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DIMERS AND CIRCLE PATTERNS

RICHARD KENYON, WAI YEUNG LAM, SANJAY RAMASSAMY, MARIANNA RUSSKIKH

Abstract. We establish a correspondence between the dimer model on a bipartite
graph and a circle pattern with the combinatorics of that graph, which holds for
graphs that are either planar or embedded on the torus. The set of positive face
weights on the graph gives a set of global coordinates on the space of circle patterns
with embedded dual. Under this correspondence, which extends the previously known
isoradial case, the urban renewal (local move for dimer models) is equivalent to the
Miquel move (local move for circle patterns). As a consequence the Miquel dynamics
on circle patterns is governed by the octahedron recurrence. As special cases of these
circle pattern embeddings, we recover harmonic embeddings for resistor networks and
s-embeddings for the Ising model.
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1. Introduction

The bipartite planar dimer model is the study of random perfect matchings (“dimer
coverings”) of a bipartite planar graph. Natural parameters for the dimer model,
defining the underlying probability measure, are face weights, which are positive real
parameters on the bounded faces of the graph [13]. The dimer model is a classical
statistical mechanical model, and can be “solved” using determinantal methods: par-
tition functions and correlation kernels are computed by determinants of associated
matrices defined from the weighted graph [17]. Several other two-dimensional statis-
tical models, including the Ising model and the spanning tree model, can be regarded
as special cases of the dimer model by subdividing the underlying graph [8, 22]. A
question raised in [13] concerns how to relate the parameters (the face weights of the
dimer model) to some geometric property of the underlying graph or embedding. In
[28, 18], a certain family of graph embeddings and associated weights, called isoradial
graphs, was shown to lead to important simplifications in the probability model (an
isoradial embedding is one where every face is cyclic with circumcircle of radius 1). We
generalize this construction here, associating to a face-weighted bipartite planar graph
a circle pattern: a realization of the graph in C with cyclic faces where all vertices on
a face lie on a circle1. This realization has the following important features:

(1) It generalizes the isoradial case.
(2) Local rearrangements of the graph, called urban renewals or spider moves or

cluster mutations, correspond to applications of the Miquel six-circles theorem
for the underlying circle pattern.

(3) Planar resistor networks can be subdivided into bipartite planar graphs with
face weights. Our construction of circle patterns is compatible with harmonic
embeddings of the network.

(4) The (ferromagnetic) Ising model on a planar graph can be associated with
dimers on a related bipartite planar graph. Our construction is compatible
with the s-embedding of the associated Ising model [6, 27].

The circle patterns arising under this correspondence are those with bipartite graph
and with an embedded dual, where the dual graph is the graph of circle centers. The set
of circle patterns with embedded dual includes all embedded circle patterns in which
each face contains the center, but may miss other embedded circle patterns; moreover
having embedded dual does not imply that the primal pattern is embedded.

Circle patterns are related, through stereographic projection, to 3-dimensional ideal
hyperbolic polyhedra. The problem of existence and uniqueness of such polyhedra with
fixed combinatorics and dihedral angles is a well-studied nonlinear problem [35, 5]. On
the space of circle patterns with fixed bipartite graph G and embedded dual we define
a set of global coordinates (the face variables of the underlying graph), for which the

1Our circle patterns are not necessarily embedded. An embedded circle pattern is a more restrictive
object, when the realization is an actual embedding of the graph.
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existence and uniqueness problem becomes essentially linear. Note that the space of
patterns with embedded dual coincides with the space of crease patterns of origami
that are locally flat-foldable [15].

Our construction extends to infinite, bi-periodic bipartite planar networks, in which
case we get periodic (and quasiperiodic) circle patterns. When G is the infinite square
grid we consider Miquel dynamics, a discrete-time dynamical system for periodic circle
patterns introduced in [34] and also studied in [12], which we show is equivalent to the
octahedron recurrence, hence belongs to the class of discrete integrable systems.

We note that the correspondence between the dimer model and circle pattern em-
beddings should include a third type of object, namely a three-dimensional inscribed
polyhedron, in a spirit similar to the Maxwell-Cremona correspondence [39] between
polyhedra and harmonic embeddings. We will not, however, pursue this connection in
this paper.

In the dimer model our natural parameters, which are face weights, are positive.
Moreover whenever a circle pattern is embedded, it leads to positive face weights.
However in some circumstances it is useful to allow general real weights as well; in
particular the Miquel dynamics is algebraic in nature and the sign of the weights does
not typically matter.

Circle center realizations are also considered in [7] under the name of t-embeddings
with an emphasis on the convergence of discrete holomorphic functions to continuous
ones in the small mesh size limit, i.e., when the circle radii tend to 0.

During the completion of this work, a preprint by Affolter [2] appeared, which shows
how to go from circle patterns to dimers and observes that the Miquel move was
governed by the central relation. Affolter notes that there is some information missing
to recover the circle pattern from the X variables. We provide here a complete picture.

Organization of the paper. In Section 3, we introduce circle pattern embeddings
associated with bipartite graphs with positive face weights in the planar case. Section 4
is devoted to circle pattern embeddings in the torus case. In Section 5 we show the
equivalence between the spider move for the bipartite dimer model and the central move
coming from Miquel’s theorem for circle patterns. In particular this gives a cluster
algebra structure underlying Miquel dynamics. Section 6 is devoted to translating into
planar geometry the generalized Temperley bijection between resistor networks and
dimer models. Finally in Section 7 we show that Chelkak’s s-embeddings for the Ising
model [6] arise as a special case of our circle pattern embeddings.

2. Background on dimers and the Kasteleyn matrix

For general background on the dimer model, see [19]. A dimer cover, or perfect
matching, of a graph is a set of edges with the property that every vertex is contained
in exactly one edge of the set. If ν : E → R>0 is a positive weight function on edges,
we associate a weight ν(m) =

∏
e∈m ν(e) to a dimer cover which is the product of its

edge weights. We can also associate to this data a probability measure µ on the set M
of dimer covers, giving a dimer cover m a probability 1

Z
ν(m), where Z =

∑
m∈M ν(m)

is a normalizing constant, called the partition function.
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Two weight functions ν1, ν2 are said to be gauge equivalent if there is a function
F : V → R such that for any edge vw, ν1(vw) = F (v)F (w)ν2(vw). Gauge equivalent
weights define the same probability measure µ. For a planar bipartite graph, two
weight functions are gauge equivalent if and only if their face weights are equal, where
the face weight of a face with vertices w1, b1, . . . , wk, bk is

(1) X =
ν(w1b1) . . . ν(wkbk)

ν(b1w2) . . . ν(bkw1)
.

If G is a planar bipartite graph which has dimer covers, a Kasteleyn matrix is a signed,
weighted adjacency matrix, with rows indexing the white vertices and columns indexing
the black vertices, with K(w, b) = 0 if w and b are not adjacent, and K(w, b) = ±ν(w, b)
otherwise, where the signs are chosen so that the product of signs is (−1)k+1 for a face
of degree 2k. Kasteleyn [16] showed that the determinant of a Kasteleyn matrix is the
weighted sum of dimer covers:

Z = | detK| =
∑
m∈M

ν(m).

Different choices of signs satisfying the Kasteleyn condition correspond to multiply-
ing K on the right and/or left by diagonal matrices with ±1 on the diagonals. Different
choices of gauge correspond to multiplying K on the right and left by diagonal ma-
trices with positive diagonal entries (see e.g. [13]). Note that in terms of any (gauge
equivalent) Kasteleyn matrix we can recover the face weights via the formula

(2) X = (−1)k+1 K(w1, b1) . . . K(wk, bk)

K(w2, b1)K(w3, b2) . . . K(w1, bk)
.

In some circumstances it is convenient to take complex signs eiθ in the Kasteleyn
matrix, rather than just ±1; in that case the required condition on the signs is that
the quantity X in (2) is positive, see [32]. This generalization will be used below.

Certain elementary transformations of G preserve the measure µ; see Figure 1.

3. Bipartite graphs and circle patterns

In this section, we establish a correspondence between bipartite graphs with positive
face weights and circle patterns with embedded dual. While the construction can be
extended to general real weights, certain aspects are nicer in the positive weight case,
in particular the embedding property of the dual graph (Theorem 2 below).

3.1. Centers of circle patterns. Centers of circle patterns with bipartite vertices in
the plane have been considered in various forms. In [33, 31], they are called conical
meshes and related to discrete minimal surfaces [26]. In terms of origami, they are the
crease patterns that are locally flat-foldable [15].

Here we recall the main property of the centers. Suppose z : V → C is an embedding
of a bipartite graph G with cyclic faces, except perhaps the outer face, which we
assume convex. Assume also that each bounded face contains its circumcenter. The
circumcenters form an embedding of the dual graph u : F → C, except for the outer
dual vertex fo. Since each dual edge connects the centers of two circles with the
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Figure 1. Elementary transformations preserving the dimer measure
µ. 1. Replacing parallel edges with weights a, b by a single edge with
weight a + b; 2. contracting a degree 2 vertex whose edge have equal
weights; the spider move, with weights transformed as indicated.

corresponding primal edge as a common chord, each dual edge is a perpendicular
bisector of the primal edge. We define the outer dual vertex to be ufo = ∞; then for
each dual edge ffo we define its embedding to be the ray from uf to∞, perpendicular to
the corresponding primal edge, and directed outward away from the rest of the graph.
Under the assumption that the graph is bipartite, note that the alternating sum of
angles around every dual vertex is zero. Moreover note that the faces of the dual
graph, including the unbounded faces, are convex: thus we have a convex embedding,
that is, an embedding with convex faces.

