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ABSTRACT

We propose a novel approach for hyperspectral super-resolution,

that is based on low-rank tensor approximation for a coupled

low-rank multilinear (Tucker) model. We show that the cor-

rect recovery holds for a wide range of multilinear ranks. For

coupled tensor approximation, we propose two SVD-based

algorithms that are simple and fast, but with a performance

comparable to the state-of-the-art methods. The approach is

applicable to the case of unknown spatial degradation and to

the pansharpening problem.

Index Terms— hyperspectral super-resolution, low-rank

tensor approximation, data fusion, recovery, identifiability

1. INTRODUCTION

The problem of hyperspectral super-resolution (HSR) [1] has

recenlty attracted much interest from the signal processing

community. It consists in fusing a multispectral image (MSI),

which has a good spatial resolution but few spectral bands,

and a hyperspectral image (HSI), whose spatial resolution

is lower than that of MSI. The aim of this method is to re-

cover a super-resolution image (SRI), which possesses both

good spatial and spectral resolutions. This problem is closely

related to hyperspectral pansharpening [2, 3], where HSI is

fused with a panchromatic image (i.e. an “MSI” with only

one spectral band).

Many methods were developed for the HSR problem, in-

cluding coupled nonnegative matrix factorization [4] (CNMF),

methods based on solving Sylvester equation [5], Bayesian

approaches (HySure [6]), FUMI [7], to name a few. Moti-

vated by the linear mixing model widely used in hyperspectral

image unmixing, most of these methods are based on a cou-

pled low-rank factorization of the matricized hyperspectral

and multispectral images.

Recently, a promising tensor-based method was proposed

that makes use of the inherent 3D nature of HSI [8]. As-

suming that the super-resolution image itself admits a low-

rank CP decomposition, the HSR is reformulated as a coupled

CP (canonical polyadic) approximation. An alternating least

squares algorithms (STEREO) is proposed, achieving recon-

struction performance that is competitive with the state of the

art. The key property underlying the approach of [8] is that

the coupled CP decomposition is identifiable, hence the HSI

tensor can be uniquely recovered. This approach was also

successfully used recently for a super-resolution problem in

medical imaging [9]. Still, it has several drawbacks: for in-

stance, the appropriate rank of the CP decomposition is not

known a priori and may be unrelated to the number of end-

members; the rank can be also very large (esp. if images are

treated as 2D arrays), which may affect computational com-

plexity and convergence of the ALS iterations.

In many cases, the spatial degradation operator is un-

known, therefore blind algorithms are needed. A blind

version of STEREO was proposed in [8] that also uses an

alternating least squares algorithm for a coupled CP model.

In [10], a simple algorithm (SCUBA) based on a single CPD

of the MSI tensor and a truncated SVD of the unfolding of

the HSI. A key idea proposed in [10] is to use local approx-

imations via blocking. This algorithm outperforms blind

STEREO and other state-of-the-art algorithms. It also does

not require separability of the spatial degradation operator.

In this paper, we propose to use another type of low-

rank tensor factorization: multilinear (also known as Tucker)

factorization. By assuming that the super-resolution image

has approximately low multilinear rank, we reformulate the

HSR problem as a coupled Tucker approximation. First, we

propose two closed-form SVD-based algorithms: the first is

inspired by [8] and the second (blind) is inspired by [10].

Second, we show that, although the Tucker decomposition is

not identifiable1, surprisingly, the correct recovery of the SRI

holds for a wide range of multilinear ranks. Our experiments

on a number of semi-real and real examples, show that the

proposed algorithms have a performance comparable to the

ones of [8] and [10], but the computational cost is lower.

Also, the algorithms can accurately reconstruct the spectral

signatures, which is of prime importance for a further pro-

1This is the reason why the Tucker model was discarded in [8] as a po-

tential model for hyperspectral super-resolution.



cessing of HSR image. Finally, we show that the proposed

approach is applicable in the case of hyperspectral pansharp-

ening (unlike [8], which requires the MSI to have at least two

spectral bands).

This paper is organized as follows. In Section 2, we re-

call the HSR problem and the STEREO algorithm proposed

in [8]. Section 3 contains our proposed coupled Tucker model

and SVD-based algorithms (SCOTTand B-SCOTT) for tensor

approximation. In Section 4 we prove our main identifiabil-

ity result (recoverability) for the coupled Tucker model. Sec-

tion 4 contains the numerical experiments.

Notation. In this paper we mainly follow [11] in what

concerns the tensor notation (see also [12]). The following

fonts are used: lowercase (a) or uppercase (I) plain font for

scalars, boldface lowercase (a) for vectors, uppercase bold-

face (A) for matrices, and calligraphic (A) for N -D arrays

(tensors). Vectors are, by convention, one-column matrices.

The elements of vectors/matrices/tensors are accessed as ai,

Ai,j and Ai1,...,iN respectively. R stands for the real line, C

for the set of complex numbers.

