subsections,
we use our implementation with fast solvers for the Sylvester
equations (see Appendix A). For HySure [6], the groundtruth
number of materials E is chosen as the number of endmembers
as in [9]. This algorithm is applied in a non-blind fashion,
meaning that the spatial8 and spectral degradation operators
are not estimated but obtained from P 1, P 2 and PM . The
same model is applied to the FUSE algorithm [31]. As a
comparison, we also show the performance of B-SCOTT when
no splitting is performed.

The first dataset we consider is Indian Pines, where Y ∈
R144×144×200 is degraded by a LANDSAT sensor for the MSI
and a downsampling ratio d = 4 for the HSI. The results
are presented in Tables I and II, and Figure 3. In Table I
and following, the numbers between brackets represent the
multilinear rank used for the Tucker approach.

In the noiseless case (see Table I), we can see that for
multilinear ranks chosen in the recoverability region (see
Figure 1), SCOTT yields similar performance to the one of
STEREO with lower computation time. Moreover, contrary to
[9] (where F = 50 is taken for STEREO), we found out that
tensor rank F = 100 yields better performance.

In Table II, white Gaussian noise is added to YH and YM

with an input SNR of 25dB. In this case, as in [9], tensor
rank F = 50 yields better performance. For F = 100, TenRec
gives slightly better performance than STEREO. Compared
with the noiseless case, the performance of STEREO and
TenRec deteriorate slightly, while we observe a bigger loss

7TenRec may be also made faster, e.g., by using algebraic algorithms for
CP approximation [29], but we did not optimize its speed in this paper.

8In fact, HySure has a different, convolutional degradation model, that is
not necessarily separable.

Algorithm R-SNR CC SAM ERGAS time
STEREO 50 26.89 0.88 2.26 1.04 2.17

STEREO 100 28.46 0.91 2.03 0.89 3.31
SCOTT [40,40,6] 26.28 0.88 2.36 1.08 0.29

SCOTT [30,30,16] 25.03 0.87 2.53 1.2 0.41
SCOTT [70,70,6] 26.34 0.88 2.52 1.13 0.35

SCOTT [24,24,25] 25.06 0.88 2.45 1.18 0.16
B-SCOTT [40,40,6] 25.12 0.87 2.76 1.25 0.11

HySure E = 16 26.43 0.87 2.5 1.1 15.18
FUSE 21.95 0.81 3.91 1.91 0.33

TenRec F = 50 26.82 0.88 2.27 1.05 0.84
TenRec F = 100 28.34 0.9 2.05 0.9 2.1

TABLE I
INDIAN PINES (NON-BLIND ALGORITHMS), NO NOISE

Algorithm R-SNR CC SAM ERGAS time
STEREO F = 50 25.36 0.85 2.62 1.2 2.11

STEREO F = 100 24.01 0.82 3.16 1.39 3.27
SCOTT [40,40,6] 23.67 0.83 3.14 1.46 0.33

SCOTT [30,30,16] 22.85 0.84 3.47 1.41 0.43
SCOTT [70,70,6] 17.99 0.77 5.92 2.88 0.36

SCOTT [24,24,25] 23.69 0.85 3.08 1.32 0.17
B-SCOTT [40,40,6] 20.26 0.81 4.65 2.2 0.11

HySure E = 16 20.44 0.72 4.83 2.09 15.71
FUSE 12.21 0.62 11.17 5.66 0.35

TenRec F = 50 25.24 0.85 2.65 1.23 0.83
TenRec F = 100 24.29 0.82 3.01 1.37 2.09

TABLE II
INDIAN PINES (NON-BLIND ALGORITHMS) WITH NOISE

of performance for other methods, including SCOTT and B-
SCOTT.

Groundtruth SRI

1500

2000

2500

STEREO, F=50

1500

2000

2500

SCOTT, R=[40,40,6]

1500

2000

2500

HySure, p=16

1500

2000

2500

Fig. 3. Spectral slice 120 of the SRI, Indian Pines

The other dataset is the Salinas-A scene, where Y ∈
R80×84×204 is degraded with QuickBird specifications and
d = 4 for the HSI. The results are presented in Table III
and Figure 4.

