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ABSTRACT
We propose a novel approach for hyperspectral superresolu-
tion, that is based on low-rank tensor approximation for a
coupled low-rank multilinear (Tucker) model. We show that
the correct recovery holds for a wide range of multilinear
ranks. For coupled tensor approximation, we propose two
SVD-based algorithms that are simple and fast, but with a
performance comparable to the state-of-the-art methods. The
approach is applicable to the case of unknown spatial degra-
dation and to the pansharpening problem.

Index Terms— hyperspectral superresolution, low-rank
tensor approximation, data fusion, recovery, identifiability

1. INTRODUCTION

The problem of hyperspectral super-resolution (HSR) [1] has
recenlty attracted much interest from the signal processing
community. It consists in fusing a multispectral image (MSI),
which has a good spatial resolution but few spectral bands,
and a hyperspectral image (HSI), whose spatial resolution
is lower than that of MSI. The aim of this method is to re-
cover a super-resolution image (SRI), which possesses both
good spatial and spectral resolutions. This problem is closely
related to hyperspectral pansharpening [2, 3], where HSI is
fused with a panchromatic image (i.e. an “MSI” with only
one spectral band).

Many methods were developed for the HSR problem, in-
cluding coupled nonnegative matrix factorization [4] (CNMF),
methods based on solving Sylvester equation [5], Bayesian
approaches (HySure [6]), FUMI [7], to name a few. Moti-
vated by the linear mixing model widely used in hyperspectral
image unmixing, most of these methods are based on a cou-
pled low-rank factorization of the matricized hyperspectral
and multispectral images.

Recently, a promising tensor-based method was proposed
that makes use of the inherent 3D nature of HSI [8]. As-
suming that the superresolution image itself admits a low-
rank CP decomposition, the HSR is reformulated as a coupled
CP (canonical polyadic) approximation. An alternating least

squares algorithms (STEREO) is proposed, achieving recon-
struction performance that is competitive with the state of the
art. The key property underlying the approach of [8] is that
the coupled CP decomposition is identifiable, hence the HSI
tensor can be uniquely recovered. This approach was also
successfully used recently for a superresolution problem in
medical imaging [9]. Still, it has several drawbacks: for in-
stance, the appropriate rank of the CP decomposition is not
known a priori and may be unrelated to the number of end-
members; the rank can be also very large (esp. if images are
treated as 2D arrays), which may affect computational com-
plexity and convergence of the ALS iterations.

In many cases, the spatial degradation operator is un-
known, therefore blind algorithms are needed. A blind
version of STEREO was proposed in [8] that also uses an
alternating least squares algorithm for a coupled CP model.
In [10], a simple algorithm (SCUBA) based on a single CPD
of the MSI tensor and a truncated SVD of the unfolding of
the HSI. A key idea proposed in [10] is to use local approx-
imations via blocking. This algorithm outperforms blind
STEREO and other state-of-the-art algorithms. It also does
not require separability of the spatial degradation operator.

In this paper, we propose to use another type of low-
rank tensor factorization: multilinear (also known as Tucker)
factorization. By assuming that the superresolution image
has approximately low multilinear rank, we reformulate the
HSR problem as a coupled Tucker approximation. First, we
propose two closed-form SVD-based algorithms: the first is
inspired by [8] and the second (blind) is inspired by [10].
Second, we show that, although the Tucker decomposition is
not identifiable1, surprisingly, the correct recovery of the SRI
holds for a wide range of multilinear ranks. Our experiments
on a number of semi-real and real examples, show that the
proposed algorithms have a performance comparable to the
ones of [8] and [10], but the computational cost is lower.
Also, the algorithms can accurately reconstruct the spectral
signatures, which is of prime importance for a further pro-

1This is the reason why the Tucker model was discarded in [8] as a po-
tential model for hyperspectral superresolution.



cessing of HSR image. Finally, we show that the proposed
approach is applicable in the case of hyperspectral pansharp-
ening (unlike [8], which requires the MSI to have at least two
spectral bands).

This paper is organized as follows. In Section 2, we re-
call the HSR problem and the STEREO algorithm proposed
in [8]. Section 3 contains our proposed coupled Tucker model
and SVD-based algorithms (SCOTS and B-SCOTS ) for ten-
sor approximation. In Section 4 we prove our main identifi-
ability result (recoverability) for the coupled Tucker model.
Section 4 contains the numerical experiments.

Notation. In this paper we mainly follow [11] in what
concerns the tensor notation (see also [12]). The following
fonts are used: lowercase (a) or uppercase (I) plain font for
scalars, boldface lowercase (a) for vectors, uppercase bold-
face (A) for matrices, and calligraphic (A) for N -D arrays
(tensors). Vectors are, by convention, one-column matrices.
The elements of vectors/matrices/tensors are accessed as ai,
Ai,j and Ai1,...,iN respectively. R stands for the real line, C
for the set of complex numbers.