For a matrix A, we denote its transpose and Moore-

Penrose pseudoinverse as A
T and A

† respectively. The

notation IM is used for the M × M identity matrix and

0L×K for the L×K matrix of zeroes. We use the symbol ⊠

for the Kronecker product between matrices (in order to dis-

tinguish it from the tensor product), and ⊙ for the Khatri-Rao

(column-wise Kronecker) product.

We use vec{·} for the standard column-major vectoriza-

tion of a tensor or a matrix. Operator •p denotes contraction

on the pth index of a tensor; when contracted with a matrix,

it is understood that summation is always performed on the

second index of the matrix. For instance, [A •1 M ]ijk =∑
ℓAℓjkMiℓ. For a tensor G and matrices U , V and W , the

following shorthand notation is used

[[G; U ,V ,W ]] = G •
1
U •

2
V •

3
W .

For matrices A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F , we will

use a shorthand notation for the polyadic decomposition

[[A,B,C]] = [[IF ; A,B,C]]

where IF ∈ RF×F×F is a diagonal tensor of ones. For a

tensor Y ∈ RI×J×K , its first unfolding is denoted by Y
(1) ∈

RJK×I . By tSVDR (X) we denote a matrix containing R

leading right singular vectors of the matrix X .

2. HYPERSPECTRAL DATA FUSION PROBLEM

2.1. Problem statement and degradation model

We consider a multispectral image (MSI) cube YM ∈
R

I×J×KM and a hyperspectral image (HSI) cube YH ∈
RIH×JH×K acquired from existing sensors (for instance,

LANDSAT or QuickBird). The acquired MSI and HSI usu-

ally represent the same target, and YM and YH are viewed

as two degraded versions of a single super-resolution image

(SRI) data cube Y ∈ RI×J×K . The hyperspectral data fusion

problem [1] consists in recovering a super-resolution image

(SRI) cube Y from YM and YH .

In this paper, we adopt the following degradation model,

that can be compactly written as contraction of SRI with

degradation matrices:

{
YM = Y •3 PM + EM ,

YH = Y •1 P1 •2 P2 + EH ,
(1)

where EM and EH denote the noise terms, PM ∈ RKM×K

is the spectral degradation matrices (for example, a selection-

averaging matrix), KM < K , and P1 ∈ RIH×I , P2 ∈
RJH×J , IH < I , JH < J , are the spatial degradation ma-

trices2, i.e. we assume (for simplicity) that the spatial degra-

dation is separable; this is a valid assumption, for example,

for the commonly accepted Wald’s protocol [13], which uses

Gaussian blurring and downsampling in both spatial dimen-

sions. In this paper we consider only the case when the degra-

dation matrices P1,P2,PM are known.

2.2. CP-based approach (STEREO)

In [8] it was proposed to model the SRI data cube as a tensor

with low CP rank, i.e. Y = [[A,B,C]], where A ∈ RI×F ,

B ∈ RJ×F and C ∈ RK×F are the factor matrices of the

CPD and F is the tensor rank. In this case, the HSR problem

can be formulated as

minimize
Â,B̂,Ĉ

fCP (Â, B̂, Ĉ), (2)

where fCP (Â, B̂, Ĉ) =

‖YH − [[P1Â,P2B̂, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

which is a coupled CP approximation problem. For the case

when there is no noise EH , EM = 0, the coupled CP model is

(generically) identifiable if

F ≤ min{2⌊log2(KMJ)⌋−2, IHJH},

see [8] for more details.

To solve (2), an alternating optimization algorithm is pro-

posed in [8], called STEREO (Super-Resolution Tensor Re-

construction).

The updates of the factor matrices in Algorithm 1 can

be computed by using efficient solvers for the (generalized)

Sylvester equation [14], [15]. For example, the total cost

(in flops) of one iteration in Algorithm 1 becomes (updating

A,B,C)

2Typically, it holds that IHJH ≪ IJ and KM ≪ K , meaning that MSI

has a finer spectral resolution w.r.t HSI, and HSI has a finer spatial resolution

than MSI.



input : A0 ∈ RI×F , B0 ∈ RJ×F , C0 ∈ RK×F , F

output: Ŷ ∈ RI×J×K

for k = 1 : n do
Ak ← argmin

A

fCP (A,Bk−1,Ck−1) ,

Bk ← argmin
B

fCP (Ak,B,Ck−1) ,

Ck ← argmin
C

fCP (Ak,Bk,C),

end

Â← An, B̂ ← Bn, Ĉ ← Cn, Ŷ ← [[Â, B̂, Ĉ]].
Algorithm 1: STEREO

• O(IJKMF+IHJHKF ) for computing the right hand

sides in the least-squares subproblems.

• O(I3+J3+K3+F 3) for solving Sylvester equations;

For more details on these equations, see3 [8, App. E].

The initial values in Algorithm 1 are chosen as

(
A0,B0, C̃0

)
= CPDF (YM ) ,

YM
(3) = (P1A0 ⊙ P2B0)C

T

0 ,

C̃0 = PMC0,

where CPDF stands for a rank-F CP approximations and the

last two equations are solved in the least squares sense.

