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Introduction

In games where matches take place between two players A and B, rating systems such as Elo and Glicko-2 [START_REF] Glickman | Dynamic paired comparison models with stochastic variances[END_REF] are used to estimate the skill of players. Although these ratings may be calculated purely out of curiosity, organizers of games are often required to arrange matches between players. Generally, players desire matches that are fair, or matches where both players have a reasonable chance of winning. In many games, especially multiplayer video games, unfair matches have been attributed as a source of frustration (see [START_REF] Mackey | The summoner's guidebook: getting out of Elo hell[END_REF] for an example in League of Legends). Rating systems provide a way to directly calculate the probability of a player winning a match. They provide a good basis for determining the fairness of any hypothetical match. We explore the use of rating systems in determining match fairness and devise an algorithm for calculating match fairness based on Bayesian decision theory.

Rating systems

Most rating systems used today are Bayesian rating systems. They infer skill ratings with Bayesian inference. Typically, Bayesian skill rating systems model the prior and posterior rating distribution1 with a normal distribution. For a player i, R i ∼ N (µ i , σ 2 i ). In addition, a likelihood function is defined for the result of a match between two players R A and R B . The likelihood of player A winning and losing given their ratings is always defined, P (A wins against B | R A , R B ). Some systems give the likelihood of a draw as well.

We make two simplifying assumptions:

• Only the result of a win and a loss needs to be defined. Most systems that only give the likelihood of a win and a loss count a draw as half a win and half a loss.

• The likelihood of winning and losing are:

P (A wins against B | R A , R B ) = 1 1 + 10 (R B -R A )/400
(1)

P (A loses to B | R A , R B ) = P (B wins against A) (2) = 1 -P (A wins against B | R A , R B ) (3) 

Prior predictive probability of winning

For simplicity, P (A > B) = P (A wins against B | R A , R B ). The prior predictive probability, if the R A and R B are normal random variables defining the prior of both ratings:

R A ∼ N (µ A , σ 2 A ) (4) R B ∼ N (µ B , σ 2 B ) (5) 
is as follows:

P (A > B) = ∞ -∞ ∞ -∞ 1 1 + 10 (y-x)/400 ϕ(x | µ A , σ 2 A )ϕ(y | µ B , σ 2 B ) dx dy (6)
where ϕ(x | µ, σ2 ) is the probability density of the normal distribution. We can consider the rating difference ∆R = R B -R A . The probability of winning in terms of the rating difference is

P (A > B | actual ∆R) = 1 1 + 10 ∆R/400 (7) 
In addition, note that the sum of two normal random variables is a normal random variable equal to the sum of the mean and variance. Therefore,

∆R ∼ N (µ B -µ A , σ 2 B -σ 2 A )
. We can use this to simplify the double integral to a single integral,

P (A > B) = ∞ -∞ 1 1 + 10 x/400 ϕ(x | µ B -µ A , σ 2 B -σ 2 A ) dx (8) 
This integral, while simpler, is still intractable to evaluate in closed form. We can approximate the first factor of the integrand, This is because the factor is the logistic CDF at mean 0 and scale 400/ ln(10). Let s = 400/ ln(10), ∆µ = µ B -µ A , and ∆σ 2 = σ 2 B -σ 2 A . Then,

P (A > B) = 1 -P (B > A) ≈ ∞ -∞ Φ(x | 0, s 2 )ϕ(x | ∆µ, ∆σ 2 ) dx (9)
where Φ(x | µ, σ 2 ) is the normal CDF. We take 1 -P (B > A) to simplify calculations. To evaluate this integral, we first rescale the second factor ϕ(x | ∆µ, ∆σ 2 ) into a standard normal probability density φ(x) = ϕ(x | 0, 1 2 ) by applying the transform (x -∆µ)/(∆σ).

P (A > B) ≈ 1 - ∞ -∞ Φ ∆σx + ∆µ 0, s 2 φ(x) dx (10) = 1 - ∞ -∞ Φ ∆σx + ∆µ s φ(x) dx (11) 
Applying the following integral identity [START_REF] Owen | A table of normal integrals[END_REF],

∞ -∞ Φ(a + bx)φ(x) dx = Φ a √ 1 + b 2 (12) a = ∆µ s , b = ∆σ s (13) ∞ -∞ Φ(a + bx)φ(x) dx = Φ ∆µ s 1 + ∆σ 2 s 2 -1 = Φ ∆µ √ ∆σ 2 + s 2 (14) 
with the last equality due to all three values being positive. Consider the logistic CDF with mean 0 and scale m,

D m (x) = 1 1 + e -x/m (15)
To get a better approximation, we use the logistic CDF instead of the normal CDF on ∆µ √ ∆σ 2 +s 2 using moment matching.

