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Joint Independent Subspace Analysis:
Uniqueness and Identifiability

Dana Lahat and Christian Jutten, Fellow, IEEE

Abstract—This paper deals with the identifiability of joint in-
dependent subspace analysis (JISA). JISA is a recently-proposed
framework that subsumes independent vector analysis (IVA) and
independent subspace analysis (ISA). Each underlying mixture
can be regarded as a dataset; therefore, JISA can be used for data
fusion. In this paper, we assume that each dataset is an overdeter-
mined mixture of several multivariate Gaussian processes, each
of which has independent and identically distributed samples.
This setup is not identifiable when each mixture is considered
individually. Given these assumptions, JISA can be restated as
coupled block diagonalization (CBD) of its correlation matrices.
Hence, JISA identifiability is tantamount to CBD uniqueness.
In this work, we provide necessary and sufficient conditions for
uniqueness and identifiability of JISA and CBD. Our analysis
is based on characterizing all the cases in which the Fisher
information matrix is singular. We prove that non-identifiability
may occur only due to pairs of underlying random processes
with the same dimension. Our results provide further evidence
that irreducibility has a central role in the uniqueness analysis of
block-based decompositions. Our contribution extends previous
results on the uniqueness and identifiability of ISA, IVA, coupled
matrix and tensor decompositions. We provide examples to
illustrate our results.

Index Terms—Blind source separation, independent vector
analysis, block decompositions, uniqueness, identifiability, cou-
pled decompositions, data fusion.

I. INTRODUCTION

THIS theoretical paper deals with the identifiability of joint
independent subspace analysis (JISA) [1]–[3]. JISA is a

recently-proposed model that extends independent subspace
analysis (ISA) [4], [5] by considering several different ISA
problems that are linked by statistical dependencies among the
latent multivariate random processes. Another way of looking
at JISA is as an extension of independent vector analysis
(IVA) [6] to mixtures of multivariate, instead of univariate, ran-
dom variables. Both ISA and IVA are themselves extensions
of independent component analysis (ICA) [7], a simple yet
powerful concept that has given rise to the very vast domain
of blind source separation (BSS) [8], [9]. As such, JISA is
a rich framework that subsumes the versatility of the models
that it is inspired from.

JISA is a very general framework that is able to exploit any
of the types of diversity that are traditionally used in single-
mixture BSS, such as complex-valued data, higher-order statis-
tics (HOS), sample non-stationarity, and dependence among
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samples, to name a few [1], [3], [10]. Due to the presence
of multiple mixtures (which may be interpreted as multiple
datasets), and the links among them, the algebraic structures
associated with JISA are more elaborate than the ones associ-
ated with single-mixture BSS; see, e.g., [1, Section VI], [10],
for concrete examples. Algorithms for JISA under various
model assumptions are described, e.g., in [1]–[3], [10], [11].
Often, each type of diversity embedded in the model further
enhances identifiability (e.g., [12]).

In this paper, however, we choose to focus on a JISA
model that does not take into account any of these traditional
types of diversity. In this model, each of the underlying
multivariate random processes, in each mixture, is Gaussian
with independent and identically distributed (i.i.d.) samples.
From a theoretical point of view, this setup is of particular
interest because each underlying ISA problem is not identi-
fiable individually. In this case, its identifiability, if exists, is
due to the link among mixtures. Therefore, this JISA setup
allows us to isolate the added value of the link between
datasets [12], [13]. Understanding the transition point between
non-identifiability and identifiability can provide us with better
understanding of coupled decompositions and data fusion. The
results that we present in this paper add to the increasing
amount of theoretical evidence (e.g., [10], [14]–[16]) that
the special type of diversity associated with data fusion is
sufficient to obtain identifiability of models that are otherwise
not identifiable. From a practical point of view, assuming
Gaussian i.i.d. variables means that second-order statistics
(SOS) are sufficient, and that no temporal properties between
samples, or non-Gaussianity, are required, or used.

Previous work on this JISA model has dealt with algo-
rithms (e.g., [2], [11]) and small error analysis, including the
derivation of Cramér-Rao lower bound (CRLB) and Fisher
information matrix (FIM) [1]. This paper deals with its
uniqueness and identifiability. In previous work, we obtained
supporting evidence that this JISA model can be identifiable.
First, we have shown in [1] that the data (observations)
always provide a sufficient number of constraints with respect
to (w.r.t.) the number of unknowns in the model, as soon
as the following additional simplifying assumptions hold:
(i) all mixing matrices have full column rank, and (ii) the
dimensions of the corresponding latent multivariate random
processes are identical in all datasets; within each mixture,
the different multivariate random processes may have different
dimensions. We shall formulate these assumptions mathemat-
ically in Section II. Second, in [1], [11], given these model
assumptions, we derived a closed-form expression for the FIM,
and demonstrated its invertibility numerically, for randomly
generated data.
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In this paper, however, we derive the identifiability of this
JISA model rigorously, by characterizing all the cases in
which this model is not identifiable, and showing that non-
identifiability occurs only in very particular cases. Previous
theoretical results on the identifiability of SOS-based IVA
in [14], [17], [18], and SOS-based nonstationary ISA [19]
thus become special cases of the new results in this paper.
Assumption (i) implies that the identifiability of this model
depends only on the SOS of the latent random processes
and not on the mixing matrices. In [1], this assumption
allowed us to write the CRLB and FIM using closed form
and analytically tractable expressions. It is worth mentioning
that this JISA model may be identifiable even if assumption (i)
is not satisfied, in certain cases, as indicated by related results
in [16], [20]. As for assumption (ii), it is important to note
that although, in many cases, the same conclusions apply also
when assumption (ii) is relaxed, this is not always the case,
as demonstrated in [21].

JISA is a statistically motivated model. However, it can
also be considered from an algebraic point of view, as we
now explain. As shown in [1], [11], the JISA model that
we have just described can be reformulated as an (approxi-
mate) coupled block diagonalization (CBD) of the (sample)
covariance matrices of the observations, if they exist and have
finite values. These covariance matrices are sufficient statistics
for full model identifiability. Therefore, in this case, JISA
identifiability amounts to CBD uniqueness. CBD is formulated
mathematically in Section II. The fact that our model is
tantamount to a reduction of an ensemble of matrices to
a block-diagonal form implies that we have to characterize
mathematically the fact that these diagonal blocks cannot be
further factorized into smaller ones. In this paper, we show
that this property, called irreducibility, plays a central part in
the identifiability of our model.