2.3. The case of unknown spatial degradation

In this subsection, we recall the CP-based methods for the

HSR problem in the case when the spatial degradation matri-

ces P1,P2 are unknown, proposed in [8] and [10]. The first

solution, called blind STEREO was to consider the following

coupled CP approximation problem:

min ‖YH − [[Ã, B̃, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

where the estimated SRI is computed as Ŷ = [[Â, B̂, Ĉ]].
The conditions for correct recovery were established in [8].

In [10], an alternative approach was proposed, that uses

the CP approximation of YM to retrieve the factors (Â, B̂),
an SVD of the unfolding of YH , and a least squares problem

to retrieve the third factor Ĉ . This approach, which does not

necessary need separability of the spatial degradation opera-

tion, is summarized in Algorithm 2.

As noted in [10], the correct recovery of a low-rank tensor

Y = [[A,B,C]] is only if rank{C} = R does not exceed

the number of spectral bands in MSI, because the rank of

Ĉ is bounded by KM . To overcome this limitation, in [10]

it was proposed to apply Algorithm 2 to non-overlapping

subblocks of MSI and HSI (based on the hypothesis that

only a small number of materials will be active in a smaller

3Note that in [8, Appendix E] the cost of solving the Sylvester equation

is stated as O(I3) and not O(I3 + F 3) as in [14].

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R, F ,

PM

output: Ŷ ∈ RI×J×K

Compute CP approximation:

(Â, B̂, C̃) = CPDF (YM )

Z ← tSVDR

(
YH

(3)
)

Ĉ ← Z(PMZ)†C̃

Ŷ ← [[Â, B̂, Ĉ]].
Algorithm 2: Hybrid algorithm of [10]

black). This is summarized in Algorithm 3, called SCUBA in

[10]. It was shown in [10] that such an algorithm outperforms

blind STEREO, and other state-of-the-art algorithms for blind

HSR.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R, F ,

PM

output: Ŷ ∈ RI×J×K

Split each YM and YH in L subblocks along the

spatial dimension (the subblocks correspond to each

other).

for k = 1 : n do
Apply Algorithm 2 to each subblock, and store the

result in the corresponding subblock of Ŷ .

end

Algorithm 3: SCUBA

3. TUCKER-BASED DATA FUSION

3.1. Model and approximation problem

In this paper, we propose a Tucker-based coupled model as an

alternative to STEREO. Let R = (R1, R2, R3) be the multi-

linear ranks of the SRI Y , and let Y = [[G; U ,V ,W ]] be its

Tucker decomposition, where U ∈ RI×R1 , V ∈ RJ×R2 and

C ∈ R
K×R3 are the factor matrices and G ∈ R

R1×R2×R3

the core tensor.

With these notations, Equation (1) becomes

{
YM = [[G; U ,V ,PMW ]] + EM ,

YH = [[G; P1U ,P2V ,W ]] + EH .

The HSR formulation is thus

minimize
Ĝ,Û ,V̂ ,Ŵ

fT (Ĝ, Û , V̂ , Ŵ ), where (3)

fT (Û , V̂ , Ŵ , Ĝ) =‖YH − [[Ĝ; P1Û ,P2V̂ , Ŵ ]]‖2F
+λ‖YM − [[Ĝ; Û , V̂ ,PMŴ ]]‖2F .

(4)



3.2. An SVD-based algorithm

A suboptimal SVD-based solution to problem (3) can be

found by a simple method that is similat to the well-known

high-order SVD (HOSVD) of tensors [16]. This algorithm,

named as SCOTT(Super-resolution based on COupled Tucker

Tensor approximation), is given in Algorithm 4.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R,

PM , P 1, P 2

output: Ŷ ∈ RI×J×K

1. Û ← tSVDR1

(
YM

(1)
)

, V̂ ← tSVDR2

(
YM

(2)
)

,

Ŵ ← tSVDR3

(
YH

(3)
)

,

2. Ĝ ← argmin
G

fT (G, Û , V̂ , Ŵ )

3. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 4: SCOTT

The least squares subproblem in Algorithm 4

[
Ŵ ⊠P2V̂ ⊠P1Û√
λPMŴ ⊠ V̂ ⊠ Û

]

︸ ︷︷ ︸
X

vec{Ĝ} ≈
[

vec{YH}√
λ vec{YM}

]

︸ ︷︷ ︸
z

can be solved through normal equations of the form

(
X

T
X

)
vec{Ĝ} = X

T
z,

where the matrix on the left-hand side is

X
T
X = IR3

⊠(V̂
T

P
T

2P 2V̂ )⊠(Û
T

P
T

1P 1Û)

+λ(Ŵ
T

P
T

MPMŴ )⊠ IR1R2

The normal equations can be viewed as a Sylvester equation

and (as in the case of STEREO) efficient solvers can be used.

Thus the total cost of one iteration in SCOTT(in flops) be-

comes

• O(min(R1, R2)IJKM + R3IHJHK) for computing

the truncated SVDs and computing X
T
z;

• O(R3
3 + (R1R2)

3) for solving the Sylvester equation.