The converse to this construction also holds:

Proposition 1. Suppose G = (V,E, F ) is a bipartite graph and u : F → C is a convex
embedding of the dual graph (with the outer vertex at ∞). Then there exists a circle
pattern z : V → C with u as centers if and only if the sum of alternate angles around
every dual vertex is π.

Note also that we don’t require z to be an embedding, only a realization with the
property that vertices on each face lie on a circle. It seems difficult to give conditions
under which z will be an embedding, although the space of circle pattern embeddings
is an open subset of our space of realizations.

Proof. It remains to show that given such an embedding u, there is a circle pattern
with u as centers. We construct such a circle pattern z as follows. Pick a vertex i
and assign the vertex to some arbitrary point zi in the plane. We then define zj for
a neighboring vertex j in such a way that zj is the image of zi under reflection across
the line connecting the neighboring dual vertices. Because of the angle condition,
iteratively defining the z value around a face will return to the initial value. Hence the
map z is well defined and independent of the path chosen. �
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3.2. From circle patterns to face weights. Suppose we have an embedded circle
pattern z : G → C, in which each bounded face contains its circumcenter, with outer
face also cyclic, and with the combinatorics of a planar bipartite graph G. Let u : F →
C be the circle centers, with the outer dual vertex ufo at its circumcenter.

Now define a function ω(wb) = ul−ur where l, r denote the left and the right face of
the edge wb oriented from w to b (if one of ul, ur is the outer vertex we use the negative
of this, ur−ul). We think of ω as a 1-form, or flow, that is, a function on oriented edges
changing sign under change of orientation. Define a matrix K with rows indexing the
white vertices and columns indexing the black vertices by K(w, b) = ω(wb). We claim
that K is a Kasteleyn matrix (with complex signs). To see this, suppose a face f with
center u has vertices w1b1 . . . wkbk in counterclockwise order. We denote the centers of
the neighboring faces as u1, u2, . . . , u2k. Then

Kw1b1Kw2b2 . . . Kwkbk

Kw1b0Kw2b1 . . . Kwkbk−1

=
(u2 − u)(u4 − u) . . . (u2k − u)

(u− u1)(u− u3) . . . (u− u2k−1)

where b0 = bk. Hence, by the angle condition, the face weight

(3) Xf := (−1)k+1 (u2 − u)(u4 − u) . . . (u2k − u)

(u− u1)(u− u3) . . . (u− u2k−1)
= (−1)k+1 Kw1b1Kw2b2 . . . Kwkbk

Kw1b0Kw2b1 . . . Kwkbk−1

is positive and K is a Kasteleyn matrix. This associates a positive face-weighted
bipartite planar graph to a circle pattern.

3.3. Canonical gauge for finite planar graphs with outer face of degree 4. In
this section we start with a face weighted bipartite planar graph (with outer face of
degree 4 and which has dimer covers) and a convex quadrilateral P , and construct a
circle pattern with dual embedded in P . See Figure 2 for an example. Our inductive
construction will in principle work for graphs with outer face of higher degree, but
the initial step of the induction proof is more complicated and is not something we
currently can handle.

w1

w2

w3

w4

b1

b2

b3

b4

4/3 w1

w2

w3w4 b1b2

b3

b4

w1

w2

w3w4 b1b2
b3

b4

Figure 2. The “cube” graph on the left (with all face weights 1 except
the one indicated with weight 4/3) is embedded as a circle pattern with
the dual graph of circle centers having outer boundary a square; both
solutions are shown on the right.

Let G be an embedded bipartite planar graph, with outer face of degree 4 with
vertices w1, b1, w2, b2, and which has dimer covers. We also assume G is nondegenerate,
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that is, each edge occurs in at least one dimer cover, and G is well-connected : removing
one white and one black boundary vertex, or removing all boundary vertices, the
remaining graph still has dimer covers. Let X : F → R>0 be a positive real number
associated to each bounded face. Let P ⊂ R2 be a convex quadrilateral, with edges
W1, B1,W2, B2 ∈ C summing to zero.

We add one more vertex v∞ to G “at infinity” and an edge from the four outer
vertices to this vertex. Let G∗ be the dual graph of this augmented graph G ∪ {v∞}.
This G∗ has outer face of degree 4. Denote the vertices of the outer face by f11, f12,
f21 and f22, where fij is adjacent to the edge (wibj)

∗.
We construct a convex embedding in P of G∗, with the outer vertices of G∗ going to

the vertices of P , satisfying the property that the vertices of G∗ go to the circle centers
of a circle pattern with the combinatorics of G (in the sense that the angles satisfy
Proposition 1), and moreover the face variables Xf of G give the “alternating product
of edge lengths” as in (1).

Let K be a Kasteleyn matrix associated to G (without the vertex v∞) with face
weights X. Let G(w) and F (b) be functions on white and black vertices of G such that
for all internal white vertices w, we have

(4)
∑
b

G(w)KwbF (b) = 0,

and for all internal black vertices b, we have

(5)
∑
w

G(w)KwbF (b) = 0,

and for i = 1, 2 ∑
w

G(w)KwbiF (bi) = Bi(6) ∑
b

G(wi)KwibF (b) = −Wi.(7)

Functions G,F satisfying (4) and (5) are said to give a canonical gauge for G. The
existence of canonical G,F , for general boundary lengths, satisfying the boundary
conditions (6),(7) is discussed in Section 3.4 below. As shown there the equations (4)-
(7) determine G and F up to a finite number of choices: in fact typically two choices
for boundary length 4.

GivenG,F satisfying the above, define a function ω on edges by ω(wb) = G(w)KwbF (b)
(and ω(bw) = −ω(wb), so that ω is a 1-form).

The equations (4) and (5) imply that ω is co-closed (divergence free) at internal
vertices. Thus ω can be integrated to define a mapping φ from the dual graph G∗ into
C by the formula

(8) φ(f1)− φ(f2) = ω(wb)

where f1, f2 are the faces adjacent to edge wb, with f1 to the left and f2 to the right
when traversing the edge from w to b. The mapping φ is defined up to an additive
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constant; we choose the constant so that the vertices f11, f12, f22, f21 go to the vertices
of P .

Theorem 2. Suppose G has outer face of degree 4. The mapping φ defines a convex
embedding into P of G∗ sending the outer vertices to the corresponding vertices of P .
Moreover, the images of the vertices of G∗ are the centers of a circle pattern with the
combinatorics of G, including the outer face, that is, the outer face of G will also be
cyclic.

Boundary length 4 is special in the sense that if G has outer face of degree strictly
larger than 4, the outer face of the associated circle pattern will not necessarily be
cyclic.

Proof. We rely on a Theorem of D. Thurston [37]: any nondegenerate, well-connected
planar bipartite graph with four marked boundary vertices w1, b1, w2, b2 can be built
up from the 4-cycle graph with vertices w1, b1, w2, b2 using a sequence of elementary
transformations (see Figure 1); moreover the marked vertices remain in all intermediate
graphs.

Therefore to complete the proof it remains to show that, first, the result holds when G
is the simplest graph: a single 4-cycle with only the vertices w1, b1, w2, b2 in that order,
and second, if it holds for a graph then it holds for any elementary transformation
applied to that graph.

To use this argument we must extend slightly our notion of convex embedding to
include the case when G has degree 2 vertices, and when G has parallel edges, because
these necessarily occur at intermediate stages when we build up the graph G from the
4-cycle.

When G has parallel edges connecting two vertices w and b, the dual graph G∗ has
one or more degree-2 vertices there; we do not assign a location to these vertices since
the circles they correspond to are not defined; rather, we simply embed G∗ as if those
parallel edges were joined into a single edge.

When G has a degree-2 vertex v, connected to neighbors v1 and v2, then for the
associated canonical 1-form ω we necessarily have ωvv1 + ωvv2 = 0. This implies that
under φ the duals of these edges get mapped to the same edge. We call this a “near-
embedding” since faces of degree 2 in G∗ get collapsed to line segments. Note however
that for any such graph G, contracting degree-2 vertices results in a new graph with
the same mapping φ, minus those paired edges.

Consequently, among the elementary transformations of Figure 1, only the spider
move has a nontrivial effect on the embedding.

Now let H be a graph obtained from G by applying a spider move. The embedding
of H is obtained from the embedding of G by a “central move”, see (14) below. This
move gives a convex embedding by convexity of the faces: the new central vertex is
necessarily in the convex hull of its neighbors: see Lemma 3 below.

