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Hyperspectral Super-Resolution

with Coupled Tucker Approximation:

Recoverability and SVD-based algorithms
Clémence Prévost, Student Member, IEEE, Konstantin Usevich∗, Member, IEEE,

Pierre Comon, Fellow, IEEE, and David Brie Member, IEEE,

Abstract—We propose a novel approach for hyperspectral
super-resolution, that is based on low-rank tensor approximation
for a coupled low-rank multilinear (Tucker) model. We show that
the correct recovery holds for a wide range of multilinear ranks.
For coupled tensor approximation, we propose two SVD-based
algorithms that are simple and fast, but with a performance
comparable to the state-of-the-art methods. The approach is
applicable to the case of unknown spatial degradation and to
the pansharpening problem.

Index Terms—hyperspectral super-resolution, low-rank tensor
approximation, data fusion, recovery, identifiability

I. INTRODUCTION

The problem of hyperspectral super-resolution (HSR) [1]

has recenlty attracted much interest from the signal processing

community. It consists in fusing a multispectral image (MSI),

which has a good spatial resolution but few spectral bands,

and a hyperspectral image (HSI), whose spatial resolution

is lower than that of MSI. The aim is to recover a super-

resolution image (SRI), which possesses both good spatial

and spectral resolution. This problem is closely related to

hyperspectral pansharpening [2], [3], where HSI is fused with

a panchromatic image (i.e. an “MSI” with one spectral band).

Many methods were developed for the HSR problem, in-

cluding coupled nonnegative matrix factorization [4] (CNMF),

methods based on solving Sylvester equation [5], Bayesian

approaches (HySure [6]), FUMI [7], to name a few. Motivated

by the widely used linear mixing model, most of these methods

are based on a coupled low-rank factorization of the matricized

hyperspectral and multispectral images.

Recently, a promising tensor-based method was proposed

that makes use of the inherent 3D nature of HSI [8]. Assum-

ing that the super-resolution image itself admits a low-rank

canonical polyadic (CP) decomposition (CPD), the HSR is

reformulated as a coupled CP approximation. An alternating

least squares (ALS) algorithm (STEREO) is proposed, achiev-

ing reconstruction performance that is competitive with the

state of the art. The key property underlying the approach of
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[8] is that the coupled CPD is identifiable, hence the SRI can

be uniquely recovered. This approach was also successfully

used for a super-resolution problem in medical imaging [9].

Still, it has several drawbacks: for instance, the appropriate

rank of the CPD is not known a priori and may be unrelated

to the number of materials; the rank can be also very large,

which may affect computational complexity and convergence.

In some cases, the spatial degradation operator is unknown,

therefore blind algorithms are needed. A blind version of

STEREO was proposed in [8] that also uses an ALS algorithm

for a coupled CP model. In [10], a simple algorithm (SCUBA)

based on a single CPD of the MSI tensor and a truncated SVD

of the unfolding of the HSI is introduced. A key idea proposed

in [10] is to use local approximations by splitting the data

cubes into separate blocks. This algorithm outperforms blind

STEREO and other state-of-the-art algorithms. It also does not

require separability of the spatial degradation operator.

In this paper, we propose to use another type of low-

rank tensor factorization: multilinear (also known as Tucker)

factorization. By assuming that the super-resolution image has

approximately low multilinear rank, we reformulate the HSR

problem as a coupled Tucker approximation. First, we propose

two closed-form SVD-based algorithms: the first is inspired by

the higher-order SVD [11] and the second (blind) is inspired

by [10]. Second, we prove that, although the Tucker decompo-

sition is not identifiable1, the SRI can be uniquely recovered

for a wide range of multilinear ranks. Our experiments on

a number of simulated and semi-real examples, show that

the proposed algorithms have a performance comparable to

those of [8] and [10], but the computational cost is much

lower. Also, the proposed approach is applicable to hyper-

spectral pansharpening (unlike [8], which requires the MSI to

have at least two spectral bands). Finally, the algorithms can

accurately reconstruct spectral signatures, which is of prime

importance for further processing of the HSR image.

A short version of this work [12] appears in ICASSP 2019,

presenting the SCOTT algorithm and part of the simulations.

The current paper additionally includes new blind algorithms,

detailed analysis of the model and the algorithms, proof of the

theorem for recoverability, new simulations for synthetic and

semi-real data, examples on recovery of spectral signatures.

This paper is organized as follows. In Section II, we

introduce our notation, define basic tensor decomposition op-

1This is the reason why the Tucker model was discarded in [8] as a potential
model for hyperspectral super-resolution.
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erations and recall the HSR problem. In Section III, we recall

the CP-based model and the STEREO algorithm proposed in

[8]. Section IV contains our proposed coupled Tucker model

and SVD-based algorithms (SCOTT and B-SCOTT) for tensor

approximation. In Section V we prove our main recoverability

result for the coupled Tucker model. Section VI contains the

numerical experiments.

II. BACKGROUND AND NOTATION

A. Basic notation

In this paper we mainly follow [13] in what concerns the

tensor notation (see also [14]). The following fonts are used:

lowercase (a) or uppercase (I) plain font for scalars, boldface

lowercase (a) for vectors, uppercase boldface (A) for matrices,

and calligraphic (A) for N -D arrays (tensors). Vectors are,

by convention, one-column matrices. The elements of vec-

tors/matrices/tensors are accessed as ai, Ai,j and Ai1,...,iN

respectively. R stands for the real line.

For a matrix A, we denote its transpose and Moore-Penrose

pseudoinverse as AT and A† respectively. The notation IM is

used for the M ×M identity matrix and 0L×K for the L×K

matrix of zeroes. We use the symbol ⊠ for the Kronecker

product ofx matrices (in order to distinguish it from the tensor

product ⊗), and ⊙ for the Khatri-Rao product.

For a matrix X ∈ R
m×n, we denote by σmax(X) and

σmin(X) the largest and the smallest of the min(m,n) sin-

gular values of xX . We also denote by tSVDR (X) ∈ R
n×R

a matrix containing R leading right singular vectors of X .

We use vec{·} for the standard column-major vectorization

of a tensor or a matrix. Operator •p denotes contraction on the

pth index of a tensor; when contracted with a matrix, summa-

tion is always performed on the second index of the matrix,

e.g., [A •1 M ]ijk =
∑

ℓAℓjkMiℓ. For a tensor Y ∈ R
I×J×K ,

its first unfolding is denoted by Y (1) ∈ R
JK×I .

B. Tensor decompositions

For a tensor G ∈ R
R1×R2×R3 and matrices U ∈ R

I×R1 ,

V ∈ R
J×R2 and W ∈ R

K×R3 , the following shorthand

notation is used for the multilinear product:

[[G; U ,V ,W ]] = G •
1
U •

2
V •

3
W . (1)

which means that the (i, j, k)th entry of the above array is
∑

pqr

Gpqr UipVjqWkr .

If Y = [[G; U ,V ,W ]], the following identities hold for its

vectorization and unfoldings, respectively:

vec{Y} = (W ⊠V ⊠U) vec{G},
Y (1) = (W ⊠V )G(1)UT.

If, in addition,

R1 = rank{Y (1)}, R1 = rank{Y (2)}, R1 = rank{Y (3)},

then the multilinear product is called Tucker decomposition of

Y and (R1, R2, R3) are called the multilinear ranks.