It is easy to see that the computational complexity of SCOT-

Tis comparable with the one of STEREO and is actually

smaller if the multilinear ranks are small.

3.3. An algorithm for unknown spatial degradation

Here, we show that is also possible to develop a blind SVD-

based algorithm, in the same spirit as Algorithm 2. The al-

gorithm does not need knowledge of P 1, P 2 and is based on

the HOSVD of the MSI tensor.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,

(R1, R2, R3), PM

output: Ŷ ∈ R
I×J×K

1. Compute the (R1, R2, R3) HOSVD Tucker

approximation of YM

[[Ĝ; Û , V̂ , W̃ ]]
HOSVD≈ YM

2. Z ← tSVDR3

(
YH

(3)
)

3. Ŵ ← Z(PMZ)†W̃

4. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 5: Blind version of SCOTT

The total computational complexity (in flops) of Algo-

rithm 5 is

O(min(R1, R2)IJKM +R3IHJHK)

and is dominated by the costs of the truncated SVD, because

step 3 is very cheap.

Finally, similarly to SCUBA, we can use a block ver-

sion of Algorithm 5, which we call B-SCOTT(that is “Blind

SCOTT”). There is no confusion, as Algorithm 5 is a special

case of Algorithm 6 in the case of 1 block.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,

(R1, R2, R3), PM

output: Ŷ ∈ RI×J×K

Partition each YM and YH in L subblocks along the

spatial dimension (the subblocks correspond to each

other).

for k = 1 : n do
Apply Algorithm 5 to each subblock, and store the

result in the corresponding subblock of Ŷ .

end

Algorithm 6: B-SCOTT(block version of Algorithm 5)

4. RECOVERABILITY OF THE TUCKER MODEL

In this subsection, we establish a generic uniqueness result for

the tensor recovery in the coupled Tucker model.

Theorem 4.1. Assume that P1 ∈ RIH×I , P2 ∈ RJH×J , and

PM ∈ RKM×K are fixed full row-rank matrices. Let

Y = [[G; U ,V ,W ]], (5)

where G ∈ R
R1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K , and

U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random matri-

ces, distributed according to an absolutely continuous proba-

bility distribution. We also assume that EM ,EH = 0 in (1).



1. If R3 ≤ KM or (R1, R2) ≤ (IH , JH) and




R1 ≤ min(R3,KM )R2,

R2 ≤ min(R3,KM )R1

R3 ≤ min(R1, IH)min(R2, JH),

(6)

then with probability 1 there exists a unique tensor Ŷ

such that ŶM = YM and ŶH = YH .

2. If R3 > KM and (R1 > IH or R2 > JH ), then the

reconstruction is non-unique, i.e. there exist an contin-

uum of Ŷ such that ŶM = YM and ŶH = YH ; in

fact, ‖Ŷ −Y‖ can be arbitrary large.

Corollary 4.2. If Y is as in (5), such that the conditions of

Theorem 4.1 (part 1.) hold., then any minimizer of (3) recov-

ers Y , i.e.

Y = [[Ĝ; Û , V̂ , Ŵ ]].

In addition, it follows that Algorithm 4 (SCOTT) recovers

Y for all cases of recoverability in Theorem 4.1, and Algo-

rithm 5 (B-SCOTT) if R3 ≤ KM .

Before proceeding to the proof of Theorem 4.1, we il-

lustrate the statement of Theorem 4.1 for the case I = J ,

IH = JH and R1 = R2. In Figure 1 we show that the space

of parameters (R1, R3) is split into two regions: identifiable

and non-identifiable. The hatched area corresponds to the pa-

rameters where condition (6) is not satisfied .

0 R3

KM

IH

Identifiability

Non-identifiability

R1 = R2

K

√
K

I

Fig. 1. Identifiability region depending on R1 and R3

Proof of Theorem 4.1. First, without loss of generality, we

can replace P 1, P 2, PM with

P̃ 1 =
[
IR1

0
]
, P̃ 2 =

[
IR2

0
]
, P̃M =

[
IR3

0
]
. (7)

Indeed, let us explain why it is so, for example for P 1 ∈
RR1×I . There exists a nonsingular matrix4 T such that

P 1T =
[
IR1

0
]
.

4For example, T = [P †
1 F ], where F ∈ RI×(I−R1),P 1F = 0.

If we take Ũ = T
−1

U then we have

P 1U = P̃ 1Ũ .

Note that a nonsingular transformation preserves absolute

continuity of the distribution; hence U has an absolutely

continuous distribution if and only if Ũ has one.

The rest of the proof uses some basic real algebraic geom-

etry and basic properties of semialgebraic sets. For a neces-

sary background, we refer the reader to the introduction and

references in [17]. In what follows, for simplicity, we will

assume P̃ 1 = P 1, P̃ 2 = P 2, P̃ 3 = P 3. Next, we show that

nonunique cases appear only on a set of measure zero in the

parameter space {(U ,V ,W ,G)} ∈ F1

F1 = R
I×R1 × R

J×R2 × R
K×R3 × R

R1×R2×R3 .