For the case G is a 4-cycle, see Lemma 3 and Figure 3.
Finally, the fact that φ maps the vertices of G∗ to centers of a circle pattern follows

from the proof of Proposition 1 and the fact that the sum of the angles of the corners
of the white/black faces around a given vertex of φ(G∗) equals π. The fact that the
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Figure 3. For the 4-cycle equation (9) defines two solutions, shown for
a particular choice of boundary.

outer face is cyclic also follows by induction: this is true for the 4-cycle, and the central
moves do not move the outer dual vertices, or change their radii. �

We now treat the base case of the induction in the above proof, namely the case of
the 4-cycle.

Lemma 3. Let Q be a convex quadrilateral with vertices 0, 1, z, w in counterclockwise
order and let X ∈ (0,∞). The equation

(9) − (1− u)(w − u)

(0− u)(z − u)
= X

has two solutions u (counted with multiplicity), both of which lie strictly inside Q.

Proof. When X = 0 the solutions to (9) are u = 1, u = w and when X = ∞ the two
solutions are u = 0, u = z. Notice that no other point on the boundary of Q can be a
solution for any X because the one of the angle sums 0u1 + zuw or 1uz + wu0 would
be larger than π. So by continuity it suffices to show that for small X > 0 there is
one solution inside Q near 1 and one solution inside Q near w. Solving (9) for u and
expanding near X = 0 gives the solutions

u = 1− z − 1

w − 1
X +O(X2)

u = w − wz − w
1− w

X +O(X2).

Note that for the first solution, arg w−1
z−1

is less than the angle at 1 of Q, so the vector

− z−1
w−1

points into Q from the point 1; thus this solution is inside Q for small X > 0.

For the second, arg z−w
1−w is less than the angle of Q at w, so the vector −w z−w

1−w points
into the interior of Q from w. �

Remark 4. The isogonal conjugate of a point U with respect to a quadrilateral ABCD
is constructed by reflecting the lines UA, UB, UC and UD about the angle bisectors
of A, B, C, and D respectively. If these four reflected lines intersect at one point,
then this point is called the isogonal conjugate of U . Not all points have an isogonal
conjugate with respect to a quadrilateral, but only those lying on a certain cubic curve
associated with the quadrilateral [4]. One can show that the two solutions to (9) are
isogonally conjugate with respect to Q. Moreover all possible pairs of isogonal conjugate
points inside Q can be achieved upon varying X > 0.
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3.4. Existence of canonical gauge. In this subsection we consider the case when
the outer face of the planar bipartite graph has an arbitrary degree. We prove the
existence of at least one canonical gauge in this setting.

Lemma 5. For boundary of degree 2k ≥ 2, a solution to (4)-(7) exists for generic

boundary values ( ~B, ~W ) satisfying
∑k

i=1 Bi +
∑k

i=1 Wi = 0.

Proof. Let K be an invertible matrix. For an n-tuple ~x = (x1, . . . , xn) let D~x be the
corresponding n × n diagonal matrix with entries Dii = xi. Let Ψ : C2n → C2n be
the map from a pair of n-tuples ~x, ~y = (x1, . . . , xn), (y1, . . . , yn) to the set of row and
column sums of D~xKD~y, that is

Ψ(~x, ~y) = (~p, ~q)

where pi =
∑

j xiKi,jyj and qj =
∑

i xiKi,jyj. It is clear that the image of Ψ is contained
in the hyperplane

Σ =

{
(p1, . . . , pn, q1, . . . , qn) ∈ C2n |

n∑
i=1

pi =
n∑
i=1

qi

}
.

Since Ψ is algebraic, it suffices to show that the Jacobian of Ψ is of maximal rank
2n− 1 at some point: this implies that the interior of Ψ(C2n) is not empty, hence due
to the Chevalley theorem [14, 1.8.4] there exists a proper algebraic subvariety Σ̃ of Σ
such that for any (~p, ~q) ∈ Σ r Σ̃ there exist (~x, ~y) such that Ψ(~x, ~y) = (~p, ~q).

We can write Ψ as a composition Ψ = Ψ2 ◦Ψ1 where

Ψ1(~x, ~y) = (~x, ~p)

and

Ψ2(~x, ~p) = (~p, ~Q)

with

Qj =
∑
l

xlKlj

∑
i

(K−1)ji
pi
xi
.

Note that the map Ψ1 is invertible since given ~p and ~x one can reconstruct ~y. So it
remains to find a point where the Jacobian of Ψ2 has maximal rank. Let p1 = 1 and
p2 = · · · = pn = 0. For this particular choice of ~p we get

Ψ2(~x, ~p) = (~p, ~Q), with Qj = (K−1)j,1
p1

x1

∑
l

xlKlj.

Note that the right-hand side of the equation is linear in x2, . . . , xn. Since the matrix
K is invertible we conclude that the Jacobian of the map that send ~x to ~Q is of rank
n − 1. Hence the Jacobian of Ψ2 is of rank 2n − 1. To finish the proof consider ~p =
(B1, B2, . . . , Bk, 0, . . . 0), ~q = (−W1,−W2, . . . ,−Wk, 0, . . . 0), and let K be a Kasteleyn
matrix of G. �

Question: How many solutions are there? This number is a function only of the graph
G, and is invariant under elementary transformations preserving the boundary.
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4. Biperiodic bipartite graphs and circle patterns

In this section we deal with the case of a bipartite graph embedded on a torus, or
equivalently a biperiodic planar graph.

4.1. Embedding of G∗. Let G be a bipartite graph embedded on a torus T , with com-
plementary regions (faces) which are disks, having dimer covers, and nondegenerate.
Let ν : E → R>0 be a set of positive edge weights. We fix two cycles l1 and l2 in the
dual graph G∗ which together generate the homology H1(T,Z), and have intersection
number l1 ∧ l2 = +1.

We define new edge weights on G by multiplying, for i = 1, 2, each original edge
weight by λi (resp. λ−1

i ) if the edge crosses li with white vertex to its left (respectively
right). Define K(λ1, λ2) to be a Kasteleyn matrix of G with the new edge weights and
define a Laurent polynomial P by P (λ1, λ2) := detK(λ1, λ2).

The spectral curve of the dimer model on G is defined to be the zero-locus of P in
(C∗)2. The amoeba of P is the image in R2 of the spectral curve under the mapping
(λ1, λ2) 7→ (log |λ1|, log |λ2|). The spectral curve is a simple Harnack curve [21]; this
has the following consequences (see [29]). Every point (λ1, λ2) of the spectral curve is
a simple zero of P (λ1, λ2) or it is a double zero which is then real (a real node). The
derivatives Pλ1 and Pλ2 vanish only at real points, and vanish simultaneously only at

real nodes; The quantity ζ :=
λ2Pλ2
λ1Pλ1

is the logarithmic slope and is real exactly on the

boundary of the amoeba. At a real node the logarithmic slope ζ has exactly two limits,
which are nonreal and conjugate.

When (λ1, λ2) is a simple zero, (λ̄1, λ̄2) is also a zero of P (λ1, λ2), and in this case
it is shown in [20] that K(λ1, λ2) has a kernel which is one-dimensional. Hence there
exists a pair of functions (F,G) unique up to scaling, with F defined on black vertices
and G defined on white vertices, with F ∈ kerK(λ1, λ2) and G ∈ kerKt(λ1, λ2). When
λ1, λ2 are not both real we call it an interior simple zero, it corresponds to a point in
the interior of the amoeba, but not at a node.

At a real node, λ1 and λ2 are both real and the kernel of K(λ1, λ2) is two-dimensional.
The kernel is spanned by the limits of the kernels for nearby simple zeros and their
conjugates. Let F,G be functions in the kernel of K(λ1, λ2) (resp. of Kt(λ1, λ2)) which
are limits of those for simple zeros for which Im ζ > 0.

Let G̃ be the lift of G to the plane (the universal cover of the torus). Let p1, p2 be
the horizontal and vertical periods of G̃ corresponding to l1, l2 respectively. We extend
F and G to G̃ by

(10) F (b+ p1,2) = λ1,2F (b), G(w + p1,2) = λ−1
1,2G(w).

We define two co-closed 1-forms

(11) ω(wb) = G(w)Kwb(λ1, λ2)F (b) and ω̂(wb) = G(w)Kwb(λ1, λ2)F (b)

and use them to define two mappings φ, φ̂ : G̃∗ → C using (8).

Remark 6. The mapping φ is periodic, in the sense that φ(v + p1,2) = φ(v) + V1,2 for
constant vectors V1, V2. Indeed,

(12) F (b+ p1)G(w + p1) = F (b)G(w)
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and similarly for p2. In the case of a real node, λ1 and λ2 are real hence (12) holds

with G replaced with Ḡ so φ̂ is also periodic.

As a consequence of Remark 6, one can project the centers down to a flat torus and
one can give an explicit formula for the aspect ratio of that torus:

Proposition 7. The periods V1 and V2 of φ are nonzero as long as Pλ1 and Pλ2 are
nonzero, and can also be chosen nonzero at a real node by an appropriate scaling. The

ratio of the periods is V2/V1 = ζ =
λ2Pλ2
λ1Pλ1

.