For a matrix A, we denote its transpose and Moore-
Penrose pseudoinverse as AT and A† respectively. The
notation IM is used for the M × M identity matrix and
0L×K for the L×K matrix of zeroes. We use the symbol �
for the Kronecker product between matrices (in order to dis-
tinguish it from the tensor product), and� for the Khatri-Rao
(column-wise Kronecker) product.

We use vec{·} for the standard column-major vectoriza-
tion of a tensor or a matrix. Operator •p denotes contraction
on the pth index of a tensor; when contracted with a matrix,
it is understood that summation is always performed on the
second index of the matrix. For instance, [A •1 M ]ijk =∑

`A`jkMi`. For a tensor G and matrices U , V and W , the
following shorthand notation is used

[[G; U ,V ,W ]] = G •
1
U •

2
V •

3
W .

For matrices A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F , we will
use a shorthand notation for the polyadic decomposition

[[A,B,C]] = [[IF ; A,B,C]]

where IF ∈ RF×F×F is a diagonal tensor of ones. For a
tensor Y ∈ RI×J×K , its first unfolding is denoted by Y (1) ∈
RJK×I . By tSVDR (X) we denote a matrix containing R
leading right singular vectors of the matrix X .

2. HYPERSPECTRAL DATA FUSION PROBLEM

2.1. Problem statement and degradation model

We consider a multispectral image (MSI) cube YM ∈
RI×J×KM and a hyperspectral image (HSI) cube YH ∈
RIH×JH×K acquired from existing sensors (for instance,
LANDSAT or QuickBird). The acquired MSI and HSI usu-
ally represent the same target, and YM and YH are viewed

as two degraded versions of a single super-resolution image
(SRI) data cube Y ∈ RI×J×K . The hyperspectral data fusion
problem [1] consists in recovering a super-resolution image
(SRI) cube Y from YM and YH .

In this paper, we adopt the following degradation model,
that can be compactly written as contraction of SRI with
degradation matrices:{

YM = Y •3 PM + EM ,

YH = Y •1 P1 •2 P2 + EH ,
(1)

where EM and EH denote the noise terms, PM ∈ RKM×K

is the spectral degradation matrices (for example, a selection-
averaging matrix), KM < K, and P1 ∈ RIH×I , P2 ∈
RJH×J , IH < I , JH < J , are the spatial degradation ma-
trices2, i.e. we assume (for simplicity) that the spatial degra-
dation is separable; this is a valid assumption, for example,
for the commonly accepted Wald’s protocol [13], which uses
Gaussian blurring and downsampling in both spatial dimen-
sions. In this paper we consider only the case when the degra-
dation matrices P1,P2,PM are known.

2.2. CP-based approach (STEREO)

In [8] it was proposed to model the SRI data cube as a tensor
with low CP rank, i.e. Y = [[A,B,C]], where A ∈ RI×F ,
B ∈ RJ×F and C ∈ RK×F are the factor matrices of the
CPD and F is the tensor rank. In this case, the HSR problem
can be formulated as

minimize
Â,B̂,Ĉ

fCP (Â, B̂, Ĉ), (2)

where fCP (Â, B̂, Ĉ) =

‖YH − [[P1Â,P2B̂, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

which is a coupled CP approximation problem. For the case
when there is no noise EH , EM = 0, the coupled CP model is
(generically) identifiable if

F ≤ min{2blog2(KMJ)c−2, IHJH},

see [8] for more details.
To solve (2), an alternating optimization algorithm is pro-

posed in [8], called STEREO (Super-Resolution Tensor Re-
construction).

The updates of the factor matrices in Algorithm 1 can
be computed by using efficient solvers for the (generalized)
Sylvester equation [14], [15]. For example, the total cost
(in flops) of one iteration in Algorithm 1 becomes (updating
A,B,C)

2Typically, it holds that IHJH � IJ and KM � K, meaning that MSI
has a finer spectral resolution w.r.t HSI, and HSI has a finer spatial resolution
than MSI.



input : A0 ∈ RI×F , B0 ∈ RJ×F , C0 ∈ RK×F , F
output: Ŷ ∈ RI×J×K

for k = 1 : n do
Ak ← argmin

A
fCP (A,Bk−1,Ck−1) ,

Bk ← argmin
B

fCP (Ak,B,Ck−1) ,

Ck ← argmin
C

fCP (Ak,Bk,C),

end
Â← An, B̂ ← Bn, Ĉ ← Cn, Ŷ ← [[Â, B̂, Ĉ]].

Algorithm 1: STEREO

• O(IJKMF+IHJHKF ) for computing the right hand
sides in the least-squares subproblems.

• O(I3+J3+K3+F 3) for solving Sylvester equations;

For more details on these equations, see3 [8, App. E].
The initial values in Algorithm 1 are chosen as(

A0,B0, C̃0

)
= CPDF (YM ) ,

YM
(3) = (P1A0 � P2B0)C

T
0 ,

C̃0 = PMC0,

where CPDF stands for a rank-F CP approximations and the
last two equations are solved in the least squares sense.