For convenience, we will switch to a non-ambiguous param-

eterization. Consider the parameter space

F2=R
(I-R1)×R1 × R

(J-R2)×R2 × R
(K-R3)×R3 × R

R1×R2×R3 .

Take F̃1 ⊂ F1 such that (U ,V ,W ,G) ∈ F̃1 iff

U =
[
U1

U2

]
,V =

[
V 1

V 2

]
,W =

[
W 1

W 2

]
,

and U1 ∈ RR1×R1 , V 1 ∈ RR2×R2 , W 1 ∈ RR3×R3 are

nonsingular; thus we exclude a set F1 \ F̃1 of measure zero.

Consider the surjective reparameterization map

R : F̃1 → F2

(U ,V ,W ,G) 7→
(
U2U

−1
1 ,V2V

−1
1 ,W 2W

−1
1 , [[G;U1,V 1,W1]]

)

The set F2 can be injectively mapped to RI×J×K

T :F2 → R
I×J×K

(A,B,C,S) 7→ Y = [[S; [ I
A
] , [ I

B
] , [ I

C
]]].

(8)

In fact, the mapping T is nothing more than a construction

of the tensor from parameters, i.e.

T (R(U ,V ,W ,G)) = [[S; A,B,C]] = [[G; U ,V ,W ]];

Hence the core tensor S is just the core tensor G transformed

in a new basis.

Now assume that Y = T (A,B,C,S), and we would

like to see when we can reconstruct (A,B,C,S) uniquely

from YH and YM .

Proof of 2. Consider the case R1 > IH and R3 > KM

(the case R2 > JH and R3 > KM is analogous). Then

the tensors (YM ) and (YH) do not depend on the values

Si,:,k for i > IH and j > I . Hence there is an infi-

nite set of Ŝ such that YM = (T (A,B,C, Ŝ))M and

YH = (T (A,B,C, Ŝ))H . Since R−1F2 = F̃1, the non-

uniqueness occurs for all (U ,V ,W ,G) ∈ F̃1, i.e. with

probability 1.

Proof of 1. Now let us prove the identifiability cases

R3 ≤ KM or (R1, R2) ≤ (IH , JH). First, note that



• If R3 ≤ KM , we have S = (YM )1:R1,1:R2,1:R3
.

• If (R1, R2) ≤ (IH , JH), we haveS = (YH)1:R1,1:R2,1:R3
,

hence S can be uniquely recovered from YM and YH .

Next, we consider the question of recovery of (A,B,C)
from unfoldings. Consider reconstruction of A from the first

unfolding of YM . Take the subtensor

Z = (YM ):,1:R2,1:min(R3,KM)

and the subtensor X = (S):,:,1:min(R3,KM ) of the core tensor

S. Then the first unfoldingZ(1) ∈ RR2 min(R3,KM)×I (which

is a submatrix of YM
(1)) has a low-rank factorization

Z
(1) = X

(1)
[
I A

T
]
.

hence A can be uniquely determined from Z
(1) if X(1) has

full-column rank. Note that if R1 ≤ min(R3,KM ), then

the set of S such that X(1) is not of full column rank is a

semialgebraic subset of RR1×R2×R3 of measure zero5.

Proceeding similarly for B andC , we get that if (6) holds,

then there exists a semialgebraic set F3 ⊂ F2 of measure

zero such that for (A,B,C,S) ∈ F2 \F3 there is a perfect

recovery of (A,B,C,S) and Y .

By the semialgebraic version of Sard’s theorem [17,

Lemma 2.1], the preimage R−1(F3) is also of measure zero,

hence the uniqueness of recovery holds for (U ,V ,W ,G) ∈
F̃1 \R−1(F3), i.e., with probability 1.

Remark 4.3. In the proof of Theorem 4.1 it was shown that

for the recoverability of the coupled model we can assume

that the degradation operators are given in (7). In that case,

the degraded tensors YM and YH are just the subtensors

(slabs) i.e.

YM = Y :,:,1:KM
, YH = Y1:IH ,1:JH ,:.

Hence the recoverability of Tucker super-resolution model

is equivalent to uniqueness of tensor completion, that is

the recovery of Y from known subtensors Y :,:,1:KM
and

Y1:IH ,1:JH ,:.

5. EXPERIMENTS

All simulations were run on a Macintosh computer with 2.4

GHz Intel Core i5 and 8GB RAM. The code is implemented

in MATLAB. For basic tensor operations we used TensorLab

3.0 [18]. The results are reproducible and the codes are avail-

able online at

https://github.com/cprevost4/HSR_Tucker.

5i.e., a semialgebraic subset whose dimension is smaller than the dimen-

sion of the ambient space.