In [9], CP-rank F = 100 is used for STEREO. However,
we found out that for STEREO, tensor rank F = 50 yields
better reconstruction. In Figure 4, we can see that STEREO
and SCOTT can recover accurately the SRI.

2) Blind algorithms: We now consider the case where
the spatial degradation matrices P 1, P 2 are unknown and
compare the performance of B-SCOTT with Blind-STEREO
[9], SCUBA [11] and HySure. We also compare the proposed
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Algorithm R-SNR CC SAM ERGAS time
STEREO F = 50 33.4 0.97 0.91 3.35 0.92
STEREO F = 100 32.91 0.94 0.58 5.41 0.9
SCOTT [40,40,6] 31.52 0.95 0.71 4.92 0.1
SCOTT [50,50,6] 32.31 0.95 0.59 4.89 0.13
SCOTT [70,70,6] 32.89 0.95 0.48 4.89 0.28

B-SCOTT [40,40,6] 31.3 0.95 0.74 4.96 0.03
HySure E = 6 31.59 0.95 0.65 4.96 4.72

FUSE 20.61 0.88 1.91 5.89 0.12
TenRec F = 50 33.24 0.97 0.89 2.97 0.6

TenRec F = 100 29.15 0.92 0.63 9.79 0.84
TABLE III

SALINAS A-SCENE (NON-BLIND ALGORITHMS)
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Fig. 4. Spectral slice 120 of the SRI, Salinas-A scene

blind algorithm to Blind-TenRec, the algebraic initialization
of Blind-STEREO. White gaussian noise is added to the HSI
and MSI, with a SNR of 15dB and 25dB, respectively. We
consider two other datasets; the first one is a portion of the
Pavia University, where Y ∈ R608×366×103 is degraded with
QuickBird specifications for the MSI and d = 4 for the
HSI. We demonstrate the results in Table IV and Figure 5
for visual reconstruction. For B-SCOTT, in the case where
R = [152, 84, 3], no compression is performed. In the fol-
lowing tables, the numbers between parentheses denote the
number of blocks in which the HSI and MSI are split. For
SCUBA, the numbers between brackets represent [F,R3].

Algorithm R-SNR CC SAM ERGAS time
SCUBA (4,4) [120,3] 25.67 0.99 3.24 1.97 18.97

B-SCOTT (4,4) [60,60,3] 23.41 0.99 3.83 2.37 0.44
B-SCOTT (4,4) [152,84,3] 26.42 0.99 2.97 1.83 0.57
B-SCOTT (4,4) [120,60,4] 25.63 0.99 3.01 1.81 0.46

SCUBA (8,8) [120,3] 26.49 0.99 2.93 1.81 50.15
B-SCOTT (8,8) [70,40,3] 26.52 0.99 2.92 1.81 0.57

B-STEREO F = 300 23.11 0.98 3.97 2.46 82.86
HySure E = 9 26.27 0.99 2.83 1.74 115.39

B-TenRec F = 300 22.52 0.98 4.06 2.65 29.51
TABLE IV

PAVIA UNIVERSITY (BLIND ALGORITHMS)

In the second case, we consider the Cuprite dataset, where
Y ∈ R512×614×224 is degraded with LANDSAT specifications
and d = 4. The results are presented in Table V and Figure 6.

These two previous examples show that, for different split-
tings, and ranks taken from [11], B-SCOTT yields the best
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HySure, p=9
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Fig. 5. Spectral slice 44 of the SRI, Pavia University

Algorithm R-SNR CC SAM ERGAS time
SCUBA (4,4) [45,3] 31.71 0.97 1.12 6.57 12.58

B-SCOTT (4,4) [45,45,3] 31.91 0.97 1.08 6.57 0.89
B-SCOTT (4,4) [60,60,3] 33.02 0.98 1.03 6.58 1.19

SCUBA (8,8) [45,3] 34.66 0.99 0.92 6.17 33.79
B-SCOTT (8,8) [45,45,3] 34.7 0.99 0.91 6.19 1.25

B-STEREO F = 150 29.87 0.97 1.37 7.35 56.42
HySure E = 10 34.62 0.99 0.94 6.83 201.4