2.3. The case of unknown spatial degradation

In this subsection, we recall the CP-based methods for the
HSR problem in the case when the spatial degradation matri-
ces P1,P2 are unknown, proposed in [8] and [10]. The first
solution, called blind STEREO was to consider the following
coupled CP approximation problem:

min ‖YH − [[Ã, B̃, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,

where the estimated SRI is computed as Ŷ = [[Â, B̂, Ĉ]].
The conditions for correct recovery were established in [8].

In [10], an alternative approach was proposed, that uses
the CP approximation of YM to retrieve the factors (Â, B̂),
an SVD of the unfolding of YH , and a least squares problem
to retrieve the third factor Ĉ. This approach, which does not
necessary need separability of the spatial degradation opera-
tion, is summarized in Algorithm 2.

As noted in [10], the correct recovery of a low-rank tensor
Y = [[A,B,C]] is only if rank{C} = R does not exceed
the number of spectral bands in MSI, because the rank of
Ĉ is bounded by KM . To overcome this limitation, in [10]
it was proposed to apply Algorithm 2 to non-overlapping
subblocks of MSI and HSI (based on the hypothesis that
only a small number of materials will be active in a smaller

3Note that in [8, Appendix E] the cost of solving the Sylvester equation
is stated as O(I3) and not O(I3 + F 3) as in [14].

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R, F ,
PM

output: Ŷ ∈ RI×J×K

Compute CP approximation:
(Â, B̂, C̃) = CPDF (YM )

Z ← tSVDR

(
YH

(3)
)

Ĉ ← Z(PMZ)†C̃

Ŷ ← [[Â, B̂, Ĉ]].
Algorithm 2: Hybrid algorithm of [10]

black). This is summarized in Algorithm 3, called SCUBA in
[10]. It was shown in [10] that such an algorithm outperforms
blind STEREO, and other state-of-the-art algorithms for blind
HSR.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R, F ,
PM

output: Ŷ ∈ RI×J×K

Split each YM and YH in L subblocks along the
spatial dimension (the subblocks correspond to each
other).
for k = 1 : n do

Apply Algorithm 2 to each subblock, and store the
result in the corresponding subblock of Ŷ .

end
Algorithm 3: SCUBA

3. TUCKER-BASED DATA FUSION

3.1. Model and approximation problem

In this paper, we propose a Tucker-based coupled model as an
alternative to STEREO. Let R = (R1, R2, R3) be the multi-
linear ranks of the SRI Y , and let Y = [[G; U ,V ,W ]] be its
Tucker decomposition, where U ∈ RI×R1 , V ∈ RJ×R2 and
C ∈ RK×R3 are the factor matrices and G ∈ RR1×R2×R3

the core tensor.
With these notations, Equation (1) becomes{

YM = [[G; U ,V ,PMW ]] + EM ,

YH = [[G; P1U ,P2V ,W ]] + EH .

The HSR formulation is thus

minimize
Ĝ,Û ,V̂ ,Ŵ

fT (Ĝ, Û , V̂ , Ŵ ), where (3)

fT (Û , V̂ , Ŵ , Ĝ) =‖YH − [[Ĝ; P1Û ,P2V̂ , Ŵ ]]‖2F
+λ‖YM − [[Ĝ; Û , V̂ ,PMŴ ]]‖2F .

(4)



3.2. An SVD-based algorithm

A suboptimal solution to problem (3) can be found by re-
sorting to the high-order SVD (HOSVD) of tensors. This
algorithm, named as SCOTS (SVD-based COupled Tucker
approximation for Superresolution), is given in Algorithm 4.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R,
PM , P 1, P 2

output: Ŷ ∈ RI×J×K

1. Û ← tSVDR1

(
YM

(1)
)

, V̂ ← tSVDR2

(
YM

(2)
)

,

Ŵ ← tSVDR3

(
YH

(3)
)

,

2. Ĝ ← argmin
G

fT (G, Û , V̂ , Ŵ )

3. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 4: SCOTS

The least squares subproblem in Algorithm 4[
Ŵ �P2V̂ �P1Û√
λPMŴ � V̂ � Û

]
︸ ︷︷ ︸

X

vec{Ĝ} ≈
[

vec{YH}√
λ vec{YM}

]
︸ ︷︷ ︸

z

can be solved through normal equations of the form(
XTX

)
vec{Ĝ} = XTz,

where the matrix on the left-hand side is

XTX = IR3
�(V̂

T
P T

2P 2V̂ )�(Û
T
P T

1P 1Û)

+λ(Ŵ
T
P T

MPMŴ )� IR1R2

The normal equations can be viewed as a Sylvester equation
and (as in the case of STEREO) efficient solvers can be used.
Thus the total cost of one iteration in SCOTS (in flops) be-
comes

• O(min(R1, R2)IJKM + R3IHJHK) for computing
the truncated SVDs and computing XTz;

• O(R3
3 + (R1R2)

3) for solving the Sylvester equation.