Proof. For a matrix M we have the identity ∂(detM)
∂Mi,j

= M∗
i,j, where Mi,j is the (i, j)-

entry of M and M∗
i,j is the corresponding cofactor. Recalling that P = detK, we

have

λ1
∂P

∂λ1

=
∑
γ1

±K(w, b)K∗(b, w)

where the sum is over edges crossing γ1 (i.e. those edges of G with a weight involving
λ±1

1 ), the sign is given by the corresponding exponent of λ1 for that edge, and K∗ is
the cofactor matrix. When (λ1, λ2) is a simple zero of P , we have K∗K = KK∗ =
(detK) Id = 0 and hence the columns of K∗ are multiples of F and the rows are
multiples of G. In particular, we can write K∗(b, w) = cF (b)G(w) for some scale factor
c. We find

λ1
∂P

∂λ1

= c
∑
γ1

±K(w, b)F (b)G(w) = cV1.

Similarly

λ2
∂P

∂λ2

= cV2

and we conclude by taking the ratio of these.
If (λ1, λ2) is a node, we can take a limit of nearby simple zeros with, say, Im(ζ) > 0,

and scaling so that V1 is of constant length; since ζ has a well-defined nonreal limit, V2

will also have a limit of finite length. �

Theorem 8. The realization φ is a periodic convex embedding of G̃∗, dual to a circle
pattern.

Proof. If (λ1, λ2) is an interior simple zero, then we show in Lemma 12 below that the
realization φ1 defined from Re(G(w))KwbF (b) is a “T-graph embedding” (see definition
there), mapping each white face to a convex polygon. (This result is stated in [23]
without proof). In particular for φ1 the sum of the angles of white polygons at vertices
of G̃∗ is π. This implies that for the realization defined by φ, the sum of angles of
the white polygons at vertices of G̃∗ is also π, since these polygons are simply scaled
copies of those for φ1. Likewise the realization φ2 defined from G(w)Kwb Re(F (b)) is
a T-graph embedding, mapping each black face to a convex polygon. It suffices to
show that the orientations of φ1 and φ2 agree. Note that the realization defined by
G(w)Kwb Re(F (b)) is also a T-graph embedding with the reverse orientation to that of

φ2. Thus the orientations of the white and black faces agree in exactly one of φ or φ̂.
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We claim that they agree in φ, not φ̂. This is a consequence of Lemma 9 below. Thus
φ is a local homeomorphism.

By Remark 6 and Proposition 7, φ is periodic with nonzero periods (at interior
simple zeros the Pλi are nonzero) and so φ is proper, and thus a global embedding (a
proper local homeomorphism is a covering map).

If (λ1, λ2) is a double zero then one can argue similarly as above; the question of
orientation is resolved by taking a limit of simple zeros, since the embeddings depend
continuously on (λ1, λ2). �

4.2. The circles. Let φ be the embedding of G∗ defined from ω in (11), and φ̂ the
realization defined from ω̂. The boundedness of the radii in the circle pattern can be
read from the map φ̂:

Lemma 9. The boundedness of the map φ̂ is equivalent to the boundedness of the radii
in any circle pattern.

Proof. Note that φ̂(G∗) is defined up to an additive constant. To get φ̂(G∗) from φ(G∗)
one can chose a root face φ(b0) and fold the plane along every edge of the embedding.
Note that two adjacent vertices of a circle pattern corresponding to b, w ∈ G are
symmetric with respect to the edge φ((wb)∗). Therefore they coincide after one folds
the plane along φ((wb)∗). Hence each circle pattern corresponds to a single point

under the mapping φ̂, and the radii in the circle pattern are distances from this point
to vertices of φ̂(G∗). To finish the proof note that the boundedness of these distances

is equivalent to the boundedness of the map φ̂. �

We now explain when φ̂ is bounded.

Lemma 10. If (λ1, λ2) is an interior simple zero, then φ̂ is bounded.

Proof. Assume first that neither of λ1, λ2 is real and fix a dual vertex u ∈ G̃∗. We have

φ̂(u+ 2p1)− φ̂(u+ p1) = λ1λ̄
−1
1 (φ̂(u+ p1)− φ̂(u)).

Since |λ1λ̄
−1
1 | = 1, the segment φ̂(u + p1)φ̂(u + 2p1) differs from φ̂(u)φ̂(u + p1) by a

rotation around the center of the circle Cu,1 through φ̂(u)φ̂(u+p1)φ̂(u+2p1) with angle

arg λ1λ̄
−1
1 6= 0. In particular this implies all the φ̂(u + kp1) for k ∈ Z lie on Cu,1. A

similar argument holds for φ̂(u+ kp2). So all the dual vertices φ̂(u+ k1p1 + k2p2) with
(k1, k2) ∈ Z2 have distance at most the sum of the diameters of these two circles from

φ̂(u) and thus lie in a compact set.

Assume now that λ1 is real and λ2 is non-real; then φ̂ is periodic in the direction of
p1 and almost periodic in the direction of p2. We claim that this is possible only if the
period in the direction of p1 is zero: on the one hand the four points φ̂(u), φ̂(u + p1),

φ̂(u+ p2) and φ̂(u+ p1 + p2) form a parallelogram (maybe degenerate) because of the

periodicity in the direction of p1, and on the other hand, the vectors φ̂(u)φ̂(u+p1) and

φ̂(u+ p2)φ̂(u+ p1 + p2) differ by multiplication by λ2λ̄
−1
2 6= 1, so these vectors must be

zero. Therefore φ̂ is also bounded in this case. �
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Lemma 11. For real nodes on the spectral curve, there is a one parameter family of
embeddings φ, up to similarity, but exactly one of them has a bounded φ̂. Moreover,
boundedness of φ̂ is equivalent to the biperiodicity of the radii in any circle pattern.

Proof. This proof is due to Dmitry Chelkak. Denote by a1, a2 the corresponding periods
of φ and by b1, b2 the periods of the map φ̂. Note that for each u, v in the unit disk
u, v ∈ D the pair of functions (F + uF̄ ,G+ vḠ) also defines, via (8), a non-degenerate
embedding φu,v: a black face of φu,v is the images of a black face b of φ under the linear

map z 7→ z + vz̄, followed by a homothety with factor F (b)+uF̄ (b)
F (b)

. Similarly the white

faces undergo the linear map z 7→ z + uz̄ followed by a homothety; these linear maps
have positive determinant when u, v ∈ D, and so preserve orientation (and convexity).

If we let a = na1 + ma2 a period of φ and b = nb1 + mb2 a period of φ̂, then the
corresponding period of φu,v is a+ ub̄+ vb+ uvā. Thus we need

(13) a+ ub̄+ vb+ uvā 6= 0 for all u, v ∈ D.

Note that a+ ub̄+ vb+ uvā = 0 when u = − bv+a
vā+b̄

. Under what conditions are there

no solutions with u, v ∈ D? The map v 7→ −(bv + a)/(āv + b̄) sends the unit circle
to itself, and maps the unit disk strictly outside the unit disk if and only if |a| ≥ |b|.
So the above condition (13) is equivalent to the condition |a| ≥ |b| for all n,m. This
condition can be further reformulated as follows: the image of D under the mapping
z 7→ (a1 + b1z)/(a2 + b2z) does not intersect the real line: otherwise, one would have
(a1 − ta2) + (b1 − tb2)z = 0 for some real t, a contradiction with |a| ≥ |b|.

Note that φ̂ is biperiodic. To find a bounded φ̂, we need to find u, v̄ ∈ D such that
the periods of φu,v are zero:

b1 + uā1 + v̄a1 + uv̄b̄1 = 0

b2 + uā2 + v̄a2 + uv̄b̄2 = 0

or equivalently,

b1 + v̄a1

ā1 + v̄b̄1

= −u =
b2 + v̄a2

ā2 + v̄b̄2

.

Both fractional-linear mappings send the unit disk to itself, since |a1,2| ≥ |b1,2|. There-
fore it is enough to show that this quadratic equation in v̄ has a root in D; the corre-
sponding u will lie in D too.

Clearly, either one of the roots is inside the unit disk and the other outside, or both
are on the unit circle. Finally, note that the latter is impossible as one would have

ā1 + v̄b̄1

ā2 + v̄b̄2

=
b1 + v̄a1

b2 + v̄a2

=
a1 + vb1

a2 + vb2

∈ R

which is contradiction with the fact that the image of D under the mapping z 7→
(a1 + b1z)/(a2 + b2z) does not intersect the real line.

The last statement follows because when φ̂ is bounded it is biperiodic. �
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4.3. T-graphs for periodic bipartite graphs. The notion of a T-graph was intro-
duced in [23]. A pairwise disjoint collection L1, L2, . . . , Ln of open line segments in R2

forms a T-graph in R2 if ∪ni=1Li is connected and contains all of its limit points except
for some set R = {r1, ..., rm}, where each ri lies on the boundary of the infinite compo-
nent of R2 r ∪ni=1Li. Elements in R are called root vertices. Starting from a T-graph
one can define a bipartite graph, whose black vertices are the open line segments Li
and whose white vertices are the (necessarily convex) faces of the T-graph. A white
vertex is adjacent to a black vertex if the corresponding face contains a portion of the
corresponding segment as its boundary. Using a T-graph one can define in a natural
geometric way (real) Kasteleyn weights on this bipartite graph: the weights are a sign
± times the lengths of the corresponding segments, where the sign depends on which
side of the black segment the white face is on; changing the choice of which side corre-
sponds to the + sign is a gauge change. Conversely, as described in [23], for a planar
bipartite graph with Kasteleyn weights one can construct a T-graph corresponding to
this bipartite graph. For infinite bi-periodic bipartite graphs one can similarly con-
struct infinite T-graphs without boundary. For any (λ1, λ2) in the liquid phase, we
consider the realization φ1 : G̃∗ → C defined from ω(w, b) = Re(G(w))K(w, b)F (b).