For matrices A ∈ R
I×F , B ∈ R

J×F , C ∈ R
K×F , we

will use a shorthand notation for a polyadic decomposition

(sometimes also called rank-decomposition)

[[A,B,C]] = [[IF ; A,B,C]]

where IF ∈ R
F×F×F is a diagonal tensor of ones. In other

words, if Y = [[A,B,C]], then

Yijk =
∑

r

AirBjrCkr ;

moreover, the first unfolding can be expressed as

Y (1) = (C ⊙B)AT.

Finally, if F is minimal, Y = [[A,B,C]] is called canonical

polyadic (CP) decomposition and F is called the tensor rank.

C. Hyperspectral super-resolution and degradation model

We consider a multispectral image (MSI) cube YM ∈
R

I×J×KM and a hyperspectral image (HSI) cube YH ∈
R

IH×JH×K acquired from existing sensors (for instance,

LANDSAT or QuickBird). The spectral resolution of MSI is

lower than that of HSI (KM ≪ K) , while its spatial resolution

is higher (I > IH , J > JH ). The acquired MSI and HSI

usually represent the same target, and YM and YH are viewed

as two degraded versions of a single super-resolution image

(SRI) data cube Y ∈ R
I×J×K . The hyperspectral data fusion

problem [1] consists in recovering SRI Y from YM and YH .

In this paper, as in [8], we adopt the following degradation

model, that can be compactly written as contraction of SRI:
{
YM = Y •3 PM + EM ,

YH = Y •1 P 1 •2 P 2 + EH ,
(2)

where EM , EH denote the noise terms, PM ∈ R
KM×K is the

spectral degradation matrix (for example, a selection-averaging

matrix), and P 1 ∈ R
IH×I , P 2 ∈ R

JH×J are the spatial degra-

dation matrices, i.e. we assume (for simplicity) that the spatial

degradation is separable. For example, the commonly accepted

Wald’s protocol [15] uses separable Gaussian blurring and

downsampling in both spatial dimensions.

III. CP-BASED DATA FUSION

In [8] it was proposed to model the SRI data cube as a tensor

with low tensor rank, i.e. Y = [[A,B,C]], where A ∈ R
I×F ,

B ∈ R
J×F and C ∈ R

K×F are the factor matrices of the

CPD and F is the tensor rank.

A. The case of known spatial degradation (STEREO)

In this subsection, we consider only the case when the

degradation matrices P 1,P 2,PM are known; the case of

unknown degradation matrices is postponed to Section III-B.

In this case, the HSR problem can be formulated as

minimize
Â,B̂,Ĉ

fCP (Â, B̂, Ĉ), (3)

where fCP (Â, B̂, Ĉ) =

‖YH − [[P 1Â,P 2B̂, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,
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which is a coupled CP approximation problem. For the case

when there is no noise (EH ,EM = 0), the coupled CP model

is (generically) identifiable if

F ≤ min{2⌊log2(KMJ)⌋−2, IHJH},
see [8] for a proof and details of this condition.

To solve (3), an alternating optimization algorithm is pro-

posed in [8], called STEREO (Super-resolution TEnsor RE-

construction), as it is described in Algorithm 1.

input : YM , YH , P 1, P 2, PM ; F , A0 ∈ R
I×F ,

B0 ∈ R
J×F , C0 ∈ R

K×F

output: Ŷ ∈ R
I×J×K

for k = 1 : n do
Ak ← argmin

A

fCP (A,Bk−1,Ck−1),

Bk ← argmin
B

fCP (Ak,B,Ck−1),

Ck ← argmin
C

fCP (Ak,Bk,C),

end

Ŷ ← [[An,Bn,Cn]].
Algorithm 1: STEREO

The updates of the factor matrices in Algorithm 1 can

be computed by using efficient solvers for the (generalized)

Sylvester equation [16], [17]. For example, the total cost of

one iteration (updating A,B,C) in Algorithm 1 becomes

• O(IJKMF + IHJHKF ) flops for computing the right

hand sides in the least-squares subproblems.

• O(I3+J3+K3+F 3) flops for solving Sylvester equations;

For more details on solving Sylvester equations, see2 [8,

Appendix E] and Appendix A.

The initial values in Algorithm 1 are chosen as

[[A0,B0, C̃0]] = CPDF (YM ) ,

Y
(3)
M = (P 2B0 ⊙ P 1A0)C

T

0 , C̃0 = PMC0,

where CPDF stands for a rank-F CP approximation3 and the

last two equations are solved in the least squares sense.

B. The case of unknown spatial degradation

In this subsection, we recall the CP-based methods for the

HSR problem in the case when the spatial degradation matrices

P 1, P 2 are unknown, proposed in [8] and [10]. The first

solution, called Blind- STEREO was to consider the following

coupled CP approximation problem:

min
Â,B̂,Ĉ

‖YH − [[Ã, B̃, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

where the estimated SRI is computed as Ŷ = [[Â, B̂, Ĉ]]. The

conditions for correct recovery were established in [8].

In [10], an alternative approach was proposed, that uses

standard CP approximation of YM together with an SVD

of Y
(3)
H , and a least squares problem. This approach, which

does not necessary need separability of the spatial degradation

operation, is summarized in Algorithm 2.

2Note that in [8, Appendix E] the cost of solving the Sylvester equation is
stated as O(I3) and not O(I3 + F 3) as in [16].

3A low tensor rank approximation does not always exist in general, but is
guaranteed to exist if all terms are imposed to be entry-wise nonnegative [18].

input : YM , YH , PM ; R, F

output: Ŷ ∈ R
I×J×K

Compute CP approximation: [[Â, B̂, C̃]] = CPDF (YM )

Z ← tSVDR

(
Y

(3)
H

)

Ĉ ← Z(PMZ)†C̃
Ŷ ← [[Â, B̂, Ĉ]].

Algorithm 2: Hybrid algorithm of [10]

As noted in [10], Y = [[A,B,C]] can be uniquely recovered

only if rank{C} = R does not exceed the number KM of

spectral bands in MSI. To overcome this limitation, in [10]

it was proposed to apply Algorithm 2 to non-overlapping

subblocks of MSI and HSI (based on the hypothesis that only

a small number of materials are active in a smaller block).

This is summarized in Algorithm 3, called SCUBA in [10]. It

was shown in [10] that such an algorithm outperforms Blind-

STEREO, and other state-of-the-art algorithms for blind HSR.

input : YM , YH , PM ; R, F

output: Ŷ ∈ R
I×J×K

Split YM , YH in L blocks along spatial dimensions.

for k = 1 : L do
Apply Algorithm 2 to each pair of blocks in YM ,

YH , and store the result in the corresponding block

of Ŷ .
end

Algorithm 3: SCUBA

IV. TUCKER-BASED DATA FUSION

A. Model and approximation problem

In this paper, we propose a Tucker-based coupled model4

as an alternative to STEREO. Let R = (R1, R2, R3) be the

multilinear ranks of the SRI Y , and let Y = [[G; U ,V ,W ]]
be its Tucker decomposition, where U ∈ R

I×R1 , V ∈ R
J×R2

and W ∈ R
K×R3 are the factor matrices and G ∈ R

R1×R2×R3

is the core tensor.

With these notations, Equation (2) becomes
{
YM = [[G; U ,V ,PMW ]] + EM ,

YH = [[G; P1U ,P2V ,W ]] + EH .