P (A > B) ≈ 1 -D 1 ∆µ √ ∆σ 2 + s 2 = 1 -(1 + e -∆µ √ ∆σ 2 +s 2 ) -1 (16)

Team games

In many games, matches take place between teams consisting of more than one player. In this case, teams A and B consist of players A 1 , A 2 , . . . , A m and players B 1 , B 2 , . . . , B n . If each player has a rating, then we can model the rating of the teams A and B by first converting each player rating to the Bradley-Terry scale (Bradley & Terry, 1952),

f (x) = 10
x 400

(17)

Then we add the ratings and convert the sum back to the Elo scale,

g(x) = 400 log 10 (x) (18) 
Since each rating is normally distributed, the prior distribution over ratings would have means and variances equal to the sum of the means and variances of individual player ratings.

R A ∼ N g m i=1 f (µ A i ) , g m i=1 f (σ A i ) 2 (19) 
R B ∼ N g n j=1 f (µ B j ) , g n j=1 f (σ B j ) 2 (20) 
The prior predictive probability of winning can be calculated with the procedure in the previous section.

Match fairness

A reasonable notion of a match being fair is that the result is unpredictable. Therefore, we will quantify the fairness of a match using the measure of entropy [START_REF] Shannon | A mathematical theory of communication[END_REF]. Entropy typically refers to the expected information produced by a information-generating process, but it is also a good measure of "uncertainty".

Let G ∼ Bernoulli(θ), where θ = P (A > B). Let I(G) represent the information content of G. Then the base-b entropy

E[I(G)] = - E∈Ω P (E) log b (P (E)) = -(θ log b (θ) + (1 -θ) log b (1 -θ)) (21)
For a match between players A and B, higher values of entropy E[I(G)] suggest a fairer match.

Theorem 1. For all bases b, E[I(G)] is maximized at θ = 0.5.

Proof. Let H(θ) = E[I(G)], G ∼ Bernoulli(θ). H(x) can only take values in the domain [0, 1] as θ is a probability. The derivative is

dH dθ = log b (1 -θ) -log b (θ) (22) 
At θ < 0.5, log b (1 -θ) > log b (θ) as 1 -θ > θ, and ∂H ∂θ > 0. At θ > 0.5, log b (1 -θ) < log b (θ) as 1 -θ < θ, and ∂H ∂θ < 0. Therefore, H is unimodal. At θ = 0.5, ∂H ∂θ = log b (0.5) -log b (0.5) = 0, showing that H(0.5) is an extremum. Since H is monotonically increasing at θ < 0.5 and then monotonically decreasing at θ > 0.5, it follows that H(0.5) is a maximum.

Entropy is a suitable measure of fairness because

• it represents uncertainty in information theory. Entropy can be generalized to represent uncertainty in stochastic processes, which in this case is the result of matches. Generally, matches are fair when the outcome is uncertain.

• it is maximized when both players have a 50 percent prior predictive probability of winning, which means the match is deemed most fair when players are at equal strength.

• The entropy of a Bernoulli random variable is the expected information gained from a single trial, or in this case, the outcome of one match. An unbalanced match is not very informative. Since a much stronger player will almost always win, the outcome is predictable, so the result gives little information.

We define a measure of fairness based on entropy as follows.

Definition 1. The fairness F (A, B) of a match between players A and B is the entropy of P (A > B) relative to the entropy at P (A > B) = 0.5,

F (A, B) = H(P (A > B)) -log b (0.5) (23) = -(θ log b (θ) + (1 -θ) log b (1 -θ)) -log b (0.5) ↔ θ = P (A > B) (24) 

Example

Let R A ∼ N (1600, 40) and R B ∼ N (1620, 50). It is apparent that this match is likely to be fair, as the players' ratings are close with low variance. However, we will apply our model above to quantify this. Using the prior predictive approximation above,

P (A > B) ≈ 0.471. Let b = 2. Then F (A, B) = H(0.471) 1 = 0.998 (25) 
showing that, based on rating alone, this match would be fair. However, suppose that the mean of R A is 400 rating points lower, R A ∼ N (1200, 40), and R B remains the same. Player A will very likely lose, showing that this match is unbalanced and therefore unfair. In this case, P (A > B) ≈ 0.091 and therefore,

F (A, B) = H(0.091) 1 = 0.44 (26) 
4 Optimal matchmaking Consider a list of players p 1 , p 2 , . . . , p n with rating distributions

R 1 ∼ N (µ 1 , σ 2 1 ), R 2 ∼ N (µ 2 , σ 2 
2 ), . . . , R n ∼ N (µ n , σ 2 n ), for even n ≥ 2. We are tasked with fairly matching every player in P against an opponent.