Lemma 12. The realization φ1 defined above is a T-graph embedding.

Proof. The proof starts along the lines of Theorem 4.6 of [23], which deals with the
finite case. The φ1-image of each black face is a line segment. For a generic direction
u, consider the inner products ψ(v) := φ1(v) · u as v runs over vertices of G̃∗; we
claim that this function ψ satisfies a maximum principle: it has no local maxima or
minima. This fact follows from the Kasteleyn matrix orientation: If a face v of G̃ has
vertices w1, b1, . . . , wk, bk in counterclockwise order, we denote the neighboring faces as
v1, v2, . . . , v2k. Then the ratios

φ1(v)− φ1(v2i−1)

φ1(v)− φ1(v2i)
=

ω(wi, bi)

−ω(wi+1, bi)
= − Re(G(wi))K(wi, bi)

Re(G(wi+1))K(wi+1, bi)

(with cyclic indices) cannot be all positive, by the Kasteleyn condition. Thus not all
black faces of G̃∗ adjacent to v have φ1-image with an endpoint at v: at least one has
v in its interior and thus there is a neighbor of v with larger value of ψ and a neighbor
with smaller value of ψ.

It follows from Remark 6 and Proposition 7 that φ1 is a locally finite realization,
in the sense that any compact set contains only finitely many points of the form φ1.
Indeed, in the real node case, 2φ1 = φ + φ̂ is periodic of nonzero period while in the
interior simple zero case, it is the sum of the periodic realization φ of nonzero period
and of the realization φ̂ which is bounded by Lemma 10.

We claim that the φ1 image of a white face w of is a convex polygon. If not, we could
find a vector u and four vertices v1, v2, v3, v4 of w in clockwise order such that both
ψ(v1), ψ(v3) are larger than either of ψ(v2), ψ(v4). By the maximum principle we can
then find four disjoint infinite paths starting from v1, v2, v3, v4 respectively on which
ψ(v) is respectively increasing, decreasing, increasing, decreasing. We linearly extend
φ1 in order to define it on the edges of G̃∗. Consider a circle C such that the disk that
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it bounds contains φ1(vi) for all 1 ≤ i ≤ 4. By the local finiteness property, this disk
contains finitely many points of the realization φ1, hence the four paths must intersect
C. Denoting by Ai the point at which the i-th path intersects C for the first time for
1 ≤ i ≤ 4, we obtain that ψ(A1), ψ(A3) are larger than either of ψ(A2), ψ(A4), which
contradicts the convexity of C and completes the proof of the claim that the φ1-image
of each white face is convex.

A similar argument applied to the black segments shows that the set of white faces
adjacent to a black segment winds exactly once around the black segment, rather than
multiple times, so φ1 is a local embedding near a black segment.

Since φ1 is also locally finite, it has to be proper hence it is a global embedding. �

4.4. Correspondence. Let G be a bipartite graph on the torus, with an equivalence
class of positive edge weights under gauge equivalence. The weights are said to define
a liquid phase if the amoeba of P has the origin in its interior [21]. In this case there is
either an interior pair of conjugate simple roots (λ1, λ2), (λ̄1, λ̄2) satisfying |λ1|, |λ2| = 1,
or a real node (λ1, λ2) = (±1,±1).

By Theorem 8 above, associated to the data of a liquid phase dimer model is a peri-
odic, orientation preserving convex embedding φ of G∗, well defined up to homothety
and translation. The converse is also true, giving us a bijection between these spaces:

Theorem 13. For toroidal graphs, the correspondence between liquid phase dimer mod-
els and periodic circle center embeddings is bijective.

Proof. Given a periodic, orientation-preserving embedding φ of G̃∗ satisfying the angle
condition (and thus a convex embedding), we define edge weights by associating to
each edge e in G̃ the complex number corresponding to the dual edge e∗ dual to e,
oriented in such a way that the white dual face lies on its left. These edge weights
define positive X variables, because the sum of black angles equals the sum of white
angles around each dual vertex.

Let K be the associated Kasteleyn matrix, with K(w, b) equal to the corresponding
complex edge weight. Then we we see that K is in a canonical gauge, since the sum of
the K(w, b) around each vertex is zero.

It remains to see that the weights are in a liquid phase. Since all face weights are
real, K is gauge equivalent to a matrix K0(λ1, λ2), which has real weights except on
the dual curves γ1, γ2 where the weights are multiplied by λ±1

1 , λ±1
2 as before. Thus

K = GK0F for some functions G,F . If at least one of λ1, λ2 is nonreal, then (λ1, λ2)
is an interior zero of P , so we are in a liquid phase. If λ1, λ2 are both real, then K0

is real; in this case K0 must have two dimensional kernel: both Re(F ) and Im(F )
are in the kernel, and Re(G) and Im(G) are in the left kernel; since the embedding is
two-dimensional either Re(F ) and Im(F ) are independent vectors or Re(G) and Im(G)
are independent vectors. Thus (λ1, λ2) is at a real node of P and again we are in a
liquid phase. �
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5. Spider move, central move and Miquel dynamics

5.1. A central relation. Given five distinct points u, u1, u2, u3, u4 ∈ C, consider the
following equation for an unknown z:

(u2 − z)(u4 − z)

(u1 − z)(u3 − z)
=

(u2 − u)(u4 − u)

(u1 − u)(u3 − u)
.(14)

This quadratic equation has two roots z = u and z = ũ where

ũ =
uu1u3 − u1u2u3 − uu2u4 + u1u2u4 − u1u3u4 + u2u3u4

uu1 − uu2 + uu3 − u1u3 − uu4 + u2u4

.(15)

We call the map u 7→ ũ a central move.
The central relation is known to be an integrable discrete equation of octahedron

type. Rewriting (15) yields

(u− u1)(u2 − ũ)(u3 − u4)

(u1 − u2)(ũ− u3)(u4 − u)
= −1

which coincides with type χ2 in the Adler-Bobenko-Suris list [1] and arises in the
classical Menelaus theorem in projective geometry [24].

The central move depends on four other points u1, u2, u3, u4. It is related to the
following circle pattern relation: Suppose we have circles C,C1, C2, C3, C4 centered at
u, u1, u2, u3, u4 with, for i = 1, 2, 3, 4, the triple of circles C,Ci, Ci+1 meeting at a point.
Then, by Miquel’s six circles theorem [30], there is another circle C̃ which, for each
i = 1, 2, 3, 4 intersects Ci, Ci+1 at the other point of intersection of Ci and Ci+1. This
circle C̃ has center ũ.

Theorem 14 (Centers of Miquel’s six circles). Suppose five circles have centers u, u1,
u2, u3, u4 as in Figure 4. Then the center ũ of the remaining circle through Ã, B̃, C̃, D̃
coincides with the point given by the central move (14).

Proof. The existence of the sixth circle follows from Miquel’s six circles theorem. It
remains to show the relation between the centers. Notice that the line connecting two
centers is always perpendicular the common chord of the two circles. The center of the
sixth circle is determined uniquely as the intersection of the perpendicular bisectors of
ÃB̃, B̃C̃, C̃D̃, D̃Ã. It suffices to show that the point ũ determined from (15) lies on
these perpendicular lines.

We show that ũ− u2 is perpendicular to Ã− B̃. On one hand, since Ã, B̃, B,A are
concyclic, their cross ratio is real. We know that u3 − u2 ⊥ B̃ − B, u − u2 ⊥ B − A,

u1−u2 ⊥ A−Ã. Thus we have ũ−u2 ⊥ Ã−B̃ if and only if (ũ−u2)(u−u2)
(u1−u2)(u3−u2)

is real. On the

other hand, since u, u1, u2, u3, u4 are circumcenters, the quantity X := − (u2−u)(u4−u)
(u1−u)(u3−u)

is

real. Considering the quadratic equation (14), the roots u, ũ satisfy

u+ ũ =
(u2 + u4) +X(u1 + u3)

1 +X
, u ũ =

u2u4 +Xu1u3

1 +X
(16)

and hence
(ũ− u2)(u− u2)

(u1 − u2)(u3 − u2)
= X/(1 +X)
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is real. This implies ũ− u2 is perpendicular to Ã− B̃.
Similarly we can show that ũ lies on the other perpendicular lines and so ũ is the

circumcenter of the sixth circle. �

u

AB

C D

D̃
C̃

B̃

u3

Ã

u1

u4

u2

Figure 4. Miquel’s six circles theorem states that given a configuration
of five circles, meeting three at a time at A,B,C,D as indicated, there
exists a sixth circle (dotted in the diagram) passing through the four
remaining intersection points. The circumcenters of the six circles satisfy
the central relation (14).