Our identifiability analysis is based on characterizing all
the cases in which the FIM is singular [22]. As mentioned
earlier, this FIM was derived in closed-form in [1]. As we
show in Appendix B, our analysis boils down to characterizing
the set of non-trivial solutions to a system of coupled matrix
equations, given rank and irreducibility constraints on its
coefficients. This problem does not exist in the literature, and
thus addressing it is another contribution arising from this
work. In Appendix A, we provide new identities on partitioned
matrices. These identities resulted from our analysis of the
FIM, whose structure involves Khatri-Rao products of block
partitioned matrices. The derivation of the solutions to this
constrained system of matrix equations is explained in detail
in [23], [24]. In this paper, we only cite the relevant results.

A similar FIM-based approach was used in [19], in the
identifiability analysis of ISA of piecewise-stationary overde-
termined Gaussian multivariate processes. Similarly to JISA
and CBD, this ISA model can be represented algebraically,
through joint block diagonalization (JBD) of its correlation
matrices [25]. Therefore, ISA identifiability can be recast in
algebraic terms of JBD uniqueness. JBD differs from CBD
in the number of transformations that block-diagonalize the
observations: one in JBD, several in CBD. In Section VIII-A,
we show that these models are not only similar but in fact, in

certain respects, ISA and JBD can be regarded as special cases
of JISA and CBD. The uniqueness and identifiability results
for these ISA and JBD models, in [19], [26], [27], are based
on Schur’s lemma on irreducible representations [28], whose
link with JBD was first pointed out in [29]. Schur’s lemma
deals with a single transformation applied to an ensemble
of matrices, and is thus not applicable to CBD. In this
paper, we extend the concept of irreducibility to multiple
transformations, and show that it is equally crucial in analysing
JISA and CBD uniqueness and identifiability. In Section VIII,
we discuss some of the links between the results in [19], [26],
[27] and those in this paper, and explain how the results in this
paper can be regarded as a generalization of the former. CBD
and JBD will be described more rigorously in the upcoming
sections of this paper.

Our discussion of JISA is motivated by its ability to pro-
vide a flexible framework for coupled processing of multiple
datasets, e.g.: (i) recordings of one scene by different devices,
(ii) recordings of similar scenes (or subjects) with the same
device, (iii) recordings of one scene (or subject) with one
device at different time windows. In a data fusion context, each
underlying ISA mixture represents a dataset. The statistical
links among mixtures amount to links among datasets. In
the literature, and in particular in the context of data fusion,
this type of links among datasets is sometimes referred to as
“soft”. Soft links allow each dataset in the ensemble to remain
in its most explanatory form, with its own parameters, and
thus allow a high degree of flexibility in fusing heterogeneous
datasets. This is the case in JISA, where each dataset has its
own mixing matrix and statistical model for the signals. The
other option is “hard” links, where datasets deterministically
share some of their factors. We refer the reader to [13] for
further discussion of this matter.

The raison d’être of the ISA aspect of JISA is that in various
real-world applications, the assumption of classical BSS, that
each signal can be modeled by a single random variable, is
too restrictive. Although univariate methods are sometimes
used to achieve ISA, it has been shown that true multivariate
methods enhance accuracy and interpretability of the output
(e.g., [30]). In addition, algorithms based on this idea avoid
futile attempts to further factorize irreducible subspaces, and
thus improve computational efficiency [4, Section 8] [11].
These ideas extend naturally to JISA. JISA is the first ICA-
type framework to be able to exploit multidimensional block
structures in an ensemble of linked datasets.

The data fusion capacities of JISA are inherited from
IVA. The original motivation for IVA was dealing with
the arbitrary permutation of the estimated spectral coeffi-
cients in frequency domain BSS of convolutive mixtures
of acoustic sources [6]. This property extends naturally to
JISA. Recently, IVA has shown useful for a broad range
of applications. For example, as a framework for flexible
modeling of the signal subspace that is common to multi-
ple subjects, as opposed to earlier state-of-the-art ICA-based
methods that are more rigid [31]. Kim et al. [31] emphasize
the importance of preserving subject variability in multi-
subject functional magnetic resonance imaging (fMRI) anal-
yses, for various personalized prediction tasks, for example.
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An ISA-based approach has already been found useful in
various applications, including electrocardiography (ECG) [5],
[32], fMRI [33], electroencephalography (EEG) [34], astro-
physics [35], [36], and separation of mixed audio sources [37].
These references also propose different strategies for deter-
mining the most useful size of the subspaces. Based on these
properties, Silva et al. [3] suggest that the flexibility of JISA
in considering multiple datasets with heterogeneous structures
has great potential for multimodal neuroimaging–genetics data
analysis, e.g., for combining information in fMRI spatial maps
with genetic single nucleotide polymorphism (SNP) arrays.

Biomedical, astrophysical, and audio data, which we have
just mentioned within the context of ISA, are often studied
within a data fusion framework [13]. It is thus natural to sug-
gest JISA as a framework that can capture both their multiset
and within-dataset structures. The JISA model that we consider
in this paper is applicable to any data that admit a JISA
model (possibly with more types of diversity), and whose SOS
satisfy our model assumptions, as well as the identifiability
conditions that we derive in this paper. Naturally, for any real-
life data, these requirements will, at best, be satisfied only
approximately. For example, a potential application of JISA
is the analysis of ECG data, whose multidimensional nature
was demonstrated in [32], for fetal monitoring. Li et al. [38]
showed that this task can be achieved by IVA, in a suboptimal
“mismodeling” approach [30]. Given the ongoing interest in
non-invasive methods for fetal monitoring, in multi-subject
and multimodal setups (see, e.g., [39] and references therein),
JISA is a potentially useful candidate to address some of
these challenges. Our preliminary experimental results on
the ECG data of [32], using an approach similar to that
in [38], indicate that the fetal electrocardiogram (FECG) can
be extracted to a reasonable extent even by the simplest JISA
model that we consider in this paper, using the algorithm
in [11]. Due to lack of space, we omit the details. Despite the
theoretically attractive advantages of data fusion and coupled
decompositions, when handling real-world data, there are
many more considerations to take into account, as discussed,
e.g., in [13], [40], [41]. Therefore, it is of utmost importance to
first understand the theoretical limitations of the basic model
before encumbering it with additional complicating factors.

This work is the first to deal theoretically with the identifia-
bility of JISA and the uniqueness of the CBD associated with
it. Until now, uniqueness results for coupled decompositions
addressed only models in which the link between datasets was
through a one-dimensional or a rank-1 elements; e.g., coupled
block term decomposition (BTD) [15] and IVA [14], [16]–
[18]). In this paper, however, the link among datasets is via
multivariate statistics and terms of rank larger than one.

The results in this manuscript have previously been pre-
sented orally in [42]–[44] and in a technical report [24],
however, they have never been published.