The HSR formulation is thus

minimize
Ĝ,Û ,V̂ ,Ŵ

fT (Ĝ, Û , V̂ , Ŵ ), where (4)

fT (Û , V̂ , Ŵ , Ĝ) =‖YH − [[Ĝ; P1Û ,P2V̂ , Ŵ ]]‖2F
+λ‖YM − [[Ĝ; Û , V̂ ,PMŴ ]]‖2F .

(5)

B. An SVD-based algorithm for known spatial degradation

A suboptimal solution to problem (4) can be found by a

simple method inspired by the high-order SVD (HOSVD) [11].

This method, called SCOTT (Super-resolution based on COu-

pled Tucker Tensor approximation), is given in Algorithm 4.

4Note that another method based on Tucker factorization and sparse
approximation was proposed in [19]. However, no recoverability condition
is available for that method.
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input : YM , YH , P 1, P 2, PM ; (R1, R2, R3),
output: Ŷ ∈ R

I×J×K

1. Û ← tSVDR1

(
Y

(1)
M

)
, V̂ ← tSVDR2

(
Y

(2)
M

)
,

Ŵ ← tSVDR3

(
Y

(3)
H

)
,

2. Ĝ ← argmin
G

fT

(
G, Û , V̂ , Ŵ

)

3. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 4: SCOTT

Step 2 of Algorithm 4 is the least squares problem
[
Ŵ ⊠P 2V̂ ⊠P 1Û√
λPMŴ ⊠ V̂ ⊠ Û

]

︸ ︷︷ ︸
X

vec{Ĝ} ≈
[

vec{YH}√
λ vec{YM}

]

︸ ︷︷ ︸
z

that can be solved through normal equations of the form
(
XTX

)
vec{Ĝ} = XTz. (6)

The matrix on the left-hand side of (6) can be written as

XTX = IR3
⊠

(
V̂

T

P T

2P 2V̂
)
⊠

(
Û

T

P T

1P 1Û
)

+λ
(
Ŵ

T

P T

MPMŴ
)
⊠ IR1R2

,
(7)

and the vector on the right-hand side is

XTz = vec{[[YH ; Û
T

P T

1 , V̂
T

P T

2 , Ŵ
T

]]}

+
√
λ vec{[[YM ; Û

T

, V̂
T

, Ŵ
T

P T

M ]]}.
(8)

The normal equations can be viewed as a (generalized)

Sylvester equation and (as in the case of STEREO) efficient

solvers can be used (see Appendix A for more details). Thus

the total cost of one iteration in SCOTT becomes

• O(min(R1, R2)IJKM +R3IHJHK) flops for comput-

ing the truncated SVDs and computing XTz;

• O(min(R3
3+(R1R2)

3, R3
1+(R2R3)

3)) flops for solving

the Sylvester equation.

It is easy to see that the computational complexity of SCOTT is

comparable to that of one iteration of STEREO and is actually

smaller if the multilinear ranks are small.

C. An algorithm for unknown spatial degradation

In this subsection, we show that is also possible to develop a

blind SVD-based algorithm, in the same spirit as Algorithm 2.

The algorithm does not need knowledge of P 1, P 2 and is

based on the HOSVD of the MSI tensor.

The total computational complexity of Algorithm 5 is

O (min(R1, R2)IJKM +R3IHJHK) flops

and is dominated by the cost of the truncated SVD, because

step 3 is very cheap. However, a specific drawback of Algo-

rithm 6, similarly to Algorithm 2, is that R3 should not exceed

KM , since the multilinear rank is employed in the HOSVD

of subblocks of YM .

Finally, similarly to SCUBA, we can use a block version

of Algorithm 5, which we call B-SCOTT (which stands for

“Blind SCOTT”). There is no confusion, as Algorithm 5 is a

special case of Algorithm 6 where the degraded image cubes

are not split into blocks.

input : YM , YH , PM ; (R1, R2, R3)
output: Ŷ ∈ R

I×J×K

1. Compute the (R1, R2, R3) HOSVD of YM

[[Ĝ; Û , V̂ , W̃ ]]
HOSVD≈ YM

2. Z ← tSVDR3

(
Y

(3)
H

)

3. Ŵ ← Z(PMZ)†W̃

4. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 5: Blind version of SCOTT

input : YM , YH , PM ; (R1, R2, R3)
output: Ŷ ∈ R

I×J×K

Split YM , YH in L blocks along spatial dimensions.

for k = 1 : L do
Apply Algorithm 5 to each pair of blocks in YM ,

YH , and store the result in the corresponding block

of Ŷ .
end

Algorithm 6: B-SCOTT (block version of Algorithm 5)

V. RECOVERABILITY OF THE TUCKER MODEL

In this section, we establish conditions for correct SRI

tensor recovery in the coupled Tucker model. The proof

of such conditions for the CP model in [8] relied on the

uniqueness (identifiability) property of the CPD. We show that,

although the Tucker decomposition is not unique, the correct

recovery is still possible. In particular, there may exist cases

where the CPD in [8] is not unique but the SRI tensor is still

uniquely recovered using the CP model. Therefore, we believe

that is more appropriate to use the term “recoverability of the

SRI” rather than “identifiability of the SRI” used in [8].

A. Deterministic noiseless recovery conditions

We begin with a deterministic result on recoverability.

Theorem V.1. Let a Tucker decomposition of Y be

Y = [[G; U ,V ,W ]], (9)

where G ∈ R
R1×R2×R3 , and U ∈ R

I×R1 , V ∈ R
J×R2 ,

W ∈ R
K×R3 . We also assume that EM ,EH = 0 in (2).

1) If

rank{Y (1)
M } = R1, rank{Y (2)

M } = R2,

rank{Y (3)
H } = R3,

(10)

and one of the following conditions holds true:

a) either rank{P 1U} = R1 and rank{P 2U} = R2;

b) or rank{PMW } = R3.

Then there exists only one Ŷ such that Ŷ •3 PM = YM

and Ŷ •1 P 1 •2 P 2 = YH .

2) If none of the conditions a) and b) is satisfied, then

there exist infinitely many Ŷ such that Ŷ •3 PM = YM

and Ŷ •1 P 1 •2 P 2 = YH ; in fact, ‖Ŷ − Y‖ can be

arbitrary large.
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Proof. First of all, we note that by [20, Theorem 13.16], the

singular values of the matrix XTX = IR3
⊠A+D⊠ IR1R2

in (7) are all sums of the pairs of eigenvalues of
(
V̂

T

P T

2P 2V̂
)
⊠

(
Û

T

P T

1P 1Û
)

︸ ︷︷ ︸
A

, λŴ
T

P T

MPMŴ︸ ︷︷ ︸
D

. (11)

We also assume without loss of generality that U ,V ,W have

orthonormal columns.

• Proof of 2) Assume that rank{P 1U} rank{P 2U} <

R1R2 and rank{PMW } < R3. If we set Û = U ,

V̂ = V , Ŵ = W , then rank{A} < R1R2, rank{D} <
R3 and rank{XTX} < R1R2R3. Therefore the system

(6) is underdetermined, and there is an infinite number

of solutions Ĝ ∈ R
R1×R2×R3 . Note that if we define

Ŷ = [[Ĝ; U ,V ,W ]], then it is an admissible solution,

i.e., Ŷ •3 PM = YM and Ŷ •1 P 1 •2 P 2 = YH .