B-TenRec F = 150 30.7 0.97 1.21 6.48 12.67
TABLE V

CUPRITE (BLIND ALGORITHMS)

performance. For certain multilinear ranks, it even outperforms
SCUBA with lower computation time. Moreover, it outper-
forms Blind-STEREO and Blind-TenRec. In terms of visual
reconstruction, our algorithm can recover accurately the details
of the groundtruth SRI, even though the spatial degradation
matrices are unknown.
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Fig. 6. Spectral slice 44 of the SRI, Cuprite

3) Hyperspectral pansharpening: Next, we address the
pansharpening problem, which consists in fusion of a hy-
perspectral image and a panchromatic image (PAN) YP ∈
RI×J×1. In this case, the spectral degradation matrix is
obtained by averaging over the full spectral range of the
groundtruth SRI, so that PM ∈ R1×K . CP-based algorithms
are not applicable, since their initialization is based on the
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CPD of the MSI (which is a matrix in the case of PAN images).
In Table VI, the metrics are shown for different multilinear
ranks for the Indian Pines dataset. We also compare our results
to those of HySure. We can see that even though the only
possible value of R3 is 1 for B-SCOTT, the algorithm still
manages to yield a good recovery of the SRI. On the other
hand, SCOTT can also recover the SRI accurately, but is more
sensitive to the choice of the multilinear rank.

Algorithm R-SNR CC SAM ERGAS time
SCOTT [24,24,25] 20.47 0.77 4.41 1.95 0.22
SCOTT [30,30,16] 18.04 0.69 5.68 2.59 0.43
SCOTT [35,35,6] 14.61 0.54 7.84 3.89 0.89
HySure E = 16 20.67 0.76 4.24 1.99 14.39

BSCOTT (4,4) [24,24,1] 19.78 0.72 5.07 2.19 0.28
BSCOTT (4,4) [35,35,1] 19.79 0.72 5.07 2.19 0.12

TABLE VI
INDIAN PINES (PANSHARPENING)

D. Synthetic examples
In most cases, generic recoverability conditions proposed in

[9] are less restrictive than that of the Tucker approach. The
tensor rank F can be larger than the dimensions of the SRI,
while the multilinear ranks are bounded by its dimensions.
This gives the CP-based model better modelling power than
the Tucker-based model, as shown for real data: regardless
of the computation time, STEREO gives better performance
than SCOTT. However, there may exist deterministic cases
in which the Tucker recoverability conditions are satisfied
while nothing can be concluded from the results of [9]. The
goal of this subsection is to provide synthetic examples for
such situations in the noiseless and noisy cases. While these
examples do not necesserily look like realistic hyperspectral
images, they do help to better understand the recoverability
conditions of the SRI and to evaluate their impact on the
estimation performance.

1) Generating synthetic SRI: First, we explain how the
synthetic SRI Y ∈ RI×J×K are generated. We consider N
spectral signatures s1, . . . , sN obtained from the Indian Pines
groundtruth data [28]. The SRI is split into M2 equal blocks
along the spatial dimensions. In each I

M× J
M block, at most one

material is active, indicated by a number in the corresponding
cell of a parcel map (see Table VII for an example).

Formally, the SRI is computed as

Y =

N∑
n=1

An ⊗ sn, (20)

1 2
2

TABLE VII
PARCEL MAP FOR N = 2

where the abundance mapAn is a block matrix with Gaussians
of fixed size present on the blocks corresponding to material
n in the parcel map.

For instance, we consider the case presented in Table VII;
the two abundance maps are

A1 =

[
H 0
0 0

]
, A2 =

[
0 H
H 0

]
,

where H is a 60×60 Gaussian with σ = 20. To illustrate this
example, we show in Figure 7 two spectral bands of Y .
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Fig. 7. Spectral bands of the synthetic SRI with N = 2

2) Non-existing low-rank approximations: Let us consider
the example introduced in Table VII. Due to separability of
the Gaussians, Y has the following multilinear decomposition:

Y = [[G; U ,V ,S]],

where G:,:,1 =

[
1 0
0 0

]
,G:,:,2 =

[
0 1
1 0

]
,

U = V =

[
H 0
0 H

]
and S = [s1 s2].