It is easy to see that the computational complexity of SCOTS
is comparable with the one of STEREO and is actually
smaller if the multilinear ranks are small.

3.3. An algorithm for unknown spatial degradation

Here, we show that is also possible to develop a blind SVD-
based algorithm (called B-SCOTS , that is “Blind SCOTS ”),
in the same spirit as Algorithm 2. The algorithm does not
need knowledge of P 1, P 2 and is based on the HOSVD of
the MSI tensor.

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,
(R1, R2, R3), PM

output: Ŷ ∈ RI×J×K

1. Compute the (R1, R2, R3) HOSVD Tucker
approximation of YM

[[Ĝ; Û , V̂ , W̃ ]]
HOSVD≈ YM

2. Z ← tSVDR3

(
YH

(3)
)

3. Ŵ ← Z(PMZ)†W̃

4. Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 5: B-SCOTS

The total computational complexity (in flops) of B-
SCOTS

O(min(R1, R2)IJKM +R3IHJHK)

and is dominated by the costs of the truncated SVD, because
step 3 is very cheap.

Finally, similarly to SCUBA, we can use a block version
of B-SCOTS .

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,
(R1, R2, R3), PM

output: Ŷ ∈ RI×J×K

Split each YM and YH in L subblocks along the
spatial dimension (the subblocks correspond to each
other).
for k = 1 : n do

Apply B-SCOTS to each subblock, and store the
result in the corresponding subblock of Ŷ .

end
Algorithm 6: Block version of B-SCOTS

4. RECOVERABILITY OF THE TUCKER MODEL

In this subsection, we establish a generic uniqueness result for
the tensor recovery in the coupled Tucker model.

Theorem 4.1. Assume that P1 ∈ RIH×I , P2 ∈ RJH×J , and
PM ∈ RKM×K are fixed full row-rank matrices. Let

Y = [[G; U ,V ,W ]], (5)

where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K, and
U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random matri-
ces, distributed according to an absolutely continuous proba-
bility distribution. We also assume that EM ,EH = 0 in (1).

1. If R3 ≤ KM or (R1, R2) ≤ (IH , JH) and
R1 ≤ min(R3,KM )R2,

R2 ≤ min(R3,KM )R1

R3 ≤ min(R1, IH)min(R2, JH),

(6)



then with probability 1 there exists a unique tensor Ŷ
such that ŶM = YM and ŶH = YH .

2. If R3 > KM and (R1 > IH or R2 > JH ), then the
reconstruction is non-unique, i.e. there exist an contin-
uum of Ŷ such that ŶM = YM and ŶH = YH ; in
fact, ‖Ŷ −Y‖ can be arbitrary large.

Corollary 4.2. If Y is as in (5), such that the conditions of
Theorem 4.1 (part 1.) hold., then any minimizer of (3) recov-
ers Y , i.e.

Y = [[Ĝ; Û , V̂ , Ŵ ]].

In addition, it follows that Algorithm 4 (SCOTS ) recovers
Y for all cases of recoverability in Theorem 4.1, and Algo-
rithm 5 (B-SCOTS ) if R3 ≤ KM .

Before proceeding to the proof of Theorem 4.1, we il-
lustrate the statement of Theorem 4.1 for the case I = J ,
IH = JH and R1 = R2. In Figure 1 we show that the space
of parameters (R1, R3) is split into two regions: identifiable
and non-identifiable. The hatched area corresponds to the pa-
rameters where condition (6) is not satisfied .

0 R3

KM

IH

Identifiability

Non-identifiability

R1 = R2

K

√
K

I

Fig. 1. Identifiability region depending on R1 and R3

Proof of Theorem 4.1. First, without loss of generality, we
can replace P 1, P 2, PM with

P̃ 1 =
[
IR1 0

]
, P̃ 2 =

[
IR2 0

]
, P̃M =

[
IR3 0

]
. (7)

Indeed, let us explain why it is so, for example for P 1 ∈
RR1×I . There exists a nonsingular matrix4 T such that

P 1T =
[
IR1

0
]
.

If we take Ũ = T−1U then we have

P 1U = P̃ 1Ũ .

4For example, T = [P †1 F ], where F ∈ RI×(I−R1),P 1F = 0.

Note that a nonsingular transformation preserves absolute
continuity of the distribution; hence U has an absolutely
continuous distribution if and only if Ũ has one.