On the other hand, due to orthogonality of the bases,

‖Ŷ − Y‖F = ‖Ĝ − G‖F , which can be made arbitrary

large due to nonuniqueness of the solution to (6).

• Proof of 1) Let us choose Û ∈ R
I×R1 , V̂ ∈ R

J×R2 , and

Ŵ ∈ R
K×R3 to be orthogonal bases of the row spaces

of Y
(1)
M , Y

(2)
M and Y

(3)
H respectively. First, by (10), the

rank of unfoldings does not drop after degradation, hence

Û = UQU , V̂ = V QV , Ŵ = WQW ,

where QU , QV , QW are some rotation matrices. Next,

due to conditions on the ranks of P 1U , P 2U and

PMW , we get that rank{XTX} = R1R2R3 because

of (11). Hence the solution Ĝ of (6) is unique. Finally,

we note that the reconstructed tensor can be expressed as

vec{Ŷ} = (Ŵ ⊠ V̂ ⊠ Û)(XTX)−1XTz,

where the right-hand side does not depend on the rotation

matrices QU , QV , and QW due to the definition of X .

Hence, the reconstructed tensor Ŷ is unique.

Corollary V.2. If the conditions of Theorem V.1 (part 1) hold,

then any minimizer of (4) recovers Y , i.e.

Y = [[Ĝ; Û , V̂ , Ŵ ]].

In addition, Algorithm 4 recovers Y for all cases of recover-

ability in Theorem V.1, and Algorithm 5 if R3 ≤ KM .

Theorem V.1, apart from results for the Tucker model,

shows that the coupled CPD can also recover the SRI tensor

uniquely, even for the cases when the CPD itself is not unique.

Corollary V.3 (Recoverabilty with partial uniqueness). As-

sume that the SRI has a CPD Y = [[A,B,C]] of rank

F ≤ min(IH , JH), such that

rank{A} = rank{P 1A} = rank{B} = rank{P 2B} = F

and PMC does not have zero columns. We also assume that

EM ,EH = 0 in (2). Then any minimizer of (3) recovers Y .

Proof. Since the original factors A,B,C yield zero error in

(3), hence any global minimizer (Â, B̂, Ĉ) of (3), satisfies

[[P 1Â,P 2B̂, Ĉ]] = YH and [[Â, B̂,PMĈ]] = YM .

Due to the conditions of the corollary, [[P 1A,P 2B,C]] and

[[A,B,PMC]] satisfy partial uniqueness conditions in [21,

Theorem 2.2]. Hence (after permutations and rescaling of

factors), we have Ĉ = C and

rank{C} = rank{Ĉ} = rank{Y (3)
H } = R3.

Moreover, since

Y
(1)
M = (PMC ⊙B)AT, Y

(2)
M = (PMC ⊙A)BT,

and PMC does not have zero columns, we have that

rank{A} = rank{Â} = rank{Y (1)
M } = R1 = F,

rank{B} = rank{B̂} = rank{Y (2)
M } = R2 = F.

Therefore, both (A,B,C) and (Â, B̂, Ĉ) are particular so-

lutions of Problem (4) with an additional constraint that the

tensor rank of G is at most F . Since, by Theorem V.1, any

solution of (4) recovers Y uniquely, the proof is complete.

Note that the conditions of Corollary V.3 most likely can be

relaxed, for example, by using Kruskal ranks and more general

formulation in [21, Theorem 2.1] (see also [22]).

B. Noiseless ecoverability for generic tensors

From the deterministic recovery conditions, we can establish

the generic recoverability results.

Theorem V.4. Assume that P 1 ∈ R
IH×I , P 2 ∈ R

JH×J , and

PM ∈ R
KM×K are fixed full row-rank matrices. Let Y have

decomposition (9), where G ∈ R
R1×R2×R3 , R1 ≤ I , R2 ≤ J ,

R3 ≤ K , and U , V , W are random tensors and matrices,

distributed according to an absolutely continuous probability

distribution. We also assume that EM ,EH = 0 in (2).

1) If R3 ≤ KM or (R1, R2) ≤ (IH , JH) and




R1 ≤ min(R3,KM )R2,

R2 ≤ min(R3,KM )R1,

R3 ≤ min(R1, IH)min(R2, JH),

(12)

then with probability 1 there exists a unique tensor Ŷ

such that Ŷ •3 PM = YM and Ŷ •1 P 1 •2 P 2 = YH .

2) If R3 > KM and (R1>IH or R2>JH ), then the recon-

struction is non-unique, i.e. there exist infinitely many Ŷ

such that Ŷ •3 PM = YM and Ŷ •1P 1 •2P 2 = YH ;

in fact, ‖Ŷ −Y‖ can be arbitrary large.

Proof. • Proof of 2) follows from Theorem V.1 (part 2)

• Proof of 1) First, without loss of generality, we can

replace P 1, P 2, PM with the following of same size:

P̃ 1 =

[
IIH

0

]T
, P̃ 2 =

[
IJH

0

]T
, P̃M =

[
IKM

0

]T
. (13)

Indeed, let us explain why it is so, for example for P 1 ∈
R

IH×I . There exists a nonsingular matrix5 T such that

P 1T =
[
IIH 0

]
.

If we take Ũ = T−1U then P 1U = P̃ 1Ũ . Note that a

nonsingular transformation preserves absolute continuity

5For example, T = [P †
1 F ], where F ∈ R

I×(I−IH ),P 1F = 0.
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of the distribution; hence U has an absolutely continuous

distribution if and only if Ũ has one.

Therefore, under the assumptions on distribution of U ,

V , W the following implications hold with probability 1

R1 ≤ IH ⇒ rank{U1:IH ,:} = R1,

R2 ≤ JH ⇒ rank{V 1:JH ,:} = R2,

R3 ≤ KM ⇒ rank{W 1:KM ,:} = R3.

Next, we are going to show how the other set of con-

ditions imply (10). We will prove it only for the first

condition (the others are analogous).

Note that the first unfolding can be written as

Y
(1)
M = (W 1:KM ,:⊠V )G(1)UT.

Due to the dimensions of the terms in the product, this

matrix is at most rank R1. Due to semicontinuity of the

rank function, Y
(1)
H will be generically of rank R1 if

we can provide just a single example of U , V , W , G,

achieving the condition rank{Y (1)
M } = R1. Indeed, if

R1 ≤ min(R3,KM )R2, such an example is given by

U =

[
IR1

0

]
,V =

[
IR2

0

]
,W =

[
IR3

0

]
,G(1) =

[
IR1

0

]
,

which completes the proof.

We illustrate the statement of Theorem V.4 for the case

I = J , IH = JH and R1 = R2. In Figure 1 we show that the

space of parameters (R1, R3) is split into two regions: recov-

erable and non-recoverable. The hatched area corresponds to

the parameters where condition (12) is not satisfied.

0 R3

KM

IH

R1 = R2

K

√

K

I

Recoverability

Non-recoverability

(a)

(b)

Fig. 1. Identifiability region depending on R1 and R3

Remark V.5. In the proof of Theorem V.4 it was shown that

we can assume that the degradation operators are given in

(13). In that case, the degraded tensors YM and YH are just

the subtensors (slabs) i.e.

YM = Y :,:,1:KM
, YH = Y1:IH ,1:JH ,:.