K
M

JH

I
H

Y

YM

YH

K

J

I

Fig. 2. Recovery of Y (in black) from Y :,:,1:KM
(pink),

Y1:IH ,1:JH ,: (blue)

As for the experimental setup, we follow [8]. The main

performance metric used in comparisons is reconstruction

Signal-to-Noise ratio (R-SNR) introduced in [3]

R-SNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
.

In all the examples, as in [8], the bands corresponding to

water absorption are removed. For all the experiments (ex-

cept the real wood data), the degradation matrices P1, P2 are

generated following Wald’s protocol, and the downsampling

factor is chosen to be 4, see The matrix PM is a selection-

averaging matrix that splits the spectral range into parts ac-

cording to the specification of the selected sensor.

5.1. Choice of multilinear ranks

In this subsection, we have a closer look at the Indian Pines

dataset, available at [19], that was acquired by a 224-band

AVIRIS sensor. In this case, Y ∈ R144×144×200 (after re-

moving the bands corresponding to water absorption), YM ∈
R144×144×6 and YH ∈ R36×36×200. The spectral degrada-

tion is chosen according to the specifications of the LAND-

SAT sensor. We analyze the performance of SCOTT(R-SNR

and the value of the cost function fT defined in (4)) w.r.t. the

multilinear rank employed in the Tucker decomposition.

Figure 3 shows the SNR and cost function value for R1 =
R2 varying in the range of [10 : 50] and R3 varying in the

range of [2 : 25] for which the identifiability condition holds

(see Section 4 and Fig. 1). While the cost function decreases

as R1 and R3 increase, the reconstruction error (given by

R-SNR) behaves differently for different identifiability sub-

regions in Fig. 1. In the case R3 ≤ KH , the R-SNR in-

creases whenR1 grows, and R-SNR is close to maximal when

R3 = KH . But, in the case R1 = R2 ≤ IH and growing R3,

the situation is different: the R-SNR varies slowly with in-

creasing R3, but is more sensitive to the choice of R1 = R2.

https://github.com/cprevost4/HSR_Tucker
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Fig. 3. R-SNR and fT as a function of R1 = R2 and R3

In particular the overfitting (i.e. sharp decrase in R-SNR) is

observed when R1 = R2 is close to IH .

We also performed the optimisation of (3) with the struc-

tured data fusion framework implemented in Tensorlab [18].

In our experiment, for all the values in Fig. 3, the optimiza-

tion procedure stopped in a few iterations and did not improve

the cost function. This result seems reasonable, because it is

known [16] that SCOTTgives a very good solution for a low-

rank Tucker approximation. In what follows, we use only

SVD-based algorithms for our coupled model.

We conclude this subsection by testing the case of fixed

R3 and varying R1 and R2. In Figure 4, we fix R3 = 6
and report the results for SCOTTfor R1 and R2 in a range of

[10 : 40]. In Figure 5, we report the same results for R3 = 16.

We observe different behaviour in the two different cases.

In the case R3 = 6 (see Fig. 4), the results are rather symmet-

ric, whereas in Fig. 5 we see that the overfitting is mainly due
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Fig. 4. R-SNR and fT as a function of R1 and R2, R3 = 6

to R1 being close to IH . Still, the best value is close to the

diagonal R1 = R2, therefore in the following experiments we

will only consider the case R1 = R2.

5.2. Comparison with other algorithms

In this subsection, we compare the performance of SCOTT(for

a set of representative ranks), B-SCOTT(without partition

into blocks), STEREO, and HySure [6]. In addition to R-

SNR, we consider different metrics from [3] described below:

CC =
1

IJK

(
K∑

k=1

ρ
(
Y :,:,k, Ŷ :,:,k

))
,
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Fig. 5. R-SNR and fT as a function of R1 and R2, R3 = 16

where ρ(·, ·) is the Pearson correlation coefficient between the

estimated and original spectral fibers;

SAM =
180

π

1

IJ

IJ∑

n=1

arccos


 Y

(3)T

n,:Ŷ
(3)

n,:

‖Y (3)
n,:‖2‖Ŷ

(3)

n,:‖2


 ,

which computes the angle between original and estimated

fibers;

ERGAS =
100

d

√√√√ 1

IJK

K∑

k=1

‖Ŷ :,:,k −Y :,:,k‖2F
µ2
k

,

where µ2
k is the mean value of Ŷ :,:,k. ERGAS represents the

relative dimensional global error between the SRI and the es-

timate.

We also show the computational time for our implemen-

tation each algorithm, given by the tic and toc functions of

MATLAB. As in [8], we run STEREO for 10 iterations.

5.2.1. Semi-real data

First, we compare the results for some semi-real data, avail-

able online at [19], with MSI and HSI generated artifi-

cially. The representative multilinear ranks are chosen to

be [40, 40, 6], [30, 30, 16] and [24, 24, 25], which correspond

to different regions of identifiability; also the number of

ground truth regions in the image is E = 16 hence the mul-

tilinear ranks correspond to different scenarios (R3 < E,

R3 = E,R3 > E). For STEREO, we choose ranks F = 50
and F = 100, and in HySure we use (as in [8]) 16 as the

number of endmembers. Table 5.2.1 shows these metrics

for the Indian Pines dataset mentioned above. In general,

SCOTTand B-SCOTT(without partition into blocks) give

comparable results with STEREO in the case F = 50 used

in [8]. But, the case of STEREO F = 100 gives slightly

better results than tensor rank F = 50, especially in terms of

SNR. The B-SCOTTmethod appears to be fastest in this case

(although we do not claim it, because the speed depends on

the implementation), but needs higher multilinear ranks. Fast

algorithms for Sylvester equations are used for SCOTTand

STEREO.