The multilinear rank of Y is equal to (2, 2, 2), while the tensor
rank of Y is equal to the tensor rank of G, which is known to
be equal to F = 3 [32, Ex. 2], [33, Ex. 6.6]. This is a well-
known case where the best rank-2 CP approximation does not
exist [34], [35], thus we can expect problems with the CP-
based approach.

We generate YH and YM with a downsampling ratio of
d = 4 for the HSI and LANDSAT specifications for the MSI
(see Appendix B). No noise is added to the MSI and HSI. We
run STEREO and TenRec for F in [1 : 40] and SCOTT for
R1 = R2 in [1 : 40] and R3 in [1 : 10] under recoverability
conditions. For each algorithm, we compute the R-SNR as a
function of the rank; the results are provided on Figure 8. As
a comparison, on the same plot as STEREO and TenRec, we
plot the results of SCOTT for R3 = N and R1 = R2 = F .
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Fig. 8. R-SNR as a function of the rank

For SCOTT, the best reconstruction error (given by R-SNR)
is obtained for R3 = N and is rather insensitive to the choice
of R1 = R2. R3 can also be chosen larger than N without
significant loss of performance. For STEREO, only rank F =
3 allows for an accurate reconstruction of the SRI. For other
tensor ranks, either the algorithm breaks (when no point is
plotted, e.g. F = 32) or leads to inaccurate recovery. TenRec
however achieves the correct recovery for a wide range of
tensor ranks. We can see that in this case, performing STEREO
iterations after TenRec leads to a loss of performance. We
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believe that this is due to the presence of colinear factors in
the approximation causing ill-conditioning of ALS iterations.
However, for noisy or real examples, this phenomenon is not
likely to occur.

3) Higher rank and noisy example: We also consider a
slightly more realistic scenario. The following example is
made of N = 7 materials, generated similarly to the previous
example, as illustrated in Table VIII and Figure 9. The
abundance maps are arranged along an anti-diagonal pattern,
in a similar fashion as for the Salinas-A dataset.

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

TABLE VIII
PARCEL MAP FOR N = 7
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Fig. 9. Spectral bands of the synthetic SRI with N = 7

In this example, Y ∈ R80×80×200 is degraded with Quick-
Bird specifications for the MSI and d = 4 for the HSI. White
Gaussian noise is added to the degraded images with an input
SNR of 35dB. The multilinear rank of the SRI is R = (4, 4, 7)
while we do not know the tensor rank. Similarly, we run both
algorithms with the same setup as in the previous example,
including a comparison of STEREO and TenRec, and SCOTT
for R3 = N and an overestimated R3 = 15. Results are
presented in Figure 10.

For SCOTT, the best R-SNR is obtained for R = (4, 4, 7),
which is the multilinear rank of the noiseless tensor. Moreover,
the best reconstruction error is obtained for R3 = N : in this
case, the performance of SCOTT is better than that of CP-
based approaches. SCOTT is also robust to an overestimation
of R3 or R1 = R2. TenRec and STEREO have almost the
same performance, which is lower than that of SCOTT in this
example.
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Fig. 10. R-SNR as a function of the rank

4) Block tensor: Here, we provide an example in which
the CPD of the MSI is not unique but the CP approach still
achieves the correct recovery of the SRI. This dataset is made
of N = 6 materials with spatial degradation ratio of d = 4
for the HSI and Quickbird specifications for the MSI so that
KM < N . Each abundance map is made of two 10 × 10
Gaussians of width σ = 4, as in Table IX.

1
1

. . .
N

N

TABLE IX
PARCEL MAP FOR BLOCKED TENSOR, N = 6

In this example, the tensor rank of Y is F = 12 while the
multilinear rank is R = (12, 12, 6). The CP decompositions
of both MSI and HSI are not unique, but the recoverability
conditions given in Corollary V.3 are satisfied. This is an
example of a tensor admitting a block-term decomposition,
where the abundance maps in (20) corresponding to different
materials are not rank-one. While this is not a realistic example
due to small ranks of abundance maps, it is inspired by the
standard linear mixing model [1] with few materials.
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Fig. 11. R-SNR as a function of the rank in the noiseless case (left) and with
35dB input SNR (right)

In Figure 11, we show the R-SNR as a function of the rank
for STEREO and SCOTT for the noiseless and noisy cases. In
the noiseless case, under recoverability conditions, our Tucker-
based approach provides good reconstruction for a variety of
ranks and R3 ≥ N . For STEREO and TenRec, we can see
that even though the CP model is not identifiable, F = 12
allows correct reconstruction of the SRI with almost the same
performance as that of SCOTT for R = (12, 12, 6) (up to
machine precision).