The rest of the proof uses some basic real algebraic geom-
etry and basic properties of semialgebraic sets. For a neces-
sary background, we refer the reader to the introduction and
references in [16]. In what follows, for simplicity, we will
assume P̃ 1 = P 1, P̃ 2 = P 2, P̃ 3 = P 3. Next, we show that
nonunique cases appear only on a set of measure zero in the
parameter space {(U ,V ,W ,G)} ∈ F1

F1 = RI×R1 × RJ×R2 × RK×R3 × RR1×R2×R3 .

For convenience, we will switch to a non-ambiguous param-
eterization. Consider the parameter space

F2=R(I-R1)×R1 × R(J-R2)×R2 × R(K-R3)×R3 × RR1×R2×R3 .

Take F̃1 ⊂ F1 such that (U ,V ,W ,G) ∈ F̃1 iff

U =
[
U1

U2

]
,V =

[
V 1

V 2

]
,W =

[
W 1

W 2

]
,

and U1 ∈ RR1×R1 , V 1 ∈ RR2×R2 , W 1 ∈ RR3×R3 are
nonsingular; thus we exclude a set F1 \ F̃1 of measure zero.
Consider the surjective reparameterization map

R : F̃1 → F2

(U ,V ,W ,G) 7→
(
U2U

−1
1 ,V2V

−1
1 ,W 2W

−1
1 , [[G;U1,V1,W1]]

)
The set F2 can be injectively mapped to RI×J×K

T :F2 → RI×J×K

(A,B,C,S) 7→ Y = [[S; [ I
A ] , [ I

B ] , [ I
C ]]].

(8)

In fact, the mapping T is nothing more than a construction
of the tensor from parameters, i.e.

T (R(U ,V ,W ,G)) = [[S; A,B,C]] = [[G; U ,V ,W ]];

Hence the core tensor S is just the core tensor G transformed
in a new basis.

Now assume that Y = T (A,B,C,S), and we would
like to see when we can reconstruct (A,B,C,S) uniquely
from YH and YM .

Proof of 2. Consider the case R1 > IH and R3 > KM

(the case R2 > JH and R3 > KM is analogous). Then
the tensors (YM ) and (YH) do not depend on the values
Si,:,k for i > IH and j > I . Hence there is an infi-
nite set of Ŝ such that YM = (T (A,B,C, Ŝ))M and
YH = (T (A,B,C, Ŝ))H . Since R−1F2 = F̃1, the non-
uniqueness occurs for all (U ,V ,W ,G) ∈ F̃1, i.e. with
probability 1.

Proof of 1. Now let us prove the identifiability cases
R3 ≤ KM or (R1, R2) ≤ (IH , JH). First, note that

• If R3 ≤ KM , we have S = (YM )1:R1,1:R2,1:R3
.



• If (R1, R2) ≤ (IH , JH), we have S = (YH)1:R1,1:R2,1:R3 ,

hence S can be uniquely recovered from YM and YH .
Next, we consider the question of recovery of (A,B,C)

from unfoldings. Consider reconstruction of A from the first
unfolding of YM . Take the subtensor

Z = (YM ):,1:R2,1:min(R3,KM )

and the subtensor X = (S):,:,1:min(R3,KM ) of the core tensor
S. Then the first unfolding Z(1) ∈ RR2 min(R3,KM )×I (which
is a submatrix of YM

(1)) has a low-rank factorization

Z(1) = X(1)
[
I AT

]
.

hence A can be uniquely determined from Z(1) if X(1) has
full-column rank. Note that if R1 ≤ min(R3,KM ), then
the set of S such that X(1) is not of full column rank is a
semialgebraic subset of RR1×R2×R3 of measure zero5.

Proceeding similarly for B and C, we get that if (6) holds,
then there exists a semialgebraic set F3 ⊂ F2 of measure
zero such that for (A,B,C,S) ∈ F2 \F3 there is a perfect
recovery of (A,B,C,S) and Y .

By the semialgebraic version of Sard’s theorem [16,
Lemma 2.1], the preimage R−1(F3) is also of measure zero,
hence the uniqueness of recovery holds for (U ,V ,W ,G) ∈
F̃1 \R−1(F3), i.e., with probability 1.

Remark 4.3. In the proof of Theorem 4.1 it was shown that
for the recoverability of the coupled model we can assume
that the degradation operators are given in (7). In that case,
the degraded tensors YM and YH are just the subtensors
(slabs) i.e.

YM = Y :,:,1:KM
, YH = Y1:IH ,1:JH ,:.

Hence the recoverability of Tucker super-resolution model
is equivalent to uniqueness of tensor completion, that is
the recovery of Y from known subtensors Y :,:,1:KM

and
Y1:IH ,1:JH ,:.

5. EXPERIMENTS

All simulations were run on a Macintosh computer with 2.4
GHz Intel Core i5 and 8GB RAM. The code is implemented
in MATLAB. For basic tensor operations we used TensorLab
3.0 [17]. The results are reproducible and the codes are avail-
able online at

https://github.com/cprevost4/HSR_Tucker.
As for the experimental setup, we follow [8]. The main

performance metric used in comparisons is reconstruction
Signal-to-Noise ratio (R-SNR) introduced in [3]

R-SNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
.