Algorithm R-SNR CC SAM ERGAS time

STEREO 50 26.93 0.89 2.25 1.03 8.06
STEREO 100 28.47 0.92 2.03 0.88 12.15

SCOTT(40,40,6) 26.32 0.89 2.34 1.07 3.27
SCOTT(30,30,16) 23.82 0.84 2.77 1.38 1.02
SCOTT(24,24,25) 24.65 0.87 2.56 1.23 0.55

B-SCOTT(40,40,6) 25.45 0.88 2.65 1.2 0.18
B-SCOTT(60,60,6) 26.06 0.89 2.57 1.14 0.1

B-SCOTT(100,100,6) 26.28 0.9 2.55 1.14 0.12
HySure 25.12 0.77 2.56 1.68 44.63

Table 1. Comparison of algorithms, Indian Pines dataset

The second dataset we consider is the Salinas A-scene,

also acquired by the AVIRIS sensor; it is a portion of the

bigger Salinas dataset. In this case, Y ∈ R80×84×204, and

YM ∈ R80×84×6, YH ∈ R20×21×204. In [8] E = 6 is

quoted as number of endmembers (this value is chosed for

HySure). The results are shown in Table 5.2.1. In this case,

R3 = 6 seems to be the best choice for SCOTT, which agrees

with the number of materials. The SCOTTis again rather fast,

except for the case where it shows a better performance than

STEREO (with F = 100, which is the rank chosen in [8] for

this dataset).

5.2.2. Real wood data

The third dataset is obtained from a wood plank. Instead of

generating the MSI and HSI with specified dimensions, data

cubes Y ∈ R
640×150×224, YM ∈ R

640×150×28 and YH ∈
R320×75×224 are acquired by a SPECIM FX17 hyperspectral

camera, which spectral range is [900nm, 1700nm]. For more

details on the camera, please refer to [20]. For this dataset,



Algorithm R-SNR CC SAM ERGAS time

STEREO 50 33.63 0.98 0.91 1.39 4.03
STEREO 100 37.47 0.99 0.66 1.12 5.38

SCOTT(40,40,6) 33.59 0.99 0.77 1.18 2.19
SCOTT(14,14,15) 22.68 0.94 2.1 3.07 0.15
SCOTT(10,15,25) 23.17 0.96 2.1 2.59 0.14
SCOTT(30,30,6) 30.18 0.98 1.02 1.41 0.65
SCOTT(58, 58, 6) 37.55 0.99 0.61 1.03 14.7

HySure 29.05 0.97 1.39 3.28 14.53

Table 2. Comparison of algorithms, Salinas A-scene dataset

no groundtruth data is available. However, in most cases,

the number of sources is considered very small (E ≤ 10)

[21]. We choose different values for R3 for SCOTT, and for

HySure, we choose E = 8. For STEREO we also try differ-

ent ranks, because this dataset was not used in [8]. The results

can be found in Table 5.2.2. We see that all the methods give

comparable results, thus SCOTTcan be chosen, because it is

especially fast for the case of small multilinear ranks. The

comparison of the reconstruction of a selected spectral bands

are shown in Fig. 7.

Algorithm R-SNR CC SAM ERGAS time

STEREO 20 21.96 0.99 1.76 2.49 54.55
STEREO 30 21.93 0.99 1.75 2.5 49.79
STEREO 50 21.95 0.99 1.7 2.49 72.61

STEREO 100 21.94 0.99 1.6 2.49 62.75
SCOTT(50,50,8) 23.2 0.99 1.59 2.16 6.13

SCOTT(30,30,15) 23.12 0.99 1.7 2.18 3.44
HySure 21.73 0.99 1.91 2.56 186.28

Table 3. Comparison of algorithms, wood dataset

5.2.3. Pansharpening problem

Here, we adress the pansharpening problem, which consists

in fusion of a hyperspectral image and a panchromatic image

(PAN) YP . PAN is obtained by averaging over the full spec-

tral range of the groundtruth SRI, meaning that PM ∈ R1×K

and YP ∈ RI×J×1. In this case, the STEREO algorithm is

not applicable, since its initialization6 is based on the CPD

of the MSI (which is a matrix in the case of PAN images).

However, the coupled Tucker model is still recoverable when

R1 ≤ IH and R2 ≤ JH .