A. Notations

The following notations will be used throughout this paper.
Symbols ·>, ·−>, ·H denote transpose, inverse transpose, and
conjugate transpose (Hermitian), respectively. E{·} denotes

expectation. IM and 0M×N denote an identity and an all-zero
matrices, respectively. 1K denotes an all-ones vector of length
K. Scalars, vectors, matrices, and sets, are denoted by a, a,
A, and A, respectively. All vectors are column vectors, unless
stated otherwise. Ai is the ith column block of a column-
wise partitioned block matrix A. Aij is the (i, j)th block of
a partitioned block matrix A. Vector ai denotes the ith sub-
vector of a partitioned vector a, or the ith column of matrix A.
ai and aij denote the ith and (i, j)th scalar elements of a and
A, respectively. A[k] and a[k] denote a matrix A or a vector
a indexed by k. Notations A[k]>, A−[k] and A−[k]> should
be read as (A[k])>, (A[k])−1 and (A[k])−>, respectively.
M[k∈D] stands for “M[k] for all k ∈ D”. For double-indexed

matrices, M[1:K,1:L] ,

[
M[1,1] ··· M[1,L]...

...
M[K,1] ··· M[K,L]

]
. A direct sum of

K matrices is denoted by ⊕Kk=1N
[k] = N[1] ⊕ · · · ⊕N[K] =[

N[1] 0. . .
0 N[K]

]
. span(A) denotes the column space of A.

vec(X) stacks the entries of X in one vector, column-wise.
We use the following operations on partitioned matrices:

Product name Notation
Kronecker ⊗
Hadamard ∗
Khatri-Rao column-wise �
Khatri-Rao block-column-wise �

Khatri-Rao for partitioned matrices �

where A⊗B ,

[
a11B a12B ···
a21B a22B ···...

...
. . .

]
, A∗B ,

[
a11b11 a12b12 ···
a21b21 a22b22 ···...

...
. . .

]
,

A � B ,
[
a1 ⊗ b1 a2 ⊗ b2 · · ·

]
, A � B ,[

A1 ⊗B1 A2 ⊗B2 · · ·
]
. Let Aij and Bij denote the

(i, j)th mi × nj and pi × qj blocks of partitioned matrices A
and B, respectively. The Khatri-Rao product for partitioned

matrices [45] is defined as A�B ,

[
A11⊗B11 A12⊗B12 ···
A21⊗B21 A22⊗B22 ···...

...
. . .

]
,

where Aij⊗Bij and A�B are mipi×njqj and (
∑
mipi)×

(
∑
njqj), respectively.

B. Outline

In Section II, we present the JISA framework. We then focus
on a special case that is based on SOS, and its algebraic
restatement as CBD. We show how identifiability of the
former is related to uniqueness of the latter. In Section III,
we introduce reducibility and irreducibility, key concepts in
our analysis. In Section IV, we review previous related iden-
tifiability results. After presenting the required background
material, we turn to our main result. Section V presents our
main result, a theorem on the identifiability of SOS-based
JISA, and accordingly, on the uniqueness of CBD, under
certain constraints. In Section VI, we discuss the meaning of
this theorem. In Section VII, we illustrate and explain our
main results through theoretical examples. In Section VIII,
we discuss our results in a broader context, including their
relation to ISA, JBD, and tensor decompositions. Section IX
concludes our work.
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II. PROBLEM FORMULATION

A. Joint Independent Subspace Analysis (JISA)

Consider an ensemble of K ≥ 2 datasets, modeled as

x[k] = A[k]s[k] , k = 1, . . . ,K , (1)

where vector s[k] is an instance of a multivariate random
(stochastic) process, and the matrices A[k] are deterministic
and different from each other. Consequently, x[k], which is a
vector of length I [k] ≥ 2 ∀k, is an instance of a multivariate
(I [k]-variate) random process. In the context of BSS, s[k]

represents signals (sometimes referred to as “sources”), x[k]

represents observations or measurements at I [k] sensors, and
A[k] is a “mixing matrix” representing channel effects between
signals and sensors. Therefore, each dataset in (1) is sometimes
referred to as a “mixture” of the latent, unobserved, signals.

Each dataset in (1) can always be reformulated as a sum of
R ≥ 2 terms [5]

x[k] =
R∑
i=1

A
[k]
i s

[k]
i =

R∑
i=1

x
[k]
i (2)

where the ith vector x
[k]
i , of length I [k], is modeled as

x
[k]
i = A

[k]
i s

[k]
i . (3)

In this model, A[k] = [A
[k]
1 | · · · |A

[k]
R ] is partitioned column-

wise into R blocks A
[k]
i of size I [k] ×m[k]

i , where m[k]
i ≥ 1

∀i, k, and 1 ≤ dim(span(A
[k]
i )) ≤ m[k]

i . Accordingly, s
[k]
i , of

length m
[k]
i , is the ith segment of s[k] = [s

[k]>
1 , . . . , s

[k]>
R ]>.

This model is more general than classical BSS, in which K =

1, m[k]
i = 1 ∀k, and dim(span(A

[k]
i )) = 1 ∀i, k. The K

vectors x[k] can be concatenated in a single vector,

x =

x[1]
...

x[K]

 =

R∑
i=1

A
[1]
i 0 0

0
. . . 0

0 0 A
[K]
i


 s

[1]
i...

s
[K]
i


=

R∑
i=1

(IK � Ai)si =

R∑
i=1

xi , (4)

where xi = [x
[1]>
i , . . . ,x

[K]>
i ]> is of the same length as

x; si = [s
[1]>
i , . . . , s

[K]>
i ]>, and Ai = [A

[1]
i | · · · |A

[K]
i ].

Table I summarizes these notations. This model, which is quite
general, will be simplified in Section II-D. The last column
of Table I refers to the simplified model. For now, we focus
on the first two columns of Table I. The JISA model that we
consider in this paper satisfies the following assumptions:
(A1) For a specific i, some or all of the entries of si may be

statistically dependent. In particular, entries of s
[k]
i and

s
[l]
i may be dependent, for k 6= l. The dependence and

independence relations among the elements of si may
be different from those within sj , for i 6= j.

(A2) s1, . . . , sR are statistically independent, with R maxi-
mal.