5i.e., a semialgebraic subset whose dimension is smaller than the dimen-
sion of the ambient space.
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Fig. 2. Recovery of Y (in black) from Y :,:,1:KM

(pink),
Y1:IH ,1:JH ,: (blue)

In all the examples, as in [8], the bands corresponding to
water absorption are removed. For all the experiments (ex-
cept the real wood data), the degradation matrices P1, P2 are
generated following Wald’s protocol, and the downsampling
factor is chosen to be 4, see The matrix PM is a selection-
averaging matrix that splits the spectral range into parts ac-
cording to the specification of the selected sensor.

5.1. Choice of multilinear ranks

In this subsection, we have a closer look at the Indian Pines
dataset, available at [18], that was acquired by a 224-band
AVIRIS sensor. In this case, Y ∈ R144×144×200 (after re-
moving the bands corresponding to water absorption), YM ∈
R144×144×6 and YH ∈ R36×36×200. The spectral degrada-
tion is chosen according to the specifications of the LAND-
SAT sensor. We analyze the performance of SCOTS (R-SNR
and the value of the cost function fT defined in (4)) w.r.t. the
multilinear rank employed in the Tucker decomposition.

Figure 3 shows the SNR and cost function value for R1 =
R2 varying in the range of [10 : 50] and R3 varying in the
range of [2 : 25] for which the identifiability condition holds
(see Section 4 and Fig. 1). While the cost function decreases
as R1 and R3 increase, the reconstruction error (given by
R-SNR) behaves differently for different identifiability sub-
regions in Fig. 1. In the case R3 ≤ KH , the R-SNR in-
creases whenR1 grows, and R-SNR is close to maximal when
R3 = KH . But, in the case R1 = R2 ≤ IH and growing R3,
the situation is different: the R-SNR varies slowly with in-
creasing R3, but is more sensitive to the choice of R1 = R2.
In particular the overfitting (i.e. sharp decrase in R-SNR) is
observed when R1 = R2 is close to IH .

We also performed the optimisation of (3) with the struc-
tured data fusion framework implemented in Tensorlab [17].
In our experiment, for all the values in Fig. 3, the optimiza-
tion procedure stopped in a few iterations and did not improve

https://github.com/cprevost4/HSR_Tucker
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Fig. 3. R-SNR and fT as a function of R1 = R2 and R3

the cost function. This result seems reasonable, because it is
known [19] that SCOTS gives a very good solution for a low-
rank Tucker approximation. In what follows, we use only
SVD-based algorithms for our coupled model.

We conclude this subsection by testing the case of fixed
R3 and varying R1 and R2. In Figure 4, we fix R3 = 6
and report the results for SCOTS for R1 and R2 in a range of
[10 : 40]. In Figure 5, we report the same results forR3 = 16.

We observe different behaviour in the two different cases.
In the case R3 = 6 (see Fig. 4), the results are rather symmet-
ric, whereas in Fig. 5 we see that the overfitting is mainly due
to R1 being close to IH . Still, the best value is close to the
diagonalR1 = R2, therefore in the following experiments we
will only consider the case R1 = R2.
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Fig. 4. R-SNR and fT as a function of R1 and R2, R3 = 6

5.2. Comparison with other algorithms

In this subsection, we compare the performance of SCOTS
(for a set of representative ranks), B-SCOTS , STEREO, and
HySure [6]. In addition to R-SNR, we consider different met-
rics from [3] described below:

CC =
1

IJK

(
K∑

k=1

ρ
(
Y :,:,k, Ŷ :,:,k

))
,

where ρ(·, ·) is the Pearson correlation coefficient between the
estimated and original spectral fibers;

SAM =
180

π

1

IJ

IJ∑
n=1

arccos

 Y (3)T

n,:Ŷ
(3)

n,:

‖Y (3)
n,:‖2‖Ŷ

(3)

n,:‖2

 ,
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Fig. 5. R-SNR and fT as a function of R1 and R2, R3 = 16

which computes the angle between original and estimated
fibers;

ERGAS =
100

d

√√√√ 1

IJK

K∑
k=1

‖Ŷ :,:,k −Y :,:,k‖2F
µ2
k

,

where µ2
k is the mean value of Ŷ :,:,k. ERGAS represents the

relative dimensional global error between the SRI and the es-
timate.

We also show the computational time for our implemen-
tation each algorithm, given by the tic and toc functions of
MATLAB. As in [8], we run STEREO for 10 iterations.