This example corroborates Corollary V.3 and shows that
identifiability of the CP model (as it is formulated in [9]) is not
necessary to reconstruct Y accurately, and partial uniqueness
may be sufficient.

In the noisy case, the three algorithms have almost the same
performance for R1 = R2 = F = 12. However, for F ≥ 21,
TenRec gives better performance than SCOTT, and for F ≥
26, STEREO overcomes our approach.

E. Choice of multilinear ranks in the presence of noise
In Section V, we provided a theorem for recoverability of

the SRI. In this subsection, we show that the conditions of
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Theorem V.1 also give hints on choosing the multilinear ranks
for HSR in “signal+noise” and semireal scenarios.

1) Singular values of the unfoldings: Motivated by step
1 of Algorithm 5, where the factor matrices U ,V ,W are
computed by HOSVD of the HSI and MSI, and by the first set
of conditions in Theorem V.1, we look at the singular values
of Y (1)

M , Y (2)
M and Y (3)

H .
We first consider the synthetic data from Figure 7 with N =

2 materials, and add white Gaussian noise to YH and YM with
different SNR: 20dB, 35dB, 60dB and no noise. In Figure 12,
we plot the 15 first singular values of the unfoldings on a
semi-log scale.

Log of singular values, 2 materials, Km=6
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Fig. 12. Logarithm of the first 15 singular values for the three unfoldings

We can see that for all the considered noise levels, the
singular values are well separable. The corners of the curves
at singular values (2, 2, 2) are coherent with the theoretical
multilinear rank of the synthetic SRI.

We now consider the semi-real datasets Indian Pines and
Salinas-A and plot the singular values of the unfoldings on a
semi-log scale on Figures 13 and 14.
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Fig. 13. Singular values for the three unfoldings, Indian Pines

0 50 100

10
-10

10
0

10
10

1st unfolding MSI

0 50 100
10

2

10
3

10
4

10
5

10
6

2nd unfolding MSI

0 50 100 150 200
10

0

10
2

10
4

10
6

3rd unfolding HSI

Fig. 14. Singular values for the three unfoldings, Salinas-A scene

In the semi-real cases, a clear corner in the singular value
curves cannot be found, because these examples do not cor-
respond to a “low-rank signal+noise” scenario, contrary to
the case of synthetic data. Moreover, the HSI and MSI are
not necessarily low-rank: hence, the Tucker approach only
performs a low-rank approximation of the data. Hence, the
SVD of the unfolding does not provide as much information

as for the synthetic case, in which the groundtruth data are
explicitly designed to be low-rank.

2) Influence on the reconstruction error: Next, we consider
the R-SNR and cost function fT as functions of the multilinear
rank. We run SCOTT for the ranks R1 = R2 in [10 : 50] and
R3 in [2 : 25] for which the recoverability condition holds
(see Section V), and two semi-real datasets: Indian Pines and
Salinas-A scene. The results are shown in Figures 15 and 16,
respectively.
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Fig. 16. R-SNR (left) and fT (right) as functions of R1 and R3, Salinas-A

While the cost function decreases as R1 and R3 increase,
the best reconstruction error (given by R-SNR) is achieved in
one of the two recoverability subregions in Fig. 1: (a) (R3 ≥
KM and R1 ≤ IH ) and (b) (R3 ≤ KM and R1 ≥ IH ). For
subregion (b), the best performance is achieved when R3 =
KM and R1 as large as possible, while for subregion (a), we
notice a sharp drop of the R-SNR near R1 = IH .