5.2. Cluster variables. Given u, u1, u2, u3, u4 ∈ C, we define X = − (u2−u)(u4−u)
(u1−u)(u3−u)

.

More generally, if we have a bipartite circle pattern with circle centers {ui}, and f is
a face of degree 2k, define

Xf = − (u2 − u)(u4 − u) . . . (u2k − u)

(u1 − u)(u3 − u) . . . (u2k−1 − u)
.

As discussed in Section 3.2 above, this associates a real variable to every face (i.e.
circle) of the circle pattern.

Theorem 15. Suppose we have a circle pattern with bipartite graph G, and f is a quad
face of G, with neighboring faces f1, f2, f3, f4. Let u, u1, u2, u3, u4 be the corresponding
circle centers, and X1, . . . , X4 be the X variables. Then under a spider move the circles
undergo a Miquel transformation, the new circle center is ũ, and the X variables are
transformed as cluster ‘Y’ variables [10], that is,

X ′ = X−1

X ′1 = X1(1 +X)

X ′2 = X2(1 +X−1)−1(17)
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X ′3 = X3(1 +X)

X ′4 = X4(1 +X−1)−1

Proof. Equation (16) implies

(ũ− ui)(u− ui) =
u2u4 +Xu1u3

1 +X
− ui

(u2 + u4) +X(u1 + u3)

1 +X
+ u2

i .

This factors for i = 1, 2, 3, 4, yielding

(ũ− ui)(u− ui)
(ui+1 − ui)(ui−1 − ui)

=

{
1/(1 +X) for odd i

1/(1 +X−1) for even i.
(18)

Now (17) is a short verification. �

5.3. Miquel dynamics. Miquel dynamics is a dynamical system on circle patterns
with the combinatorics of the square grid [34]. We color the faces (corresponding to
circles) black and white in a chessboard fashion. A black mutation is to remove all
the black circles and replace them by new circles obtained from Miquel’s theorem, and
similarly for a white mutation. More precisely, black (resp. white) mutation moves
each vertex to the other intersection point of the two white (resp. black) circles it
belongs to. Applying two mutations of the same type gives the identity map. Miquel
dynamics is the process of applying black and white mutations alternately on a circle
pattern. Our notion of the central move shows that the centers under Miquel dynamics
follow an integrable system equivalent to that of the octahedron recurrence (defined in
[11]).

Note that, while Miquel dynamics was originally defined as a dynamics on circle
patterns, it is also a well-defined dynamics on centers of circle patterns. In terms of
centers u : F (Z2)→ C, a black mutation Mb simply applies a central move to all black
centers. In terms of spider moves on (the dual graph) Z2, a black mutation can be
decomposed into two steps:

Step 1: Apply a spider move to the black faces.
Step 2: Contract all the degree-2 vertices.

The new black centers and the old white centers define a map Mb(u) : F (Z2) → C
giving the centers of the circle pattern Mb(z). Similarly one defines the white mutation
Mw. Applying black and white mutations alternately yields a sequence of square grids

{. . . ,Mb(Mw(u)),Mw(u), u,Mb(u),Mw(Mb(u)), . . . }
As in section 5.2, a weight X : F (Z2)→ R>0 is associated to the centers of the circle

pattern.

Proposition 16. Under a black mutation

Mb(Xm,n) =

{
X−1
m,n if (m,n) is a black face

Xm,n
(1+Xm,n+1)(1+Xm,n−1)

(1+X−1
m+1,n)(1+X−1

m−1,n)
if (m,n) is a white face

In particular, X > 0 if and only if Mb(X) > 0. The same holds for a white mutation.
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wb

bw
z z̃ Mb(z)

Figure 5. Starting with z : Z2 → C with black and white faces (Left),
a black mutation Mb applied a spider move to each black face (Center).
We then contract all the degree-2 vertices and obtain a new immersion
Mb(z) : Z2 → C (Right).

Proof. The formulas follow from Theorem 15. If X > 0, the equations yield Mb(X) > 0
immediately. If Mb(X) > 0, then X = Mb(Mb(X)) > 0. �

This implies that the class of circle patterns with positive face weights is preserved
under Miquel dynamics.

The class of spatially biperiodic circle patterns is also preserved by Miquel dynamics
[34] and in that case, Miquel dynamics is integrable and one can deduce a complete
set of invariants from the partition function of the underlying dimer model [13].

5.4. Fixed points of Miquel dynamics. In this subsection we study the fixed points
of Miquel dynamics. Given a circle pattern, one can construct its centers and given
the centers, one can compute the X variables. This gives three possible definitions of
“fixed point of Miquel dynamics”, in increasing order of strength: either the collection
of X variables is preserved, or the collection of centers is preserved, or the circle pattern
itself is preserved.

We first consider the case of a center being fixed by the central move. We rewrite
the central move (Eq. 15) as follows:

Lemma 17. Suppose X := − (u1−u)(u3−u)
(u2−u)(u4−u)

> 0. If u1 − u2 + u3 − u4 6= 0, we have

ũ = u+
((u1 − u)(u3 − u)− (u2 − u)(u4 − u))2 − (u1 − u2)(u2 − u3)(u3 − u4)(u4 − u1)

((u1 − u)(u3 − u)− (u2 − u)(u4 − u))(u1 − u2 + u3 − u4)

If u1 − u2 + u3 − u4 = 0, we have

ũ = u+
(u1 − u) + (u2 − u) + (u3 − u) + (u4 − u)

2
.

Recall that a tangential quadrilateral is a quadrilateral with an incircle, i.e. a circle
tangent to the extended lines of the four sides. The incircle is unique if it exists. In
this case, the center of the incircle is the intersection of bisectors of interior angles at
the four corners.
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Proposition 18. Suppose X = − (u2−u)(u4−u)
(u1−u)(u3−u)

> 0. Then the quadratic equation (14)

has a repeated root u = ũ if and only if u1u2u3u4 forms a tangential quadrilateral with
an incircle centered at u.

Proof. If u1 − u2 + u3 − u4 = 0, then setting ũ = u in Lemma 17 implies

u =
u1 + u3

2
=
u2 + u4

2
.

is the center of the parallelogram u1u2u3u4. Furthermore X being positive implies the
parallelogram is a rhombus whose incircle is centered at u.

Otherwise, we assume u1 − u2 + u3 − u4 6= 0. Lemma 17 implies the segment uui is
an angle bisector of ∠ui−1uiui+1. To see this, setting ũ = u in Lemma 17 yields

u4 = − (u− u1)(u− u2)(u− u3)

(u− u2)2 − (u3 − u2)(u1 − u2)
+ u

Substituting it into X, we have

X = −(u2 − u)(u4 − u)

(u1 − u)(u3 − u)
=

(u− u2)2

−(u− u2)2 + (u3 − u2)(u1 − u2)
.

Since X is positive, we can deduce (u3−u2)(u1−u2)
(u−u2)2

= 1
X

+ 1 is positive as well and thus

the segment uu2 is an angle bisector of ∠u1u2u3. Similarly we can deduce that u lies
on the angles bisectors of the other three corners and hence there is an incircle tangent
to u1u2u3u4 and centered at u. �

We can now characterize the centers that are preserved under the Miquel dynamics.

Theorem 19. The centers of a circle pattern are preserved under Miquel dynamics if
and only if they are also the centers of some circle pattern where diagonal circles are
tangential, i.e. the circles centered at um,n and um+1,n+1 are tangential, and the circles
centered at um,n and um−1,n+1 are tangential.

Proof. Suppose the centers u : F (Z2) → C are fixed under the central move. Then
Proposition 18 implies that um,n is at the center of the inscribed circle of the quadri-
lateral um+1,num,n+1um−1,num,n−1.

We define z : Z2 → C to be the intersection of the diagonals in each elementary
quadrilateral um,num+1,n+1 ∩um+1,num,n+1. We claim the faces of z are cyclic, centered
at the u’s. To see this it suffices to show that zr := um,num+1,n+1 ∩ um,n+1um+1,n is the
image of zl := um,num−1,n+1∩um,n+1um−1,n under the reflection across um,num,n+1. This
indeed holds because of Proposition 18 since under the reflection the ray um,num+1,n+1

from um,n through um+1,n+1 is the image of the ray um,num−1,n+1 while the ray um,n+1um+1,n

is the image of the ray um,n+1um−1,n.
Now consider the circles defined by the faces of the z’s; this is a new set of circles

centered at the u’s (not those inscribed in the quadrilaterals). We claim that the
diagonal circles are tangent to each other. To see this, consider the point z0 which is
the intersection of the diagonals um,num+1,n+1∩um+1,num,n+1. Notice that the distance
between z0 and um,n is the radius of the circle at um,n and similarly the distance
between z0 and um+1,n+1 is the radius of the circle at um+1,n+1. Since z0 lies on the line
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joining um,n and um+1,n+1, which is perpendicular to both circles, the opposite circles
are tangential. �

A particular case where opposite circles are tangential is the case of circle patterns
with constant intersection angle. For a circle pattern z : V (Z2)→ C, one can measure
the intersection angle θ : E(Z2) → [0, π) between neighboring circles. We say a circle
pattern has constant horizontal and vertical intersection angles if there exists α ∈
[0, π/2] such that

θ =

{
α along vertical edges

π − α along horizontal edges

It is an orthogonal circle pattern if α = π/2, see [36].