5.2.1. Semi-real data

First, we compare the results for some semi-real data, avail-
able online at [18], with MSI and HSI generated artifi-
cially. The representative multilinear ranks are chosen to

be [40, 40, 6], [30, 30, 16] and [24, 24, 25], which correspond
to different regions of identifiability; also the number of
ground truth regions in the image is E = 16 hence the mul-
tilinear ranks correspond to different scenarios (R3 < E,
R3 = E,R3 > E). For STEREO, we choose ranks F = 50
and F = 100, and in HySure we use (as in [8]) 16 as the
number of endmembers. Table 5.2.1 shows these metrics for
the Indian Pines dataset mentioned above. In general, SCOTS
and B-SCOTS give comparable results with STEREO in the
case F = 50 used in [8]. But, the case of STEREO F = 100
gives slightly better results than tensor rank F = 50, espe-
cially in terms of SNR. The B-SCOTS method appears to
be fastest in this case (although we do not claim it, because
the speed depends on the implementation), but needs higher
multilinear ranks. Fast algorithms for Sylvester equations are
used for SCOTS and STEREO.

Algorithm R-SNR CC SAM ERGAS time
STEREO 50 26.93 0.89 2.25 1.03 8.06

STEREO 100 28.47 0.92 2.03 0.88 12.15
SCOTS (40,40,6) 26.32 0.89 2.34 1.07 3.27

SCOTS (30,30,16) 23.82 0.84 2.77 1.38 1.02
SCOTS (24,24,25) 24.65 0.87 2.56 1.23 0.55
B-SCOTS (40,40,6) 25.45 0.88 2.65 1.2 0.18
B-SCOTS (60,60,6) 26.06 0.89 2.57 1.14 0.1

B-SCOTS (100,100,6) 26.28 0.9 2.55 1.14 0.12
HySure 25.12 0.77 2.56 1.68 44.63

Table 1. Comparison of algorithms, Indian Pines dataset

The second dataset we consider is the Salinas A-scene,
also acquired by the AVIRIS sensor; it is a portion of the
bigger Salinas dataset. In this case, Y ∈ R80×84×204, and
YM ∈ R80×84×6, YH ∈ R20×21×204. In [8]E = 6 is quoted
as number of endmembers (this value is chosed for HySure).
The results are shown in Table 5.4. In this case,R3 = 6 seems
to be the best choice for HOSVD, which agrees with the num-
ber of materials. The HOSVD algorithm is again rather fast,
except for the case where it shows a better performance than
STEREO (with F = 100, which is the rank chosen in [8] for
this dataset).

Algorithm R-SNR CC SAM ERGAS time
STEREO 50 33.63 0.98 0.91 1.39 4.03

STEREO 100 37.47 0.99 0.66 1.12 5.38
SCOTS (40,40,6) 33.59 0.99 0.77 1.18 2.19

SCOTS (14,14,15) 22.68 0.94 2.1 3.07 0.15
SCOTS (10,15,25) 23.17 0.96 2.1 2.59 0.14
SCOTS (30,30,6) 30.18 0.98 1.02 1.41 0.65
SCOTS (58, 58, 6) 37.55 0.99 0.61 1.03 14.7

HySure 29.05 0.97 1.39 3.28 14.53

Table 2. Comparison of algorithms, Salinas A-scene dataset



5.2.2. Real wood data

The third dataset is obtained from a wood plank. Instead
of generating the MSI and HSI with specified dimensions,
data cubes Y ∈ R640×150×224, YM ∈ R640×150×28 and
YH ∈ R320×75×224 are acquired by a SPECIM FX17 hy-
perspectral camera, which spectral range is [900nm, 1700nm].
For more details on the camera, please refer to [20]. For
this dataset, no groundtruth data is available. However, in
most cases, the number of sources is considered very small
(E ≤ 10) [21]. We choose different values for R3 for SCOTS
, and for HySure, we choose E = 8. For STEREO we also
try different ranks, because this dataset was not used in [8].
The results can be found in Table 5.2.2. We see that all the
methods give comparable results, thus SCOTS can be chosen,
because it is especially fast for the case of small multilinear
ranks. The comparison of the reconstruction of a selected
spectral bands are shown in Fig. 7.

Algorithm R-SNR CC SAM ERGAS time
STEREO 20 21.96 0.99 1.76 2.49 54.55
STEREO 30 21.93 0.99 1.75 2.5 49.79
STEREO 50 21.95 0.99 1.7 2.49 72.61

STEREO 100 21.94 0.99 1.6 2.49 62.75
SCOTS (50,50,8) 23.2 0.99 1.59 2.16 6.13

SCOTS (30,30,15) 23.12 0.99 1.7 2.18 3.44
HySure 21.73 0.99 1.91 2.56 186.28

Table 3. Comparison of algorithms, wood dataset

5.2.3. Pansharpening problem

Here, we adress the pansharpening problem, which consists
in fusion of a hyperspectral image and a panchromatic image
(PAN) YP . PAN is obtained by averaging over the full spec-
tral range of the groundtruth SRI, meaning that PM ∈ R1×K

and YP ∈ RI×J×1. In this case, the STEREO algorithm is
not applicable, since its initialization6 is based on the CPD
of the MSI (which is a matrix in the case of PAN images).
However, the coupled Tucker model is still recoverable when
R1 ≤ IH and R2 ≤ JH .