Hence the recoverability of Tucker super-resolution model

is equivalent to uniqueness of tensor completion, that is

the recovery of Y from known subtensors Y :,:,1:KM
and

Y1:IH ,1:JH ,:, shown in Figure 2.

K
M

JH

I
H

Y

YM

YH

K

J

I

Fig. 2. Recovery of Y from Y :,:,1:KM
(pink), Y1:IH ,1:JH ,: (blue)

VI. EXPERIMENTAL SETUP

All simulations were run on a MacBook Pro with 2.3 GHz

Intel Core i5 and 16GB RAM. The code is implemented in

MATLAB. For basic tensor operations we used TensorLab 3.0

[23]. The results are reproducible and the codes are available

online at https://github.com/cprevost4/HSR Tucker.

A. Degradation model

Experiments are conducted on a set of semi-real and syn-

thetic examples, in which the groundtruth SRI is artificially

degraded to YH and YM by the degradation matrices P 1,

P 2 and PM according to model (2).

For spatial degradation, we follow the commonly used

Wald’s protocol [15]. The matrices P 1, P 2 are computed

with a separable Gaussian blurring kernel of size q = 9. Then,

downsampling is performed along each spatial dimension with

a ratio d = 4 between I, J and IH , JH , as in [8]. We refer to

Appendix B for more details on the construction of P 1, P 2 .

In this paper, we consider two spectral responses used

to generate the spectral degradation matrix PM . In all the

semi-real examples, available online at [24], the bands cor-

responding to water absorption are first removed as in [8].

The LANDSAT sensor spans the spectrum from 400nm to

2500nm for the HSI and produces a 6-band MSI corresponding

to wavelengths 450–520nm (blue), 520–600nm (green), 630–

690nm (red), 760–900nm (near-IR), 1550-1750nm (shortwave-

IR) and 2050–2350nm (shortwave-IR2). The second response

corresponds to a QuickBird sensor, which spans the spectrum

from 430nm to 860nm for the HSI and produces a 4-band MSI

which bands correspond to wavelengths 430–545nm (blue),

466–620nm (green), 590–710nm (red) and 715–918nm (near-

IR). The spectral degradation matrix PM is a selection-

averaging matrix that selects the common spectral bands of

the SRI and MSI.

B. Metrics

As for the experimental setup, we follow [8]; we compare

the groundtruth SRI with the recovered SRI obtained by the

algorithms. The main performance metric used in comparisons

is reconstruction Signal-to-Noise ratio (R-SNR) used in [3]:

R-SNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
. (14)

https://github.com/cprevost4/HSR_Tucker
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In addition to R-SNR, we consider different metrics from [3]

described below:

CC =
1

IJK

(
K∑

k=1

ρ
(
Y :,:,k, Ŷ :,:,k

))
, (15)

where ρ(·, ·) is the Pearson correlation coefficient between the

estimated and original spectral slices;

SAM =
180

π

1

IJ

IJ∑

n=1

arccos


 Y (3)

n,:

T

Ŷ
(3)

n,:

‖Y (3)
n,:‖2‖Ŷ

(3)

n,:‖2


 , (16)

which computes the angle between original and estimated

fibers;

ERGAS =
100

d

√√√√ 1

IJK

K∑

k=1

‖Ŷ :,:,k −Y :,:,k‖2F
µ2
k

, (17)

where µ2
k is the mean value of Ŷ :,:,k. ERGAS represents the

relative dimensionless global error between the SRI and the

estimate, which is the root mean-square error averaged by the

size of the SRI. We also show the computational time for each

algorithm, given by the tic and toc functions of MATLAB.

C. Semi-real data: comparison with other methods

In this subsection, we showcase the capabilities of SCOTT

and BSCOTT and compare them with state-of-the-art methods.

1) Non-blind algorithms: We compare the performance of

non-blind algorithms (i.e STEREO and SCOTT). We test

various ranks for both algorithms. For STEREO, we use

the implementation of [8], available online at [25]. In other

subsections, we use our implementation with fast solvers for

the Sylvester equations (see Appendix A). For HySure [6], the

groundtruth number of materials is chosen as the number of

endmembers as in [8]. This algorithm is applied in a non-blind

fashion, meaning that the spatial6 and spectral degradation

operators are not estimated but obtained from P 1, P 2 and

PM . As a comparison, we also show the performance of

BSCOTT when no splitting is performed.

The first dataset we consider is Indian Pines, where Y ∈
R

144×144×200 is degraded by a LANDSAT sensor for the MSI

and a downsampling ratio d = 4 for the HSI. The results are

presented in Table I and Figure 3.

Algorithm R-SNR CC SAM ERGAS time

STEREO 50 26.91 0.89 2.26 1.03 0.85

STEREO 100 28.53 0.92 2.02 0.87 2.04

SCOTT [40,40,6] 26.39 0.89 2.32 1.06 0.17

SCOTT [30,30,16] 25.15 0.87 2.5 1.18 0.36

SCOTT [70,70,6] 27.62 0.9 2.19 0.95 0.36

SCOTT [24,24,25] 25.08 0.88 2.44 1.17 0.16

B-SCOTT [40,40,6] 25.41 0.88 2.66 1.2 0.07

HySure E = 16 28.31 0.92 2.08 0.87 15.27

TABLE I
INDIAN PINES (NON-BLIND ALGORITHMS)

We can see that for multilinear ranks chosen in the re-

coverability region (see Figure 1), SCOTT yields similar

6In fact, HySure has a different, convolutional degradation model, that is
not necessarily separable.

Groundtruth SRI

1500

2000

2500

STEREO, F=50

1500

2000

2500

SCOTT, R=[40,40,6]

1500

2000

2500

HySure, p=16

1500

2000

2500

Fig. 3. Spectral slice 120 of the SRI, Indian Pines

performance to the one of STEREO with lower computation

time. Moreover, contrary to [8] (where F = 50 is taken for

STEREO), we found out that the tensor rank F = 100 yields

better performance.

The other dataset is the Salinas-A scene, where Y ∈
R

80×84×204 is degraded with QuickBird specifications and

d = 4 for the HSI. The results are presented in Table II and

Figure 4.

Algorithm R-SNR CC SAM ERGAS time

STEREO F = 50 33.4 0.97 0.91 3.35 0.92

STEREO F = 100 32.91 0.94 0.58 5.41 0.9

SCOTT [40,40,6] 31.52 0.95 0.71 4.92 0.1

SCOTT [50,50,6] 32.31 0.95 0.59 4.89 0.13

SCOTT [70,70,6] 32.89 0.95 0.48 4.89 0.28

B-SCOTT [40,40,6] 31.3 0.95 0.74 4.96 0.03

HySure E = 6 31.59 0.95 0.65 4.96 4.72

TABLE II
SALINAS A-SCENE (NON-BLIND ALGORITHMS)

Groundtruth SRI

400

600

800

1000

1200

STEREO, F=100

400

600

800

1000

1200

SCOTT, R=[70,70,6]

400

600

800

1000

1200

HySure, p=6

400

600

800

1000

1200

Fig. 4. Spectral slice 120 of the SRI, Salinas-A scene

In [8], CP-rank F = 100 is used for STEREO. However,

we found out that for STEREO, tensor rank F = 50 yields

better reconstruction. In Figure 4, we can see that STEREO

and SCOTT can recover accurately the SRI.