Corollary 20. Suppose u : Z2 → C gives the centers of a circle pattern with constant
intersection angle α and z is some other circle pattern with u as centers. Then the
orbit of every intersection point z of the circle pattern lies on a circle, and Mb ◦Mw

rotates the point around the circle by angle 2α.

Proof. For each elementary quad Q = um,num+1,num+1,n+1um,n+1, the diagonals in-
tersect at angle α. We denote z̃0 the intersection of the diagonals while z0 is the
intersection of the circles at um,num+1,num+1,n+1um,n+1. Generally, z0 6= z̃0 unless z is
the circle pattern of constant intersection angle. Applying a Miquel’s move Mw once,
z̃0 is fixed while z0 is reflected across one of the diagonals to Mw(z0). Applying a
black mutation Mb, the point is reflected across the other diagonal. In both cases, the
distance to z̃ is preserved. Hence the orbit of z0 lies on a circle centered at z̃0.

Thus z0 is reflected successively across two lines (emanating from z̃0) meeting at
angle α; two such reflections define a rotation around z̃0 of angle 2α. �

Corollary 21. A circle pattern is preserved under Miquel dynamics if and only if it
has constant horizontal and vertical intersection angles.

In the infinite planar case, the intersection angles between neighboring circles do not
determine the pattern, hence there is a large class of diagonally tangent patterns, which
form a one-parameter deformation of the class of orthogonal circle patterns studied by
[36]. In the case of spatially biperiodic patterns of prescribed periods, or equivalently,
circle patterns on a flat torus, the intersection angles do characterize the circle pattern
up to similarity [5], so that the only spatially biperiodic diagonally tangent patterns
are those corresponding to regular rectangular grids (all the columns have the same
width and all the rows have the same height). Hence in the spatially biperiodic case,
the regular rectangular grids are the only fixed points of Miquel dynamics, seen either
as a dynamics on circle patterns or on circle centers. The X variables of a given such
fixed point are the same for all the faces (equal to the squared aspect ratio of the
rectangle formed by a face).

For general, not necessarily biperiodic patterns we have the following.
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Proposition 22. Suppose a circle pattern has face weights X : F (Z2) → R>0. If the
centers are preserved under Miquel dynamics, then

(19) X2
m,n =

(1 +X−1
m+1,n)(1 +X−1

m−1,n)

(1 +Xm,n+1)(1 +Xm,n−1)
.

Proof. This follows from Proposition 16 and the fact that the labeling of the black and
white vertices switches. �

We showed that the centers of a circle pattern with constant intersection angles are
fixed by the central moves and hence their X variables satisfy Eq. (19). The converse
might not be true; it would be interesting to find all these examples.

Question: Characterize circles patterns with X variables satisfying Eq. (19).

5.5. Integrals of motion for Miquel dynamics. Miquel dynamics seen as a dynam-
ics on circle centers on an m by n square grid on the torus corresponds to the dimer
urban renewal dynamics on the same graph, which is a finite-dimensional integrable
system [13]. The integrals of motion of the dimer dynamics have an interpretation in
terms of partition functions for dimer configurations with a prescribed homology and
it would be interesting to find a geometric interpretation (in terms of circle patterns)
of all these integrals of motion.

It was shown in [34] that the sum along any zigzag loop of intersection angles of
circles is an integral of motion. This sum can actually be rewritten as the sum of
the turning angles along a dual zigzag loop, which is equal to twice the argument
of the alternating product along a primal zigzag loop of the associated complex edge
weights. Thus by Theorem 13 the conservation of the sum of angles along zigzag loops
implies the invariance under Miquel dynamics of the point on the dimer spectral curve
associated with the circle centers.

6. From planar networks to circle patterns

6.1. Harmonic embeddings of planar networks. A circular planar network is an
embedded planar graph G = (V,E, F ), with a distinguished subset B ⊂ V of vertices on
the outer face called boundary vertices, and with a conductance function c : E → R>0

on edges. Associated to this data is a Laplacian operator ∆ : CV → CV defined by

∆f(v) =
∑
w∼v

cvw(f(v)− f(w)).

An embedding f : V → C is harmonic if ∆f(v) = 0 for v ∈ V \ B. Harmonic
embedding of planar networks arise in various contexts: resistor networks, equilibrium
stress configurations, and random walks.

Let G be a circular planar network, with boundary consisting of vertices B =
{v1, . . . , vk} on the outer face. The dual G∗ is a graph which is dual to G in the
usual sense except that G∗ has k outer vertices, one between each pair of boundary
vertices of G. G∗ is also a circular planar network with boundary B∗ consisting of these
outer vertices.
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Let P be a convex k-gon with vertices z1, . . . , zk. One can find a function z : V → C
harmonic on V \B and with values zi at vi for i = 1, . . . , k. Then z defines a harmonic
embedding of G, also known as the Tutte embedding, see [38].

We can also define a harmonic embedding of the dual graph G∗ (harmonic on G∗\B∗)
as follows. If z1 and z2 are two primal vertices and z′1 (resp. z′2) denotes the dual vertex
associated with the face to the right (resp. left) of the edge z1z2 when traversed from
z1 to z2, then we set

z′2 − z′1 = icz1z2(z2 − z1).

Since the function z is harmonic, this defines a unique embedding of the dual G∗ once
one fixes the position of a single dual vertex. This embedding of the dual graph is also
harmonic with respect to the inverse conductance (one should take cz′1z′2 = c−1

z1z2
). Each

primal edge is orthogonal to its corresponding dual edge, hence the pair constituted
of the harmonic embeddings of the primal and the dual graph form a pair of so-called
reciprocal figures.

6.2. From harmonic embeddings to circle patterns. There is a map from a circu-
lar planar network G to a bipartite graph GH with face weights, known as Temperley’s
bijection [22]: To every vertex and every face of G is associated a black vertex of GH . To
every edge of G is associated a white vertex of GH . A white vertex and a black vertex
of GH are connected if the corresponding edge in G is adjacent to the corresponding
vertex or face in G. Every bounded face of GH is a quadrilateral consisting of two white
vertices and two black vertices as in the middle of Fig. 6. Note that the planar network
G has edge weights ce = `e∗/`e where `e is the distance between the primal vertices and
`e∗ the distance between the dual vertices. In [22], the induced edge weight on an edge
of GH which is a half-edge of a dual edge of G is always set to 1 while an edge of GH
which is a half-edge of a primal edge e of G has weight ce. Thus the bipartite graph
has face weights

Xf = ce1/ce2

where e1, e2 are two consecutive edges of G adjacent to face f of GH . For these weights
the partition function of the planar network on G is equal to the partition function of
the dimer model on GH up to a multiplicative constant [22].

Figure 6. From the vertices of reciprocal figures to a circle pattern.
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In this section we convert a reciprocal figure into a circle pattern in such a way that
the following diagram commutes:

Planar network G −→ Bipartite graph GH
l l

Reciprocal figure −→ Circle pattern

Theorem 23. Let f : V (G)→ C be a harmonic embedding of a planar network G in a
convex polygon P ; let g : F (G)→ C be its dual. We define a realization z : V (GH)→ C
of the bipartite graph GH such that z = f for the black vertices coming from the vertices
of G and z = g for those from the faces of G. On the white vertices, we take z as the
intersection of the line through the primal edge and the line through the dual edge under
f and g. Then z has cyclic faces and thus is a circle pattern with the combinatorics of
GH . The face weights induced on GH from the circle pattern coincide with those from
Temperley’s bijection.

Proof. Since every dual edge of G is perpendicular to its primal edge under the harmonic
embeddings, the quadrilateral faces of GH have right angles at their white vertices.
Hence every face of z is cyclic and hence we obtain a circle pattern. The circumcenter
of each cyclic face of z is the midpoint of the two black vertices. By similarity of
triangles, the edge weight induced from the distance between circumcenters has the
following form: For an edge of GH that is a half-edge of a primal edge e of G, it has
weight `e∗/2. For an edge of GH that is a half-edge of a dual edge e∗, it has weight
`e/2. Thus for every quadrilateral face φ, the face weight is

Xφ =
`e∗1
`e1

`e2
`e∗2

=
ce1
ce2

which coincides with that from Temperley’s bijection. �

6.3. Star-triangle relation. It is a well-known fact [9] that a network can be reduced
to the trivial network by performing star-triangle and triangle-star moves, as well as
two other types of moves: replacing two parallel edges (sharing the same endpoints)
with a single edge, and replacing two edges in series with a single edge (that is, deleting
a degree-2 vertex).

The star-triangle move has a simple interpretation in terms of reciprocal figures: it
corresponds exactly to Steiner’s theorem (see Figure 6.3), as was observed in [25]. The
star-triangle move corresponds to replacing a vertex which is the intersection of three
primal edges by a dual vertex which is the intersection of three dual edges; Steiner’s
theorem guarantees that these three dual edges intersect at a common point.