Figure 1 illustrates the model that we have just described.
The JISA framework subsumes several well-known models

in the literature. When K = 1, this model amounts to
ISA [4], [5], [32]. The special case of ISA with m

[k]
i = 1

Quantity General Simplified

m[k] = [m
[k]
1 , . . . ,m

[k]
R ]> X

mi = [m
[1]
i , . . . ,m

[K]
i ]> X

M =
∑R

i=1mi X

Size

s
[k]
i m

[k]
i mi

s[k] = [s
[k]>
1 , . . . , s

[k]>
R ]>

∑R
i=1m

[k]
i = m[k]>1R M

si = [s
[1]>
i , . . . , s

[K]>
i ]>

∑K
k=1m

[k]
i = m>i 1K KM

x[k], x[k]
i I[k] M

xi = [x
[1]>
i , . . . ,x

[K]>
i ]>

∑K
k=1 I

[k] KM

A
[k]
i I[k] ×m[k]

i M ×mi

A[k] = [A
[k]
1 | · · · |A

[k]
R ] I[k] ×m[k]>1R M ×M

TABLE I
GLOSSARY OF PRINCIPAL JISA NOTATIONS. THE SECOND COLUMN

REFERS TO THE GENERAL MODEL IN SECTION II-A. THE THIRD COLUMN
REFERS TO THE SIMPLIFIED MODEL IN SECTION II-D.

x[1]

= A[1]

s[1]

=

A
[1]
1 s

[1]
1

+ · · ·+

A
[1]
R s

[1]
R

I [1]
m

[1]
R

m
[1]
1

...
...

I [K]

x[K]

= A[K]

s[K]

=

A
[K]
1 s

[K]
1

+ · · ·+

A
[K]
R s

[K]
R

m
[K]
R

possibly
dependent

possibly
dependent

statistically independent

Fig. 1. Illustration of a JISA model with K mixtures and R terms (summands)
in each mixture. Random vectors s

[k]
i may have different length, denoted by

m
[k]
i ≥ 1. Accordingly, A[k]

i may have different width. Entries of random
vectors s[k]i with the same subscript i are allowed to be statistically dependent
(but do not have to). Random vectors with different subscripts are always
statistically independent.

∀i is commonly known as ICA [7]. When m
[k]
i = 1 ∀i and

K ≥ 2, this model amounts to IVA [6]. Therefore, JISA can
be regarded as a model that consists of several ISA problems,
linked by statistical dependencies among the latent signals.

Assumption (A1) enables the link among datasets by al-
lowing statistical dependence among signals that belong to
different datasets. Assumption (A1) enables the multivari-
ate nature of the signals within each dataset by allowing
statistical dependence among the m

[k]
i ≥ 1 entries of s

[k]
i .

Assumption (A2) implies that s
[k]
i , the ith signal in dataset

k, is always statistically independent of s
[l]
j , the jth signal in

dataset l, for i 6= j and any (k, l). Together with (4), assump-
tion (A2) implies that x1, . . . ,xR are statistically independent
as well. Therefore, the requirement for maximal R in assump-
tion (A2) implies that JISA can separate x into a sum of at
most R statistically independent random vectors x1, . . . ,xR.
Whereas assumption (A1) allows each m[k]

i to be larger than
one, assumption (A2) has the opposite effect, of making sure
that each m[k]

i has the smallest possible value within the JISA
framework.

We emphasize that the values of m
[k]
i , R, and the re-
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spective partition of A[k] and s[k] that we use in this paper
for our JISA analysis, are w.r.t. the statistical properties of
the overall JISA model, and not w.r.t. each underlying ISA
mixture individually. The simplest example is a mixture of
Gaussian multivariate i.i.d. signals, whose covariance matrix
can always be diagonalized, which implies that effectively, all
signals are one-dimensional. However, as soon as we consider
three or more such mixtures in a single JISA framework, it
is possible to define signals of dimensions larger than one
within each mixture. A large part of this paper is dedicated
to the mathematical formulation and understanding of this
phenomenon. This also means that in general, the JISA model
cannot provide a finer separation of the observations beyond
these R statistically independent terms.

It is clear from (3) that one cannot distinguish between
the pairs (A

[k]
i , s

[k]
i ) and (A

[k]
i Z

−[k]
ii ,Z

[k]
ii s

[k]
i ), where Z

[k]
ii

is an arbitrary nonsingular m[k]
i × m

[k]
i matrix. This means

that only x
[k]
i and span(A

[k]
i ), which do not suffer from this

inherent unavoidable ambiguity, may be uniquely identified
using the JISA framework (unless additional assumptions are
imposed, which is not the case in this paper). Therefore,
within each mixture, the inherent ambiguities of JISA are the
same as those of an ISA problem that has the same partition
into R statistically independent elements. For a clearer view
of how these inherent ambiguities are manifested in the
joint framework, let us look at (4). It follows from (4) that
the pair (IK � Ai , si) is indistinguishable from

(
(IK �

Ai)(⊕Kk=1Z
−[k]
ii ) , (⊕Kk=1Z

[k]
ii )si

)
, because the product of the

terms in each pair is xi. Therefore, only xi and the subspace
associated with the ith signal, span(IK � Ai), which do
not suffer from this inherent unavoidable ambiguity, may be
uniquely identified using the JISA framework. Hence, JISA
can be regarded as a (joint) subspace estimation problem.

We thus define the problem associated with JISA as follows:
given x, and given {m[k]

i }
R , K
i=1,k=1

1, obtain statistically inde-
pendent x1, . . . ,xR. In practice, the distributions are estimated
from data, and therefore, this goal can be achieved only ap-
proximately. Accordingly, we suggest the following definition
of JISA uniqueness and identifiability:

Definition II.1. If, for a given x, and given {m[k]
i }

R , K
i=1,k=1,

any choice of x1, . . . ,xR that satisfy all our model assump-
tions yields the same R summands in (4), we say that the
factorization of x into a sum of R terms is unique, and that
the JISA model is identifiable.

By Definition II.1, non-identifiability means that for the
same observations, there exists another set of random vectors
{x̂1, . . . , x̂R} that sum up to x, but with x̂i 6= xi for at least
one value of i (obviously, to balance the equation, this must
hold for at least two values of i). These x̂1, . . . , x̂R are as-
sociated with mixing matrices that we denote Â[1], . . . , Â[K].
This means that span(A[k]

i ) 6= span(Â
[k]
i ) and span(A

[k]
j ) 6=

span(Â
[k]
j ) for at least one value of k and one pair of i 6= j,

that is, not all signal subspaces have been properly identified.

1In certain cases, it may be possible to estimate {m[k]
i } directly from the

data; however, such methods are beyond the scope of this work.

The aim of this paper is to provide the necessary and
sufficient conditions that guarantee that this separation be
unique, under certain additional assumptions. Later on in this
section, and in Section III, we shall give a more concrete
meaning to these assumptions, in terms of SOS.