The drop of the performance in subregion (a) can be
explained by looking at the condition number of the matrix
XTX that is used to compute the core tensor Ĝ. For the
subregion (a), due to properties of Kronecker products [22,
Theorems 13.12 and 13.16], we have that

cond{XTX} := σmax(X
TX)

σmin(X
TX)

=
λσ2

max(PMŴ ) + σ2
max(P 1Û)σ2

max(P 2V̂ )

σ2
min(P 1Û)σ2

min(P 2V̂ )
.

Note that σmax(PMŴ ) does not decrease when we increase
R3 and R3 ≤ KM . Hence we can get a lower bound on
cond{XTX} by setting R3 = KM .

In Figure 17, for the Indian Pines dataset we plot on a
semi-log scale the lower bound cond{XTX} as functions of
R1 = R2, for R3 = 6 as well as σmax(PMŴ ); since the
latter almost does not change, the lower bound is tight. In
Figure 17, we see that there is a highest relative increase of
the condition number around R1 = R2 = 32, which coincides



13

0 10 20 30 40

R
1
 = R

2

10
0

10
2

10
4

10
6

5 10 15 20 25

R
3

0.32

0.33

0.34

0.35

0.36

0.37
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right: σ1(PMŴ ), Indian Pines

with the point of the performance drop in Figure 15. Similar
behaviour can be observed for the Salinas dataset on Figure 18.

0 5 10 15 20

R
1
 = R

2

10
0

10
2

10
4

10
6

5 10 15 20 25

R
3

0.32

0.33

0.34

0.35

0.36

0.37

Fig. 18. Left: log(cond{XTX}) depending on R1 = R2 for R3 = KM ;
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All in all, based on the above examples, we can conclude
that if we are in subregion (b), the R3 should be taken as
large as possible (R3 = KM ), while in the subregion (a) R1,
R2 should be taken as large as possible while maintaining the
condition number to a reasonable value.

F. Recovery of spectral signatures

Since correct recovery of spectral signatures is quite im-
portant for further processing of hyperspectral images, we
would like see whether SCOTT is able to do that. We consider
the Indian Pines dataset, where groundtruth data (see Fig.
19) is available, splitting the image into 16 regions. We will
consider three representative ranks: [40, 40, 6], [30, 30, 16], and
[24, 24, 25], and compare them to STEREO (F = 100).

Fig. 19. Groundtruth image for Indian Pines dataset. Materials 4,7,9,14 are
marked in red.

We do not perform a proper hyperspectral unmixing, and
compute the spectral signatures by averaging across the re-
gions. We selected four representative signatures correspond-
ing to materials 4,7,9 and 14, which are plotted in Figure VI-F.
Note that materials 7 and 9 are scarce in the groundtruth SRI
(resp. 28 and 20 pixels), whereas materials 4 and 14 are more
abundant (resp. 237 and 1265 pixels).
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Fig. 20. Original spectral signature for materials 4,7,9 and 14

In Figure 21 we plot relative errors of the reconstruction of
spectra by different methods. As expected, for materials 7 and
9, the discrepancy between the original spectra and the spectra
obtained from estimated SRI is bigger than for materials 4 and
14. This can be explained by the scarcity of sources 7 and 9
compared to sources 4 and 14.
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Fig. 21. Residual errors for the three considered ranks and four materials

In Figure 22, we have a closer look at the spectra at spectral
bins 80 to 100. We can see that for abundant materials (4 and
14), all the algorithms estimate well the spectra. For the scarce
materials it is important to choose the rank large enough, in
particular R3 = 16 and R3 = 25 yield better reconstruction
than R3 = 6, and also than STEREO, even with F = 100.
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Fig. 22. Materials at spectral bins 80 to 100. Groundtruth (black), SCOTT
(40, 40, 6) (red), SCOTT [30, 30, 16] (yellow), SCOTT (24, 24, 25) (purple),
STEREO F = 100 (green).
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VII. CONCLUSION
In this paper, we proposed a novel coupled Tucker model

for hyperspectral superresolution. We showed that the model
is recoverable, that is, it allows for an unique recovery of the
SRI for a wide range of multilinear ranks. We proposed two
very simple SVD-based algorithms that can be used for the
super-resolution problem, for known and unknown degradation
operators, and for the case of pansharpening. The algorithms
are very fast, but produce the results that are comparable
with the CP-based approaches. This work opens new perspec-
tives on using various tensor factorizations for hyperspectral
super-resolution. Still several interesting questions remain,
for example, how to enlarge the recoverability range for the
multilinear rank. Estimating the multilinear rank of the Tucker
decomposition still remains an open problem; the question of
optimal splitting the data into non-overlapping subtensors in
B-SCOTT also needs to be further investigated.