For the lest of this section, we consider the Indian Pines

dataset. First, in Figure 6, we plot the SNR and cost for

R1 = R2 in [1 : 36] and R3 in [1 : 25] under the identifi-

ability conditions. In Table 5.2.3, the metrics are shown for

different multilinear ranks and for the HySure method. In this

case as well, the previous conclusions on the metrics hold,

showing that SCOTTis able to give a reasonable solution the

pansharpening problem as well.

6We also tried different initializations for STEREO, including the one

obtained based on our HOSVD solution.

8

25

10

12

20

14

S
N

R
(d

B
) 16

15

18

R
3

20

10 10

R
1
=R

2

20
5 30

40
50

SnR between SRI and estimate

100

25 20

R
1
=R

2

20

1

3015

R
3

10 40

2

10
10

V
a

lu
e

 o
f 

c
o

s
t 

fu
n

c
ti
o

n

5
50

3

Cost value

Fig. 6. R-SNR and cost as a function of R1 = R2 and R3

Algorithm R-SNR CC SAM ERGAS time

SCOTT(24, 24, 25) 20.59 0.78 4.36 1.93 0.94
SCOTT(30, 30, 16) 18.48 0.7 5.37 2.48 1.08
SCOTT(35, 35, 6) 11.38 0.41 10.53 5.71 1.84

HySure 23.24 0.77 2.28 1.69 33.87

Table 4. Metrics for different algorithms, Indian Pines dataset

5.3. Endmember recovery

A correct recovery of spectral signatures is quite important for

further processing of hyperspectral images, therefore we are

going to see whether SCOTTis able to do that. We consider

the Indian Pines dataser, where groundtruth data (see Fig. 9)

is available, splitting the image into 16 regions. We will con-

sider three representative ranks: [40, 40, 6], [30, 30, 16], and

[24, 24, 25], and compare it with STEREO (F = 16).

We do not perform a proper hyperspectral unmixing, and

compute the spectral signatures by averaging across the re-

gions. We selected four representative signatures correspond-

ing to endmembers 4,7,9 and 14, which are plotted in Fig-

ure 10. Note that materials 7 and 9 are scarce in the original

SRI (resp. 28 and 20 pixels), whereas materials 4 and 14 are

more abundant (resp. 237 and 1265 pixels).

In Figure 8 we plot relative errors of the reconstruction of

spectra by different methods. As expected, for materials 7 and

9, the discrepancy between the original spectra and the spectra

obtained from estimated SRI is bigger than for materials 4 and

14. This can be explained by the scarcity of sources 7 and 9

compared to sources 4 and 14. In Figure 11, we have a closer

look at the spectra at spectral bins 80 to 100. We can see that

for abundant materials (4 and 14) all the algorithms estimates

well the spectrum. For the scarce materials it is important to

choose the rank, in particular R3 = 16 and R3 = 25 yield

better reconstruction that R3 = 6, and also STEREO with

F = 16

5.4. Blind recovery of the SRI

In this subsection, we consider the blind recovery of the SRI.

We compare the performance of SCUBA and B-SCOTTfor

the Pavia University dataset. In this case, the SRI is acquired
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from a ROSIS sensor such that Y ∈ R608×366×103, YH ∈
R152×84×103 and Y ∈ R608×366×6. The results are given

in Table 5.4, where for B-SCOTT“single” means that there

is no partition into blocks, and (4, 4) means that the images

are partitioned into 16 blocks of the same size, according to a

4 × 4 grid. Reconstruction of one spectral band is shown in

Fig. 12. Our results show that B-SCOTTcan approach the per-

formance of SCUBA at a significantly lower computational

cost.

Algorithm R-SNR CC SAM ERGAS time

SCUBA 50 24.97 0.99 3.33 2.08 34.81
B-SCOTT[100, 100, 4], single 16.6 0.94 6.03 4.62 0.47

B-SCOTT[60, 60, 3] (4,4) 22.98 0.98 3.83 2.46 0.62
B-SCOTT[120, 60, 4] (4,4) 24.21 0.99 3.44 2.09 0.8

Table 5. Comparison of blind algorithms, Pavia University

dataset

6. CONCLUSION

In this paper, we proposed a novel coupled Tucker model for

hyperspectral superresolution. We showed that the model is



Fig. 8. Residual errors for the three considered ranks and four materials
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Fig. 9. Groundtruth image for Indian Pines dataset. Materials

4,7,9,14 are marked in red.

recoverable, that is, almost surely identifiable in a well cho-

sen basis, and two very simple SVD-based algorithms can

be used for the super-resolution problem, for known and un-

known degradation operators, and for the case of pansharp-

ening. The algorithms are very fast, but produce the results

that are comparable with the CP-based approaches. Also, our
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Fig. 10. Original spectral signature for materials 4,7,9 and 14

algorithms are SVD-based, and thus do not have the draw-

backs of the CPD (i.e., dependence on random initializations,

ill-posedness of the problem) This work opens new perspec-

tives on using various tensor factorizations for hyperspectral

super-resolution. Still several interesting questions remain,

for example, how to enlarge the recoverability range for the
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multilinear rank.
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Fig. 12. Reconstruction of SRI at spectral band 44 for various algorithms
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