2) Blind algorithms: We now consider the case where

the spatial degradation matrices P1, P2 are unknown and

compare the performance of BSCOTT with Blind STEREO
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[8], SCUBA [10] and HySure. We consider two other datasets;

the first one is a portion of the Pavia University, where

Y ∈ R
608×366×103 is degraded with QuickBird specifications

for the MSI and d = 4 for the HSI. We demonstrate the

results in Table III and Figure 5 for visual reconstruction. For

BSCOTT, in the case where R = [152, 84, 3], no compression

is performed.

Algorithm R-SNR CC SAM ERGAS time

SCUBA (4,4) [120,3] 25.67 0.99 3.25 1.97 17.6

B-SCOTT (4,4) [60,60,3] 23.41 0.99 3.83 2.37 0.36

B-SCOTT (4,4) [152,84,3] 26.42 0.99 2.97 1.83 0.55

B-SCOTT (4,4) [120,60,4] 25.63 0.99 3.01 1.81 0.48

SCUBA (8,8) [120,3] 26.49 0.99 2.93 1.81 49.35

B-SCOTT (8,8) [70,40,3] 26.43 0.99 2.95 1.83 0.73

B-STEREO F = 300 23.14 0.98 3.96 2.45 91.35

HySure E = 9 26.05 0.99 2.9 1.79 101.54

TABLE III
PAVIA UNIVERSITY (BLIND ALGORITHMS)

Groundtruth

0

2000

4000

6000

8000
SCUBA, [F R]=[120,3], [8 8]

0

2000

4000

6000

8000

B-SCOTT, R=[76,42,3], [8 8]

0

2000

4000

6000

8000
HySure, p=9

0

2000

4000

6000

8000

Fig. 5. Spectral slice 44 of the SRI, Pavia University

In the second case, we consider the Cuprite dataset, where

Y ∈ R
512×614×224 is degraded with LANDSAT specifications

and d = 4. The results are presented in Table IV and Figure 6.

Algorithm R-SNR CC SAM ERGAS time

SCUBA (4,4) [45,3] 31.7 0.97 1.12 6.57 12.1

B-SCOTT (4,4) [45,45,3] 31.91 0.97 1.08 6.57 0.76

B-SCOTT (4,4) [60,60,3] 33.02 0.98 1.03 6.58 1

SCUBA (8,8) [45,3] 34.66 0.99 0.92 6.17 34.22

B-SCOTT (8,8) [45,45,3] 34.7 0.99 0.91 6.19 1.19

B-STEREO F = 150 29.97 0.97 1.35 7.36 59.92

HySure E = 10 34.61 0.99 0.94 6.66 169.96

TABLE IV
CUPRITE (BLIND ALGORITHMS)

These two previous examples show that, for different split-

tings, and ranks taken from [10], BSCOTT yields the best

performance. For certain multilinear ranks, it even outper-

forms SCUBA with lower computation time. Moreover, it

outperforms Blind STEREO. In terms of visual reconstruc-

tion, our algorithm can recover accurately the details of the

groundtruth SRI, even though the spatial degradation matrices

are unknown.

Groundtruth

1500

2000

2500

3000

3500

4000

SCUBA, [F R]=[45,3], [8 8]

1500

2000

2500

3000

3500

4000

B-SCOTT, R=[45,45,3], [8 8]

1500

2000

2500

3000

3500

4000

HySure, p=10

1500

2000

2500

3000

3500

4000

Fig. 6. Spectral slice 44 of the SRI, Cuprite

3) Hyperspectral pansharpening: Next, we address the

pansharpening problem, which consists in fusion of a hy-

perspectral image and a panchromatic image (PAN) YP ∈
R

I×J×1. In this case, the spectral degradation matrix is

obtained by averaging over the full spectral range of the

groundtruth SRI, so that PM ∈ R
1×K . CP-based algorithms

are not applicable, since their initialization is based on the

CPD of the MSI (which is a matrix in the case of PAN images).

In Table V, the metrics are shown for different multilinear

ranks for the Indian Pines dataset. We also compare our results

to those of HySure. We can see that even though the only

possible value of R3 is 1 for BSCOTT, the algorithm still

manages to yield a good recovery of the SRI. On the other

hand, SCOTT can also recover the SRI accurately, but is more

sensitive to the choice of the multilinear rank.

Algorithm R-SNR CC SAM ERGAS time

SCOTT [24,24,25] 20.47 0.77 4.41 1.95 0.22

SCOTT [30,30,16] 18.04 0.69 5.68 2.59 0.43

SCOTT [35,35,6] 14.61 0.54 7.84 3.89 0.89

HySure E = 16 20.67 0.76 4.24 1.99 14.39

BSCOTT (4,4) [24,24,1] 19.78 0.72 5.07 2.19 0.28

BSCOTT (4,4) [35,35,1] 19.79 0.72 5.07 2.19 0.12

TABLE V
INDIAN PINES (PANSHARPENING)

D. CP vs. Tucker for synthetic data

In this subsection, we address the question of model iden-

tifiability versus correct recovery of the SRI. In particular, we

would like to see whether identifiability of the CP model is

a necessary condition to the reconstruction of Y . Thus, we

showcase some synthetic examples where the CP model is

not identifiable, but STEREO still recovers the correct SRI.

We also present cases where the CP approach fails, while the

Tucker-based methods still perform correct estimation of the

SRI for a wide range of multilinear ranks under recoverability

conditions.

1) Generating synthetic SRI: First, we explain how the

synthetic SRI Y ∈ R
I×J×K are generated. We consider

N spectral signatures s1, . . . , sN obtained from the Indian

Pines groundtruth data [24]. The SRI is split into M2 equal

blocks along the spatial dimensions. In each I
M
× J

M
block,

at most one material is active, indicated by a number in
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the corresponding cell of a parcel map (see Table VI for an

example).

1 2

2

TABLE VI
PARCEL MAP FOR N = 2

Formally, the SRI is computed as

Y =
N∑

n=1

An ⊗ sn, (18)

where the abundance map An is a block matrix with Gaussians

of fixed size present on the blocks corresponding to material

n in the parcel map.

For instance, we consider the case presented in Table VI;

the two abundance maps are

A1 =

[
H 0
0 0

]
, A2 =

[
0 H

H 0

]
,

where H is a 60×60 Gaussian with σ = 20. To illustrate this

example, we show in Figure 7 two spectral bands of Y .

Spectral band 44

20 40 60 80 100 120

20

40

60

80

100

120 0

1

2

3

Spectral band 160

20 40 60 80 100 120

20

40

60

80

100

120 0

0.2

0.4

0.6

Fig. 7. Spectral bands of the synthetic SRI with N = 2

Due to separability of the Gaussians, G has the following

multilinear decomposition with multilinear rank (2, 2, 2).

Y = [[G; U ,V ,S]],

where G:,:,1 =

[
1 0
0 0

]
,G:,:,2 =

[
0 1
1 0

]
,

U = V =

[
H 0
0 H

]
and S = [s1 s2].

The tensor rank of Y is equal to the tensor rank of G, which

is known to be equal to F = 3 [26, Ex. 2], [27, Ex. 6.6],

and is a well-known case where the rank-2 CP approximation

does not exist in the real field [28], [29]. Thus we can expect

problems with the CP-based data fusion and rank F = 2.