APPENDIX A
SOLVING NORMAL EQUATIONS AS GENERALIZED

SYLVESTER EQUATIONS

Equation (7) can be seen as a generalized Sylvester equation
of the form

AĜB +CĜD = E, (21)

where G is an unfolding of Ĝ.
We propose two options for converting (7) into (21). In the

first case, Ĝ = G(3) ∈ RR1R2×R3 ,

A =
(
UTP T

1P 1U
)
�
(
V TP T

2P 2V
)
, B = IR3

,

C = IR1R2
, D = λ

(
W TP T

MPMW
)
,

and E ∈ RR1R2×R3 is a matricization of XTz.
In the second case, Ĝ = G(1)T ∈ RR1×R2R3 ,

A = UTP T
1P 1U , B = IR3

�
(
V TP T

2P 2V
)
,

C = IR1 , D = λ
(
W TP T

MPMW
)
� IR2 ,

and E ∈ RR1×R2R3 is a matricization of XTz.
The two options are equivalent and the fastest one is chosen

according to the multilinear rank. As a rule of thumb, we
decide to choose the first option in subregion (a) of Figure 1
and the second option in subregion (b). The complexity for
solving the generalized Sylvester equation (21) is thus O(m3+
n3) flops for Ĝ ∈ Rm×n if fast solvers, such as Hessenberg-
Schur or Bartels-Stewart methods [18], [19], [36], are used.

APPENDIX B
DEGRADATION MATRICES

Here, we explain in details how the degradation matrices
are constructed. For this appendix, we consider that P 1 = P 2.
As in [9], P 1 is constructed as P 1 = S1T 1, where T 1 is a
blurring matrix and S1 is a downsampling matrix.

The blurring matrix is constructed from a Gaussian blurring
kernel φ ∈ Rq×1 (in our case, q = 9) with a standard deviation
σ. For m = 1, . . . , q and m′ = m−

⌈
q
2

⌉
, we have

φ(m) =
1√
2πσ2

exp

(−m′2
2σ2

)
.

Thus, T 1 ∈ RI×I can be seen as

T 1 =



φ(d q
2e) ... φ(q) 0 ... 0

...
. . . . . . . . .

...

φ(1)
. . . . . . 0

0
. . . . . . φ(q)

...
. . . . . . . . .

...
0 ... 0 φ(1) ... φ(d q

2e)


.

The downsampling matrix S1 ∈ RIH×I , with downsam-
pling ratio d, is made of IH independant rows such that for
i = 1, . . . , IH , (S1)i,2+(i−1)d = 1 and the other coefficients
are zeros.

The spectral degradation matrix PM ∈ RKM×K is a
selection-averaging matrix, Each row represents a spectral
range in the MSI; coefficients are set to ones for common
bands with the SRI, and zeros elsewhere. The coefficients are
averaged per-row. Below, we give an example of a 2×6 matrix:[

0 1
3

1
3

1
3 0 0

0 0 0 0 1
2

1
2

]
.

REFERENCES

[1] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and
multispectral data fusion: A comparative review of the recent literature,”
IEEE Trans. Geosci. Remote Sens., vol. 5, no. 2, pp. 29–56, 2017.

[2] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanus-
sot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes,
J. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya,
“Hyperspectral pansharpening: A review,” IEEE Trans. Geosci. Remote
Sens., vol. 3, no. 3, pp. 27–46, 2015.

[3] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, M. Selva, and C. Chen,
“25 years of pansharpening: a critical review and new developments,”
Signal and Image Process. for Remote Sens., pp. 533–548, 2011.

[4] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528–537, 2012.

[5] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Hyperspec-
tral and multispectral image fusion based on a sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668, 2015.
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