B. Second-Order Statistics (SOS)

In this paper, we focus on SOS. Therefore, in this section,
we show how assumptions (A1) and (A2) are manifested in the
SOS. The cross-correlation between any two random vectors
s
[k]
i and s

[l]
j satisfies

S
[k,l]
ij , E{s[k]i s

[l]H
j } =

{
S
[k,l]
ii i = j
0 i 6= j

. (5)

The zero values on the right-hand side (RHS) of (5) are due
to assumption (A2). Assumption (A1) implies that S

[k,l]
ii may

be non-zero. The m[k]
i × m

[l]
j matrix S

[k,l]
ij can be placed in

the (k, l)th block of the m>i 1K ×m>j 1K matrix

Sij , E{sisHj } =

S
[1,1]
ij · · · S

[1,K]
ij

...
...

S
[K,1]
ij · · · S

[K,K]
ij

 =

{
Sii i = j
0 i 6= j

(6)

as well as in the (i, j)th block of the m[k]>1R × m[l]>1R
matrix

S[k,l] , E{s[k]s[l]H} = S
[k,l]
11 ⊕ · · · ⊕ S

[k,l]
RR . (7)

The block-diagonal structure of S[k,l] follows from (5). The
RHS of Fig. 2(a) illustrates (7). Figure 2(b) illustrates (5) and
(6).

C. Coupled Block Diagonalization (CBD)

The cross-correlation between observations in any two
datasets k and l satisfies

X[k,l] , E{x[k]x[l]H} = A[k]S[k,l]A[l]H (8a)

=

R∑
i=1

A
[k]
i S

[k,l]
ii A

[l]H
i (8b)

where the RHS of (8a) is due to (1), and (8b) is due to (3)
and (7). Due to the block partition of A[k], we refer to the
decomposition of each X[k,l] in (8) as a “block decomposi-
tion”, and to the decomposition all at once of the ensemble
{X[k,l]}Kk,l=1 as a coupled block decomposition. If A[k] is
nonsingular ∀k, (8) can be rewritten as

A−[k]X[k,l]A−[l]H = S[k,l] (9)

where the RHS is block-diagonal by (7). For fixed (k, l), (9)
represents a block-diagonalization of X[k,l] by two transfor-
mation matrices, A−[k] and A−[l]. Therefore, when applied to
all k, l at once, (9) amounts to coupled block diagonalization
(CBD) [11]. CBD is illustrated in Fig. 2(a). Similarly, in
analogy to the more familiar notion of matrix congruence, we
use the term coupled congruence to denote the relation in (9)
between {X[k,l]}Kk,l=1 and {S[k,l]}Kk,l=1 via the K nonsingular
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A−[K] X[K,1] A−[1]
H

· · · A−[K] X[K,K] A−[K]

H

...
...

A−[1] X[1,1] A−[1]
H

· · · A−[1] X[1,K] A−[K]

H

=

S[K,1]

· · ·

S[K,K]

...
...

S[1,1]

· · ·

S[1,K]

S
[1,K]
33

(a)

S11 = , S22 = , S33 =
S
[1,K]
33

(b)
Fig. 2. Example of SOS-based JISA with K ≥ 2 real-valued datasets, each with R = 3 independent elements of rank m

[1]
1 = m

[1]
2 = m

[K]
3 = 2,

m
[K]
1 = m

[1]
3 = 1, m[K]

2 = 3, and nonsingular (un)mixing matrices of size I[1] ∈ R5×5 and I[K] ∈ R6×6. (a) SOS-based JISA by CBD of {X[k,l]}Kk,l=1.
Note the block-diagonal structure of S[k,l] and the symmetry along the main axis k = l. (b) Rearranging the elements of {S[k,l]}Kk,l=1 in {Sii}Ri=1.

transformation matrices A[k]. One can readily verify that
coupled congruence is an equivalence relation. Equivalence
via coupled congruence is essential for JISA identifiability and
CBD uniqueness, as we shall see later on.

In accordance with our discussion of the inherent JISA
indeterminacies earlier in Section II-A, each summand in (8b)
satisfies

A
[k]
i S

[k,l]
ii A

[l]H
i = (A

[k]
i Z

−[k]
ii )(Z

[k]
ii S

[k,l]
ii Z

[l]H
ii )(Z

−[l]H
ii A

[l]H
i ) .

(10)

In analogy to Definition II.1, we can now suggest a definition
for the uniqueness of CBD:

Definition II.2. If, for given {X[k,l]}Kk,l=1, and given
{m[k]

i }
R , K
i=1,k=1, any choice of {A[k]

i }
R , K
i=1,k=1 and {S[k,l]

ii }Kk,l=1

that satisfy (8) yields the same R summands A
[k]
i S

[k,l]
ii A

[l]H
i

∀k, l, we say that the decomposition in (8) (and (9), if
applicable) is essentially unique2.

Alternatively, we can restate Definition II.2 by replacing the
R summands with the R m>i 1K-dimensional signal subpaces
span(IK � Ai). Example VII.1 in Section VII illustrates Def-
inition II.2.

D. JISA via CBD and Additional Model Assumptions

In this paper, we focus on a JISA model in which, in
addition to assumptions (A1) and (A2), we assume that
(A3) Each underlying multivariate random process is real-

valued, normally distributed: si ∼ N(0,Sii), with
i.i.d. samples.

(A4) A[k] is nonsingular and real-valued ∀k,
(A5) Sii is nonsingular ∀i.
(A6) Each S

[k,l]
ii with k 6= l is either zero-valued or full-rank.

(A7) m[k]
i = mi ∀i, k.

2The term “essentially unique” emphasizes the fact that there still exists an
inherent unavoidable ambiguity, as defined by (10).

Assumptions (A3), (A4) and (A7) imply that s
[k]
i ∈ Rmi×1,

s[k] ∈ RM×1, si ∈ RKmi×1, A
[k]
i ∈ RM×mi , A[k] ∈ RM×M ,

x[k] and x
[k]
i ∈ RM×1, x and xi ∈ RKM×1, where M ,∑R

i=1mi. These quantities are summarized in the last column
of Table I.