2) Structured examples: In this subsection, we present two

particular examples where the CPD is not unique and we can

expect computational problems due to the non-existence of

low-rank CP approximation.

The first synthetic dataset is made of N = 2 materials with

spatial degradation ratio of d = 4 for the HSI and LANDSAT

specifications for the MSI (see Appendix B). In this case,

introduced in the previous subsection, the tensor rank of Y

is at most F = 3 while the multilinear rank is R = (2, 2, 2).
We run STEREO for F in [1 : 40] and SCOTT for R1 = R2

in [1 : IH + 10] and R3 in [1 : 10] under recoverability

conditions. For each algorithm, we compute the R-SNR as

a function of the rank; the results are provided on Figure 8.

As a comparison, on the same plot as STEREO, we plot the

results of SCOTT for R3 = N and R1 = R2 = F .

5 10 15 20 25 30 35 40

F

-500

-400

-300

-200

-100

0

100

200

300

S
N

R
 (

d
B

)

STEREO and SCOTT (R
3
=N)

STEREO

SCOTT

X 3

Y 271.1

X 2

Y 296.5

Fig. 8. R-SNR as a function of the rank

For STEREO, only rank F = 3 allows for an accurate

reconstruction of the SRI. For other tensor ranks, either the

algorithm breaks (when no point is plotted, e.g. F = 32)

or leads to inaccurate recovery. For SCOTT, the best recon-

struction error (given by R-SNR) is obtained for R3 = N or

R1 = R2 = N .

We also consider a bigger dataset made of N = 6 materials,

generated similarly to the previous example, as illustrated in

Table VII and Figure 9.

1 2 3 4 5 6
2 3 5 6
3 6

4 5 6
5 6
6

TABLE VII
PARCEL MAP FOR N = 6

Spectral band 44
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6

Spectral band 160

50 100 150 200

50
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150

200

0

0.5

1

1.5

Fig. 9. Spectral bands of the synthetic SRI with N = 6

In this example, Y ∈ R
240×240×200 is degraded with

QuickBird specifications for the MSI and d = 4 for the HSI.

White Gaussian noise is added to the degraded images with

an input SNR of 35dB. The multilinear rank of the SRI is

R = (6, 6, 6). Similarly, we run both algorithms with the same

setup as in the previous example, including a comparison of

STEREO and SCOTT for R3 = N . Results are presented in

Figure 10.

Due to the presence of noise, STEREO can perform data

fusion accurately for a variety of tensor ranks, even though

the model is not identifiable. The best R-SNR for SCOTT is

obtained for R = (6, 6, 6), which is the theoretical multilinear

rank of the tensor. Moreover, the best reconstruction error is

obtained for R3 = N : in this case, the performance of SCOTT

is slightly better than the one of STEREO. Other values of

R1 = R2 can be used as well, according to Figure 10.
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3
=N)

STEREO

SCOTTX 11
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Fig. 10. R-SNR as a function of the rank

3) Block tensor: This dataset is made of N = 6 materials

with spatial degradation ratio of d = 4 for the HSI and

Quickbird specifications for the MSI so that KM < N . Each

abundance map is made of two 10 × 10 Gaussians of width

σ = 4, as in Table VIII.

1
1

. . .

N
N

TABLE VIII
PARCEL MAP FOR BLOCKED TENSOR, N = 6

In this example, the tensor rank of Y is F = 12 while

the multilinear rank is R = (12, 12, 6). The CP decomposi-

tion is not unique, but the recoverability conditions given in

Corollary V.3 are satisfied. Also, note that the abundance maps

in (18) corresponding to different materials are not rank-one,

which is a realistic scenario for hyperspectral imaging under

the standard linear mixing model [1].
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Fig. 11. R-SNR as a function of the rank

In Figure 11, we show the R-SNR as a function of the rank

for STEREO and SCOTT. Under recoverability conditions,

our Tucker-based approach provides good reconstruction for

a variety of ranks and R3 ≥ N . For STEREO, we can see

that even though the CP model is not identifiable, F = 12
allows correct reconstruction of the SRI with almost the same

performance as that of SCOTT for R = (6, 6, 6).

This example corroborates Corollary V.3 and shows that

identifiability of the CP model (as it is formulated in [8]) is not

necessary to reconstruct Y accurately, and partial uniqueness

may be sufficient.

E. Choice of multilinear ranks in the presence of noise

In Section V, we provided a theorem for recoverability of

the SRI. In this subsection, we show that the conditions of

Theorem V.1 also give hints on choosing the multilinear ranks

for HSR in “signal+noise” and semireal scenarios.

1) Singular values of the unfoldings: Motivated by step

1 of Algorithm 4, where the factor matrices U ,V ,W are

computed by HOSVD of the HSI and MSI, and by the first set

of conditions in Theorem V.1, we look at the singular values

of Y
(1)
M , Y

(2)
M and Y

(3)
H .

We first consider the synthetic data from Figure 7 with N =
2 materials, and add white Gaussian noise to YH and YM with

different SNR: 20dB, 35dB, 60dB and no noise. In Figure 12,

we plot the 15 first singular values of the unfoldings on a

semi-log scale.
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Fig. 12. Logarithm of the first 15 singular values for the three unfoldings

We can see that for all the considered noise levels, the

singular values are well separable. The corners of the curves

at singular values (2, 2, 2) are coherent with the theoretical

multilinear rank of the synthetic SRI.

We now consider the semi-real datasets Indian Pines and

Salinas-A and plot the singular values of the unfoldings on a

semi-log scale on Figures 13 and 14.
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Fig. 13. Singular values for the three unfoldings, Indian Pines
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Fig. 14. Singular values for the three unfoldings, Salinas-A scene
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In the semi-real cases, a clear corner in the singular value

curves cannot be found, because these examples do not cor-

respond to a “low-rank signal+noise” scenario, contrary to

the case of synthetic data. Moreover, the HSI and MSI are

not necessarily low-rank: hence, the Tucker approach only

performs a low-rank approximation of the data. Hence, the

SVD of the unfolding does not provide as much information

as for the synthetic case, in which the groundtruth data are

explicitly designed to be low-rank.

2) Influence on the reconstruction error: Next, we consider

the R-SNR and cost function fT as functions of the multilinear

rank. We run SCOTT for the ranks R1 = R2 in [10 : 50] and

R3 in [2 : 25] for which the recoverability condition holds

(see Section V), and two semi-real datasets: Indian Pines and

Salinas-A scene. The results are shown in Figures 15 and 16,

respectively.
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Fig. 15. R-SNR (left) and fT (right) as functions of R1 and R3, Indian Pines
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Fig. 16. R-SNR (left) and fT (right) as functions of R1 and R3, Salinas-A

While the cost function decreases as R1 and R3 increase,

the best reconstruction error (given by R-SNR) is achieved in

one of the two recoverability subregions in Fig. 1: (a) (R3 ≥
KM and R1 ≤ IH ) and (b) (R3 ≤ KM and R1 ≥ IH ). For

subregion (b), the best performance is achieved when R3 =
KM and R1 as large as possible, while for subregion (a), we

notice a sharp drop of the R-SNR near R1 = IH .

The drop of the performance in subregion (a) can be

explained by looking at the condition number of the matrix

XTX that is used to compute the core tensor Ĝ. For the

subregion (a), due to properties of Kronecker products [20,

Theorems 13.12 and 13.16], we have that

cond{XTX} := σmax(X
TX)

σmin(X
TX)

=
λσ2

max(PMŴ ) + σ2
max(P 1Û)σ2

max(P 2V̂ )

σ2
min(P 1Û)σ2

min(P 2V̂ )
.