Theorem 2. Given n independent Bernoulli trials G = G 1 , G 2 , . . . , G n , E[I(G)] = n i=1 E[I(G i )] (27) 
Proof. Because the trials are independent,

P (G) = n i=1 P (G i ) (28) 
The outcome space Ω is a sequence of successes and failures {0, 1} n . An event E in Ω is a list of outcomes E 1 , E 2 , . . . , E n for the corresponding trial in G. The entropy of the joint distribution G = G 1 , G 2 , . . . , G n is total complexity is decreased. Specifically, suppose the n vertices are partitioned into k subsets of equal size.

K n has 1 2 (n 2 -n) edges (O(n 2 )). Meanwhile, k instances of K n/k have a total of k 2 ((n/k) 2 -n/k) edges. For k > 1, k 2 ((n/k) 2 -n/k) < 1 2 (n 2 -n).
The ratio between the number of edges in the partitioned graphs and in the full graph is n-k k(n-1) .

2. Use an approximation algorithm for computing maximum-weight perfect matches. Duan & Pettie (2014) provided an algorithm for finding the approximate maximum weight match in O(m 1/ log(1/ )) with an error rate of . For K n , the algorithm runs in O(n 2 ) time for a fixed error rate . A maximum weight match is not guaranteed to be a perfect match where all vertices are matched. To convert the match into a perfect match, an exact perfect matching algorithm can be run again on the vertices who have not been matched.

The benefit of this approach is that the graph can be modified to include other objectvies. Terms can be added to w(e) representing factors other than the fairness of the match, and edges may be removed from the graph. For example, if two players cannot be matched, the edge corresponding to the match may be removed, or the weight w(e) may be set to an arbitraily small negative weight.

Conclusion

We have given an algorithm for calculating the fairness of a match based on the prior distribution of ratings. We have also suggested a method for matching players based on skill ratings. Our algorithm can be applied to matches between two players, or two teams of players. It is also easy to generalize the algorithm to more complex situations, such as to other pairwise comparison models, as entropy may be calculated for any discrete or continuous probability distribution.

1. Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4), 324-345.

Typically using moment matching to minimize the Kullback-Leibler divergence between the true posterior and the normal approximation. See chapter 4 of Gelman et al. (2013) for more details.

1+10 x/400 , as a normal cumulative distribution function (CDF) at mean 0 and variance (400/ ln(10))

.

P (E i ) log b (P (E i )) (30)

with the second line due to the independence of outcomes.

We can model the problem of matching players by representing each player as a vertex of the complete graph K n = (V, E). An edge represents a match between two players. A perfect matching is a subset M ⊂ E so that every vertex in V is connected to exactly one edge in M . Each edge e ∈ M is a single match.

Since entropy is additive assuming independent random variables, the fairness F (M ) of a series of matches M = (p 1 , p 2 ), (p 3 , p 4 ), . . . , (p n-1 , p n ) is the sum of the fairness of each match,

Suppose that the weight of each edge w(e) is the fairness of a match between the players represented by the vertices incident to the edge, w(e) = F (p i , p j ) for the incident player vertices v i , v j . We can reduce the problem to finding the perfect matching that maximizes the sum of edge weights,

The traditional algorithm for finding M is the blossom algorithm of [START_REF] Edmonds | Maximum matching and a polyhedron with 0,1vertices[END_REF]. For m edges and n vertices, Edmonds' algorithm runs in O(n 2 m) time, or O(n 4 ) for the complete graph K n . [START_REF] Gabow | Data structures for weighted matching and nearest common ancestors with linking[END_REF] reduced the complexity to O(n(m + n log n)), or O(n 3 ) for K n . For large numbers of players, this may be intractable. There are two options for approximating maximum weight perfect matching, 1. Partition the player set into subsets, each with an even number of vertices. Since the number of edges in K n grows quadratically, the