When assumption (A3) holds, the correlation matrices
{X[k,l]}Kk,l=1 are sufficient statistics for full model identifi-
ability [1]3. In this case, JISA amounts to coupled block de-
composition (or to CBD, if assumption (A4) holds as well) of
{X[k,l]}Kk,l=1, as formulated in Section II-C. In this case, Def-
inition II.2 now establishes the link between the uniqueness of
CBD and the identifiability of JISA. When assumption (A3)
holds, each mixture in (1) is, in general, not identifiable indi-
vidually, as mentioned in Section I. However, previous results
(see Section IV) provide supporting evidence to the identifi-
ability of the joint decomposition when K ≥ 2. Hence, this
JISA model highlights the added value of JISA w.r.t. analysing
each mixture individually. When assumption (A4) holds, our
model’s identifiability does not depend on A[k]. A useful
implication of assumptions (A3) to (A5) is that the FIM can be
derived in closed form [1] (see also Footnote 3). The proof of
our main results, in Section V, relies on characterizing all the
cases in which the FIM is singular. In Appendix B, we show
that characterizing the singularity of the FIM boils down to
characterizing the non-trivial solutions to a system of coupled
matrix equations. The coefficients of these matrix equations
are the source correlations. Assumptions (A6) and (A7) impose
constraints on the coefficients of the coupled matrix equations
that we have just mentioned, and thus, further simplify our
derivations. In this paper, we shall fully characterize the
necessary and sufficient additional constraints on Sii that
guarantee identifiability, and specify those values of Sii for
which the model is not identifiable, given these assumptions.

3In [1] we assumed, for clarity of exposition, that m[k]
i = mi ∀k. The

generalization of all the results in [1] to m[k]
i 6= m

[l]
i for every l 6= k is trivial

and straightforward, up to the minimal necessary notational adaptations.
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
S
[1,1]
ii · · · S

[1,K]
ii

S
[2,1]
ii · · · S

[2,K]
ii...
...

S
[K,1]
ii · · · S

[K,K]
ii

 ∼


· · ·
· · ·...

...
...

· · ·


(a)

∼


· · ·
· · ·...

...
...

· · ·


(b)

∼


· · ·
· · ·...

...
...

· · ·


(c)

Fig. 3. A block matrix Sii = {S
[k,l]
ii } reducible by coupled congruence. “∼”

denotes equivalence by coupled congruence. White: zero, color: any value. In
this example, S

[k,l]
ii ∈ Rmi×mi with mi = 4, and the size of the zero

sub-blocks on the RHS is determined, according to (11), by (a) α[1] = 1,
α[2] = 2, and α[K] = 3, (b) α[1] = α[2] = α[K] = 2, (c) α[1] = 4,
α[2] = 0, and α[K] = 3.

III. REDUCIBILITY AND IRREDUCIBILITY

The concept of (ir)reducibility is fundamental to our analy-
sis. We begin with definitions, and then explain how they are
related to our model assumptions.

Definition III.1. A block matrix Sii whose (k, l)th block is
S
[k,l]
ii , k, l = 1, . . . ,K, is said to be reducible by coupled

congruence if there exist K nonsingular matrices (transfor-
mations) T

[k]
ii such that

T
[k]
ii S

[k,l]
ii T

[l]>
ii =

[
S
[k,l]
i1i1

0

0α[k]×β[l] S
[k,l]
i2i2

]
∀k, l , (11)

where α[k] and β[k] , mi −α[k] are nonnegative integers ∀k,
and positive for at least one k. Otherwise, Sii is said to be
irreducible by coupled congruence.

Examples of a block matrix Sii that is reducible by coupled
congruence are illustrated in Fig. 3. Figures 3(a) and 3(b)
illustrate two cases where α[k] and β[k] are positive ∀k.
In Fig. 3(c), one α[k] and one β[k′], k 6= k′, are zero. The zero
blocks in Fig. 3(c) indicate that the corresponding blocks of
Sii were originally zero. Note that all the off-diagonal blocks
in Figs. 3(a) and 3(c) are singular matrices, which means
that the corresponding blocks in Sii were singular as well.
In Fig. 3(b), all the blocks are nonsingular matrices, which
means that all the blocks of Sii were nonsingular as well.

Definition III.1 can be restated as saying that Sii is reducible
by coupled congruence if and only if (iff) it is equivalent by
coupled congruence to another matrix, whose (k, l)th block
has a block-diagonal structure as in (11), ∀k, l. Definition III.1
implies that Sii cannot be reducible by coupled congruence
if mi = 1. If the transformations in Definition III.1 are all
unitary, we say that Sii is unitarily (ir)reducible in the coupled
sense. Clearly, if a matrix is irreducible by coupled congru-
ence, it is irreducible by coupled unitary transformations. The
converse, however, does not generally hold, because a matrix
may be irreducible by coupled unitary transformations yet
reducible by non-unitary coupled congruence transformations.
As an example, consider the case K = 2 with mi ≥ 2, which
is always reducible by generalized eigenvalue decomposition

(GEVD), as explained in Section IV; however, the reducing
transformations are not unitary, except for very special cases.
Within the JISA framework, however, we can take advantage
of the fact that the coupled congruence via any arbitrary trans-
formation matrices S

[k,l]
ii ↔ Z

[k]
ii S

[k,l]
ii Z

[l]>
ii ∀k, l in (10) can be

regarded as basis transformations on the rows and columns of
the blocks of Sii (in analogy to [46, Remark 7]). For brevity,
we refer to this operation as coupled basis transformation. We
can now state the following:

Proposition III.2. Sii is reducible by coupled congruence iff
there exists a coupled basis transformation in which the trans-
formed Sii is reducible by coupled unitary transformations.

Proof. Let {Z[k]
ii }Kk=1 be non-unitary transformations such that

Sii is reducible by coupled congruence (Definition III.1). Let
Z

[k]
ii = Q[k]R[k] denote the QR decomposition of Z

[k]
ii , with

Q[k] unitary and R[k] upper triangular ∀k. Then,

Q[k]R[k]︸ ︷︷ ︸
non-unitary

S
[k,l]
ii R[l]>Q[l]> =

[
S
[k,l]
i1i1

0

0 S
[k,l]
i2i2

]
∀k, l (12)

which implies that {R[k]S
[k,l]
ii R[l]>}Kk,l=1 is unitarily reducible

by coupled congruence.

Proposition III.2 amounts to saying that Sii is irreducible by
coupled congruence iff there does not exist any coupled basis
transformation in which the transformed Sii is reducible by a
coupled unitary transformation. The concept of irreducibility
in general, and Proposition III.2 in particular, is a key ingre-
dient for proving our main result, Theorems V.1 and V.2.