In [13] it was observed that a Y − ∆ transformation for planar networks can be
decomposed into a composition of four urban renewals for dimer models, upon trans-
forming the planar network into a dimer model via Temperley’s bijection. We show
that this decomposition can be seen in purely geometric terms, using the correspon-
dences between planar networks and reciprocal figures on the one hand, and between
dimer models and circle patterns on the other hand.
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Figure 7. Steiner’s theorem (see e.g. [3, 4.9.18]) states the perpendicu-
lar to (AB) going through C ′, the perpendicular to (BC) going through
A′ and the perpendicular to (AC) going through B′ are concurrent if
and only if the perpendicular to (A′B′) going through C, the perpendic-
ular to (B′C ′) going through A and the perpendicular to (A′C ′) going
through B are concurrent.

Theorem 24. The star-triangle move for reciprocal figures can be decomposed into
four Miquel moves, upon transforming the reciprocal figures into a circle pattern as
described in Theorem 23.

Proof. This decomposition is illustrated in Figure 8. We start with a triangle ABC in a
harmonic embedding, we denote by D′ the dual vertex associated with that triangle and
by A′, B′ and C ′ the three dual vertices adjacent to D′. We construct the circle pattern
associated with the reciprocal figures as described in Theorem 23, denoting by a′, b′ and
c′ the intersections of the primal edges and their associated dual edges. We respectively
denote by OA, OB and OC the centers of the circumcircles of the quadrilaterals Ac′D′b′,
Ba′D′c′ and Cb′D′a′. We also respectively denote by OAC′ , OC′B, OBA′ , OA′C OCB′ and
OB′A the circumcenters of the triangles Ac′C ′, C ′c′B, Ba′A′, A′a′C, Cb′B′ and B′b′A.
We first apply the Miquel move MOC to the quadrilateral D′a′Cb′ with circumcenter
OC . The points D′, a′, C and b′ respectively transform into c′, IA′ , c and IB′ , which
form a cyclic quadrilateral with circumcenter denoted by O. Then we apply the Miquel
move MOA to the quadrilateral Ac′IB′b

′ with circumcenter OA. The points A, c′, IB′
and b′ respectively transform into a, IA, c and B′, which form a cyclic quadrilateral with
circumcenter denoted by OB′ . Next we apply the Miquel move MOB to the quadrilateral
Ba′IA′c

′ with circumcenter OB. The points B, a′, IA′ and c′ respectively transform into
b, A′, c and IB, which form a cyclic quadrilateral with circumcenter denoted by OA′ .
Finally we apply the Miquel move MO to the quadrilateral IAc

′IBc with circumcenter
O. The points IA, c′, IB and c respectively transform into a, C ′, b and D, which form
a cyclic quadrilateral with circumcenter denoted by OC′ .
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MOC

MOA
MOB

MO

star-triangle move

Figure 8. Decomposition of a star-triangle move for reciprocal figures
into four Miquel moves.

We now show that this point D created by a composition of four Miquel moves
coincides with the point D̃ created by the star-triangle move applied to the reciprocal
figures. First, as observed in the proof of Theorem 23, in a circle pattern coming from
reciprocal figures, the center of each circle is the midpoint of the segment formed by
the two black vertices. Since OAC′ is the circumcenter of the triangle AC ′a and is the
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midpoint of [AC ′], this implies that the perpendicular to (B′C ′) going through A is the
line (Aa). Similarly, (Bb) is the perpendicular to (A′C ′) going through B and (Cc) is
the perpendicular to (A′B′) going through C. Hence the point D̃ created by the star-
triangle move is the intersection point of the three lines (Aa), (Bb) and (Cc). Because
of the orthogonality property at a, b and c, the point D̃ lies on the circumcircles of the
three triangles aC ′b, bA′c and cB′a so D̃ = D. �

7. From Ising s-embeddings to circle patterns

We consider the Ising model on a planar graph G with edge weights xe, related
to the coupling constants Je > 0 by xe = tanh(βcJe), where βc is the inverse critical
temperature. Chelkak introduced in [6] an s-embedding of G, which is an embedding s
defined on each vertex, dual vertex and edge midpoint of G with the following property:
For any edge e in G, if v•0 and v•1 (resp. v◦0 and v◦1) denote the endpoints of e (resp. of
the edge dual to e) and ve denotes the midpoint of e as on Figure 9, then s(v•0), s(v◦0),
s(v•1) and s(v◦1) form a tangential quadrilateral with incenter s(ve), meaning that there
exists a circle centered at s(ve) and tangential to the four sides of the quadrilateral.

�♦�

�

�

� �

�

�

v•1
v•0

v◦1

v◦0

ve

b

w1

w2

w3

�

�

�

�

�

Figure 9. Ising graph G (black lozenges); dual graph G∗ (gray lozenges);
dimer graph GD (black and white vertices).

On the other hand, Dubedat [8] gave a natural map from the Ising model on G to a
bipartite dimer model GD, as in Figure 9: Each edge in G is replaced by a quadrilateral
in GD and each vertex or face of degree d in G is replaced by a face of degree 2d in GD.
Every face of GD corresponds to a vertex, an edge or a face of G. For every edge e of
G, define θe ∈ (0, π) by

xe = tan
θe
2
.

Then we define the edge weights on GD by the following formulas (adopting the notation
of Figure 9):

ω(bw1) = 1, ω(bw2) = cos θe, ω(bw3) = sin θe.
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For these weights the partition function of the Ising model on G is equal (up to a
multiplicative constant) to the partition function of the dimer model on GD, see [8].

The goal of this section is to show that the following diagram commutes:

Ising model on G −→ Bipartite graph GD
l l

s-embedding −→ Circle pattern

In particular, the s-embedding of the vertices, dual vertices and edge midpoints of G
coincides circle centers associated with the bipartite graph GD. Note that combinato-
rially this is consistent since each face of GD corresponds to either a vertex, a face or
an edge of G.

Theorem 25. An s-embedding of G provides an embedding of G∗D into C sending each
vertex of G∗D to the centers of a circle pattern associated with GD.

Proof. It suffices to prove that, for each face of the bipartite graph GD, the alternating
product of the edge weights ω induced by s satisfies (3), where X is the face weight of
GD.

First, we check the conditions on the faces of GD that correspond to vertices or
faces of G. By symmetry, it suffices to consider just a face of G. Let v∗ be a vertex
of the dual graph of GD which corresponds to a face of G of degree d and denote by
ve1 , v1, ve2 , v2, . . . , ved , vd the neighbors of v∗ in G∗D in counterclockwise order, where the
vertices of type vei correspond to an edge in G while the vertices of type vi correspond
to a vertex in G. The weight of an edge in GD dual to an edge of type v∗vei (resp. v∗vi)
is of the form sin θi (resp. is equal to 1). Hence we need to show the following two
formulas:

arg

∏d
i=1 s(vei)− s(v∗)∏d
i=1 s(vi)− s(v∗)

= π and

∏d
i=1 |s(vei)− s(v∗)|∏d
i=1 |s(vi)− s(v∗)|

=
d∏
i=1

sin θi.

By splitting each formula into d equations centered around the edges of type v∗vei ,
it suffices to prove the following two formulas, where we are using the notation of
Figure 9:

arg
s(ve)− s(v◦0)

s(v•0)− s(v◦0)
= arg

s(v•1)− s(v◦0)

s(ve)− s(v◦0)
,(20)

sin2 θe =
|s(ve)− s(v◦0)|2

|s(v•1)− s(v◦0)| · |s(v•0)− s(v◦0)|
.(21)

Formula (20) follows from the fact that s(ve) is the center of the incircle of the
quadrilateral with vertices s(v•0), s(v◦0), s(v•1) and s(v◦1). For the other formula, we
start from formula (6.3) in [6] which implies that

tan2 θe =
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|
|s(v•0)− s(ve)| · |s(v•1)− s(ve)|

,

hence

(22)
1

sin2 θe
=
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|+ |s(v•0)− s(ve)| · |s(v•1)− s(ve)|

|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|
.
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Furthermore, we have the following formula:

(23) |s(v•1)− s(v◦0)| · |s(v•0)− s(v◦0)| =
|s(v◦0)− s(ve)|
|s(v◦1)− s(ve)|

(|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|+ |s(v•0)− s(ve)| · |s(v•1)− s(ve)|) ,

since s(v•0), s(v◦0), s(v•1) and s(v◦1) form a tangential quadrilateral of incenter s(ve).
Next, we check these conditions for faces of GD corresponding to edges of G. We

need to show the following two formulas:

arg
(s(v•0)− s(ve))(s(v•1)− s(ve))
(s(v◦0)− s(ve))(s(v◦1)− s(ve))

= π,(24)

cos2 θe
sin2 θe

=
|s(v•0)− s(ve)| · |s(v•1)− s(ve)|
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|

.(25)

Formula (24) follows from subdividing the quadrilateral with vertices s(v•0), s(v◦0),
s(v•1) and s(v◦1) into four triangles sharing the common vertex s(ve), taking the alter-
nating sum of four formulas of the type of (20). Formula (25) follows immediately from
formula (6.3) in [6]. �
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