Note that σmax(PMŴ ) does not decrease when we increase

R3 and R3 ≤ KM . Hence we can get a lower bound on

cond{XTX} by setting R3 = KM .
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Fig. 17. Left: log(cond{XT
X}) depending on R1 = R2 for R3 = KM ;

right: σ1(PMŴ ), Indian Pines

In Figure 17, for the Indian Pines dataset we plot on a

semi-log scale the lower bound cond{XTX} as functions of

R1 = R2, for R3 = 6 as well as σmax(PMŴ ); since the

latter almost does not change, the lower bound is tight. In

Figure 17, we see that there is a highest relative increase of

the condition number around R1 = R2 = 32, which coincides

with the point of the performance drop in Figure 15. Similar

behaviour can be observed for the Salinas dataset on Figure 18.
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Fig. 18. Left: log(cond{XT
X}) depending on R1 = R2 for R3 = KM ;

right: σ1(PMŴ ), Salinas-A scene

All in all, based on the above examples, we can conclude

that if we are in subregion (b), the R3 should be taken as

large as possible (R3 = KM ), while in the subregion (a) R1,

R2 should be taken as large as possible while maintaining the

condition number to a reasonable value.

F. Recovery of spectral signatures

Since correct recovery of spectral signatures is quite im-

portant for further processing of hyperspectral images, we

would like see whether SCOTT is able to do that. We consider

the Indian Pines dataset, where groundtruth data (see Fig.

19) is available, splitting the image into 16 regions. We will

consider three representative ranks: [40, 40, 6], [30, 30, 16], and

[24, 24, 25], and compare them to STEREO (F = 100).

We do not perform a proper hyperspectral unmixing, and

compute the spectral signatures by averaging across the re-

gions. We selected four representative signatures correspond-

ing to materials 4,7,9 and 14, which are plotted in Figure VI-F.

Note that materials 7 and 9 are scarce in the groundtruth SRI

(resp. 28 and 20 pixels), whereas materials 4 and 14 are more

abundant (resp. 237 and 1265 pixels).

In Figure 21 we plot relative errors of the reconstruction of

spectra by different methods. As expected, for materials 7 and
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Fig. 19. Groundtruth image for Indian Pines dataset. Materials 4,7,9,14 are
marked in red.
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Fig. 20. Original spectral signature for materials 4,7,9 and 14

9, the discrepancy between the original spectra and the spectra

obtained from estimated SRI is bigger than for materials 4 and

14. This can be explained by the scarcity of sources 7 and 9

compared to sources 4 and 14.
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Fig. 21. Residual errors for the three considered ranks and four materials

In Figure 22, we have a closer look at the spectra at spectral

bins 80 to 100. We can see that for abundant materials (4 and

14), all the algorithms estimate well the spectra. For the scarce

materials it is important to choose the rank large enough, in

particular R3 = 16 and R3 = 25 yield better reconstruction

than R3 = 6, and also than STEREO, even with F = 100.

VII. CONCLUSION

In this paper, we proposed a novel coupled Tucker model

for hyperspectral superresolution. We showed that the model

is recoverable, that is, it allows for an unique recovery of
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Fig. 22. Materials at spectral bins 80 to 100. Groundtruth (black), SCOTT
(40, 40, 6) (red), SCOTT [30, 30, 16] (yellow), SCOTT (24, 24, 25) (purple),
STEREO F = 100 (green).

the SRI for a wide range of multilinear ranks. We proposed

two very simple SVD-based algorithms can be used for the

super-resolution problem, for known and unknown degradation

operators, and for the case of pansharpening. The algorithms

are very fast, but produce the results that are comparable

with the CP-based approaches. Also, our algorithms are SVD-

based, and thus do not have the drawbacks of the CPD (i.e.,

dependence on random initializations, ill-posedness of the CP

approximation problem in R). This work opens new perspec-

tives on using various tensor factorizations for hyperspectral

super-resolution. Still several interesting questions remain,

for example, how to enlarge the recoverability range for the

multilinear rank. Estimating the multilinear rank of the Tucker

decomposition still remains an open problem; the question of

optimal splitting the data into non-overlapping subtensors in

BSCOTT also needs to be further investigated.

APPENDIX A

SOLVING NORMAL EQUATIONS AS GENERALIZED

SYLVESTER EQUATIONS

Equation (6) can be seen as a generalized Sylvester equation

of the form

AĜB +CĜD = E, (19)

where G is an unfolding of Ĝ.

We propose two options for converting (6) into (19). In the

first case, Ĝ = G(3) ∈ R
R1R2×R3 ,

A =
(
UTP T

1P 1U
)
⊠

(
V TP T

2P 2V
)
, B = IR3

,

C = IR1R2
, D = λ

(
W TP T

MPMW
)
,

and E ∈ R
R1R2×R3 is a matricization of XTz.

In the second case, Ĝ = G(1)T ∈ R
R1×R2R3 ,

A = UTP T

1P 1U , B = IR3
⊠

(
V TP T

2P 2V
)
,

C = IR1
, D = λ

(
W TP T

MPMW
)
⊠ IR2

,

and E ∈ R
R1×R2R3 is a matricization of XTz.

The two options are equivalent and the fastest one is chosen

according to the multilinear rank. As a rule of thumb, we

decide to choose the first option in subregion (a) of Figure 1
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and the second option in subregion (b). The complexity for

solving the generalized Sylvester equation (19) is thus O(m3+
n3) flops for Ĝ ∈ R

m×n if fast solvers, such as Hessenberg-

Schur or Bartels-Stewart methods [16], [17], are used.

APPENDIX B

DEGRADATION MATRICES

Here, we explain in details how the degradation matrices

are constructed. For this appendix, we consider that P 1 = P 2.

As in [8], P 1 is constructed as P 1 = S1T 1, where T 1 is a

blurring matrix and S1 is a downsampling matrix.

The blurring matrix is constructed from a Gaussian blurring

kernel φ ∈ R
q×1 (in our case, q = 9) with a standard deviation

σ. For m = 1, . . . , q and m′ = m−
⌈
q
2

⌉
, we have

φ(m) =
1√
2πσ2

exp

(−m′2

2σ2

)
.

Thus, T 1 ∈ R
I×I can be seen as

T 1 =




φ(⌈ q

2⌉) ... φ(q) 0 ... 0

...
. . .

. . .
. . .

...

φ(1)
. . .

. . . 0

0
. . .

. . . φ(q)

...
. . .

. . .
. . .

...
0 ... 0 φ(1) ... φ(⌈ q

2⌉)




.

The downsampling matrix S1 ∈ R
IH×I , with downsam-

pling ratio d, is made of IH independant rows such that for

i = 1, . . . , IH , (S1)i,2+(i−1)d = 1 and the other coefficients

are zeros.

The spectral degradation matrix PM ∈ R
KM×K is a

selection-averaging matrix, Each row represents a spectral

range in the MSI; coefficients are set to ones for common

bands with the SRI, and zeros elsewhere. The coefficients are

averaged per-row. Below, we give an example of a 2×6 matrix:
[
0 1

3
1
3

1
3 0 0

0 0 0 0 1
2

1
2

]
.
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