We now turn to explaining the relation between reducibility
and our model. Assumptions (A6) and (A7) imply that a full-
rank S

[k,l]
ii is square and nonsingular. This excludes all the

reducible cases in which at least one α[k] or β[k] are zero,
because these cases correspond to patterns in which one or
more S

[k,l]
ii have a row (or column) of zeros and are thus rank

deficient, as in Fig. 3(c). Assumptions (A6) and (A7) exclude
also reducible cases with α[k] positive ∀k and α[k] 6= β[k] for
at least one k, because they are associated with blocks that
are a direct sum of rectangular non-square matrices, and thus
singular, as in Fig. 3(a). Cases with positive α[k] and β[k] ∀k,
as in Figs. 3(a) and 3(b) are eliminated by assumption (A2)
(indeed, there is an overlap: cases as in Fig. 3(a) are excluded
by both arguments). To see this, suppose for a moment that all
our model assumptions hold, except assumption (A2), which
is violated such that R is not maximal. Then, there exists
a random vector si with mi ≥ 2 that can be written as
two distinct statistically independent random vectors that we
denote si1 and si2 . Then, in each dataset, similarly to our
discussion in Section II-A, we can write s

[k]
i = [s

[k]>
i1

s
[k]>
i2

]>,
where s

[k]
i1

and s
[k]
i2

have length m
[k]
i1

and m
[k]
i2

, respectively,
m

[k]
i1

+ m
[k]
i2

= mi. Accordingly, si1 and si2 have length∑K
k=1m

[k]
i1

and
∑K
k=1m

[k]
i2

, respectively. Our assumption of
statistical independence (which has now boiled down to decor-
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relation, due to assumption (A3)) among si1 and si2 implies
that E{s[k]i1 s

[l]>
i2
} = 0

m
[k]
i1
×m[l]

i2

∀k, l. Hence,

S
[k,l]
ii = E{s[k]i s

[l]>
i } =

[
S
[k,l]
i1i1

0

0 S
[k,l]
i2i2

]
∀k, l . (13)

which is reducible by Definition III.1. We conclude that the
correlation matrices Sii of a JISA model satisfying assump-
tions (A1) to (A7) are irreducible by coupled congruence.

IV. PREVIOUS RELATED IDENTIFIABILITY RESULTS

In this section, we briefly review previous related results.
One can readily verify that if only one dataset is con-

sidered (i.e., K = 1), the SOS of the observations (8) do
not provide a sufficient number of constraints w.r.t. the free
model parameters (e.g., [47, Section V.A], [1, Section V.A]).
Therefore, a single dataset in (1) is not identifiable given our
model assumptions. This non-identifiability is a multivariate
generalization to the well-known fact that Gaussian processes
with i.i.d. samples cannot be separated blindly (e.g., [8]). For
this reason, a large body of literature has dealt with achieving
uniqueness to this single-set scenario by exploiting vari-
ous types of diversity, including non-stationarity, dependence
among samples, HOS, complex-valued data, and additional
observational modes. Most of this literature deals with the
mi = 1 case; see, e.g, [9], [13], for a comprehensive review.
The mi ≥ 2 case has received much less attention in the liter-
ature; we refer, e.g., to [4], [5], [19], [32], [46] and references
therein, for some pertinent results, in the single-set context.
In this paper, however, we focus on a different approach,
of showing that a multiset framework may be sufficient for
identifiability, even if none of the “classical” types of diversity,
which guarantee uniqueness and identifiability in a single-set
setup, are present. In other words, we use a link between
different mixtures as an alternative form of diversity [13].
In order to clarify the relationship between this new type
of diversity and previous single-set results, we demonstrate
in Section VIII a link between the identifiability of piecewise
stationary ISA and the JISA identifiability results in this paper.

For m[k]
i = 1 ∀i, k, it has been argued in [48], and later

rigorously proven in [14], [17], [18], that as soon as K ≥ 2,
overdetermined IVA of Gaussian processes with i.i.d. samples
is identifiable, except very particular cases.

The case of JISA with K = 2 datasets deserves special
attention, as we now explain. When K = 2, the JISA model
can be reformulated as a GEVD [49, Chapter 12.2, Equa-
tion (53)] (see also [50, Sec. 4.3]). In this case, estimates of
{A[k]}2k=1, which we denote {A[k]GEVD}2k=1, can be obtained
in closed form, from the generalized eigenvectors. Given our
model assumptions, these estimates always exist. Furthermore,
they always achieve exact diagonalization of {X[k,l]}2k,l=1:
A−[k]GEVDX[k,l]A−[l]GEVD> is a diagonal matrix ∀k, l, regard-
less of the size of the blocks on the diagonal of {S[k,l]}2k,l=1,
i.e., even if the input latent data has mi ≥ 2 ∀k. This means
that from the point of view of the JISA model, if K = 2, then
m

[k]
i = 1 ∀i, k, and S[k,l] are exactly diagonal ∀k, l. Therefore,

in this case, JISA is tantamount to IVA. Accordingly, the

identifiability of this special case can be derived directly using
algebraic arguments on the uniqueness of the GEVD: the
one-dimensional subspaces associated with the columns of
A[k]GEVD are uniquely identified iff the generalized eigenval-
ues of the GEVD are distinct. Naturally, this identifiability
result coincides with previous results on IVA [14], [17], [18].
In Section VIII-C, we shall explain why the uniqueness of the
GEVD provides sufficient, but not necessary, conditions for
JISA identifiability.

In [1], we presented supporting evidence, in terms of a
balance of degrees of freedom (d.o.f.), as well as numerical
experiments that demonstrated the invertibility of the FIM, that
SOS-based JISA with m[k]

i = mi ≥ 1 ∀k can be identifiable.
In this paper, we prove this rigorously, by characterizing all
the cases in which this JISA model is not identifiable, and
showing that non-identifiability occurs only in very particular
cases. We point out that although, in many cases, the same
conclusions hold also when m

[k]
i 6= mi, this is not always

the case, as recently demonstrated in [21]. The full analysis
of this more general scenario will be discussed in a different
publication.

V. MAIN RESULT: JISA IDENTIFIABILITY

The main contribution of this paper is providing the neces-
sary and sufficient conditions for the identifiability of a JISA
model satisfying assumptions (A1) to (A7). In Section II-D
we explained that given assumptions (A1) to (A7), JISA
is tantamount to CBD. Therefore, the following results on
JISA identifiability also characterize the uniqueness of CBD,
when the matrices in (9) satisfy the constraints corresponding
to assumptions (A1) to (A7). Uniqueness and identifiability
of these models were defined in Definitions II.1 and II.2
and Section II-D. Further implications of the results of this
section are discussed in Sections VIII and IX.

Let us begin with the simpler case, where S
[k,l]
ii are nonsin-

gular matrices ∀i, k, l.

Theorem V.1. Consider a JISA model satisfying assump-
tions (A1) to (A7), and, in addition, S

[k,l]
ii are nonsingular

matrices ∀i, k, l. This JISA model is not identifiable iff there
exists at least one pair (i, j) ∈ {1, . . . , R}2, i 6= j, for which
mj = mi and

S
[k,l]
jj = Ψ[k]S

[k,l]
ii Ψ[l]> ∀k, l (14)

where {Ψ[k]}Kk=1 are nonsingular mi ×mi matrices.