For the lest of this section, we consider the Indian Pines
dataset. First, in Figure 6, we plot the SNR and cost for
R1 = R2 in [1 : 36] and R3 in [1 : 25] under the identifi-
ability conditions. In Table 5.2.3, the metrics are shown for
different multilinear ranks and for the HySure method. In this
case as well, the previous conclusions on the metrics hold,
showing that SCOTS is able to give a reasonable solution the
pansharpening problem as well.

6We also tried different initializations for STEREO, including the one
obtained based on our HOSVD solution.
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Fig. 6. R-SNR and cost as a function of R1 = R2 and R3

Algorithm R-SNR CC SAM ERGAS time
SCOTS (24, 24, 25) 20.59 0.78 4.36 1.93 0.94
SCOTS (30, 30, 16) 18.48 0.7 5.37 2.48 1.08
SCOTS (35, 35, 6) 11.38 0.41 10.53 5.71 1.84

HySure 23.24 0.77 2.28 1.69 33.87

Table 4. Metrics for different algorithms, Indian Pines dataset

5.3. Endmember recovery

A correct recovery of spectral signatures is quite important for
further processing of hyperspectral images, therefore we are
going to see whether SCOTS is able to do that. We consider
the Indian Pines dataser, where groundtruth data (see Fig. 9)
is available, splitting the image into 16 regions. We will con-
sider three representative ranks: [40, 40, 6], [30, 30, 16], and
[24, 24, 25], and compare it with STEREO (F = 16).
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Fig. 9. Groundtruth image for Indian Pines dataset. Materials
4,7,9,14 are marked in red.

We do not perform a proper hyperspectral unmixing, and
compute the spectral signatures by averaging across the re-
gions. We selected four representative signatures correspond-
ing to endmembers 4,7,9 and 14, which are plotted in Fig-
ure 10. Note that materials 7 and 9 are scarce in the original
SRI (resp. 28 and 20 pixels), whereas materials 4 and 14 are



more abundant (resp. 237 and 1265 pixels).
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Fig. 10. Original spectral signature for materials 4,7,9 and 14

In Figure 8 we plot relative errors of the reconstruction of
spectra by different methods. As expected, for materials 7 and
9, the discrepancy between the original spectra and the spectra
obtained from estimated SRI is bigger than for materials 4 and
14. This can be explained by the scarcity of sources 7 and 9
compared to sources 4 and 14. In Figure 11, we have a closer
look at the spectra at spectral bins 80 to 100. We can see that
for abundant materials (4 and 14) all the algorithms estimates
well the spectrum. For the scarce materials it is important to
choose the rank, in particular R3 = 16 and R3 = 25 yield
better reconstruction that R3 = 6, and also STEREO with
F = 16
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Fig. 11. Endmembers at spectral bins 80 to 100. Groundtruth
(black), SCOTS [40, 40, 6] (red), SCOTS [30, 30, 16] (yel-
low), SCOTS [24, 24, 25] (purple), STEREO F = 100
(green).

5.4. Blind recovery of the SRI

In this subsection, we consider the blind recovery of the SRI.
We compare the performance of three algorithms: SCUBA,
B-SCOTS and block version of B-SCOTS for the Pavia Uni-
versity dataset. In this case, the SRI is acquired from a ROSIS
sensor such that Y ∈ R608×366×103, YH ∈ R152×84×103 and
Y ∈ R608×366×6.

Algorithm R-SNR CC SAM ERGAS time
SCUBA 50 24.97 0.99 3.33 2.08 34.81

B-SCOTS [100, 100, 4] 16.6 0.94 6.03 4.62 0.47
block B-SCOTS [60, 60, 3] 22.98 0.98 3.83 2.46 0.62

block B-SCOTS [120, 60, 4] 24.21 0.99 3.44 2.09 0.8

Table 5. Comparison of blind algorithms, Pavia University
dataset

6. CONCLUSION

In this paper, we proposed a novel coupled Tucker model for
hyperspectral superresolution. We showed that the model is
recoverable, that is, almost surely identifiable in a well cho-
sen basis, and two very simple HOSVD-based algorithm can
be used for the superresolution problem, for known and un-
known degradation operators, and for the case of pansharp-
ening. The algorithms are very fast, but produce the results
that are comparable with the CP-based approaches. Also, our
algorithms are SVD-based, and thus do not have the draw-
backs of the CPD (i.e., dependence on random initializations,
ill-posedness of the problem, This work opens new perspec-
tives on using various tensor factorizations for hyperspectral
superresolution. Still several interesting questions remain, for
example, how to enlarge the recoverability range for the mul-
tilinear rank.
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Fig. 8. Residual errors for the three considered ranks and four materials
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