The proof of Theorem V.1 is given in Appendix C.
Theorem V.1 implies that if (14) holds for some pair (i, j),

then span(IK � Ai), which is the subspace associated with
the ith signal, cannot be distinguished from span(IK � Aj),
which is the subspace associated with the jth signal. To see
how this condition on the signal covariances propagates into
the mixing matrices, set (14) in (8b):

X[k,l] = · · ·+ A
[k]
i S

[k,l]
ii A

[l]>
i + · · ·+

A
[k]
j Ψ[k]S

[k,l]
ii Ψ[l]>A

[l]>
j︷ ︸︸ ︷

A
[k]
j S

[k,l]
jj A

[l]>
j + · · ·

(15)
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Equation (15) implies that the jth term in (8b) can be regarded
as having the same covariance matrix S

[k,l]
ii as the ith term,

∀k, l, but with different mixing matrices associated with it.
The non-identifiability arises from the fact that from the
point of view of the CBD, the triplets (A

[k]
j ,A

[l]
j ,S

[k,l]
jj ) and

(A
[k]
j Ψ[k],A

[l]
j Ψ[l],S

[k,l]
ii ) are indistinguishable ∀k, l. Exam-

ple VII.1 in Section VII illustrates a scenario that is non-
identifiable by Theorem V.1. Theorem V.1 and (14) will be
discussed in detail in Sections VI and VIII.

We now turn to the more general case, where some of S
[k,l]
ii

may be zero.

Theorem V.2. Consider a JISA model satisfying assump-
tions (A1) to (A7). This JISA model is not identifiable iff there
exists at least one pair (i, j) ∈ {1, . . . , R}2, j 6= i, for which
at least one of the following scenarios holds:

Scenario 1. Without loss of generality (W.l.o.g.), there exists
D = {1, . . . , D}, 2 ≤ D ≤ K, D minimal, such that Sii and
Sjj can be written as

Sii = S
[1:D,1:D]
ii ⊕ S

[D+1:K,D+1:K]
ii (16a)

Sjj = S
[1:D,1:D]
jj ⊕ S

[D+1:K,D+1:K]
jj (16b)

where mi = mj , and there exist D nonsingular matrices
Ψ[k] ∈ Rmi×mi such that

S
[k,l]
jj = Ψ[k]S

[k,l]
ii Ψ[l]> for each k ∈ D, l ∈ D . (17)

Scenario 2. W.l.o.g., there exists D = {1, . . . , D}, D ≥ 1,
such that Sii and Sjj can be written as

Sii = (⊕Dk=1S
[k,k]
ii )⊕ S

[D+1:K,D+1:K]
ii (18a)

Sjj = (⊕Dk=1S
[k,k]
jj )⊕ S

[D+1:K,D+1:K]
jj . (18b)

The following remarks are in order.
The “w.l.o.g.” in Theorem V.2 implies that for each sce-

nario, and for each pair of (i, j), the order the datasets, which
is anyway arbitrary, can be modified.

For each pair of (i, j), Sii and Sjj may satisfy one or more
instances of Scenario 1 and/or Scenario 2. For a specific i,
several instances of Scenario 1 can hold, but only for disjoint
datasets, due to the requirement for minimal D. Several
instances of Scenario 2 may overlap. It is possible to add
the condition that D be maximal in Scenario 2, to avoid this
overlap. The key point is that the model is not identifiable as
soon as one of these scenarios holds, for at least one pair of
(i, j).

Scenario 1 in Theorem V.2 implies that if (17) holds for
some pair (i, j), then {span(A[k]

i )}Dk=1 cannot be distin-
guished from {span(A[k]

j )}Dk=1. The explanation is essentially
the same as for Theorem V.1; note that Theorem V.1 is a
special case of Theorem V.2, when D = K and there are no
zero blocks in any Sii.

The special structures in Scenario 1and in Scenario 2 impose
constraints on the dimensions of the signal subspaces, as the
following proposition suggests:

Proposition V.3. If, for fixed i, we can write Sii, w.l.o.g., in
the direct sum form (16a) with D = 1 or D = 2, then, for
this specific i, mi = 1, that is, S

[k,l]
ii are scalars ∀k, l.

Proof. Let Sii satisfy (16a) with D < K. It follows from (10)
(see also Section III) that S

[1:D,1:D]
ii is subject to the coupled

congruence transformation Z
[k]
ii S

[k,l]
ii Z

[l]>
ii , where k, l ∈ D,

and Z
[k]
ii are artbirary nonsingular matrices. In general, for

arbitrary values of S
[k,l]
ii , when D ≥ 3, there do not exist

{Z[k]
ii }Dk=1 that exactly diagonalize, via coupled congruence,

all the blocks of S
[1:D,1:D]
ii . However, for D ≤ 2, such

transformations always exist, as we now explain. When D = 1,
Z

[1]
ii can always be chosen to diagonalize S

[1,1]
ii , for example,

by singular value decomposition (SVD). For D = 2, this
exact diagonalization always exists by GEVD, as explained
in Section IV. Either way, the fact that the blocks of S

[1:D,1:D]
ii

can be exactly diagonalized within the JISA/CBD framework
implies that from the point of view of the model, the ith signal
in datasets k = 1 : D is one-dimensional. By assumption (A7),
we conclude that mi = 1.

In the rest of this section, we prove Theorem V.2. In the
proof of Theorem V.2, we distinguish between two types of
cases, as we now explain.

Case 1. Assume, w.l.o.g., that for some pair (i, j) we can write
Sii and Sjj as in (16), with the smallest D satisfying 1 ≤ D <
K. Clearly, if (16) holds not only for this specific pair of (i, j)
but ∀i, j for the same value of D and for the same ordering
of the datasets, our original JISA problem factorizes into two
disjoint JISA problems that should be handled separately, one
for mixtures 1 to D, and the other for D + 1 to K. To avoid
this trivial factorization, we assume that this situation does not
occur. Now, (16) implies that the signal covariance matrices
in datasets 1 to D, (S

[1:D,1:D]
ii ,S

[1:D,1:D]
jj ), are independent

of (S[D+1:K,D+1:K]
ii ,S

[D+1:K,D+1:K]
jj ). Therefore, the identifi-

ability of the signal spaces of the ith and jth signals in datasets
1 to D, {span(A[k]

i )}Dk=1 and {span(A[k]
j )}Dk=1, depends only

on the mixtures indexed by 1 to D. Therefore, w.l.o.g., we
now focus on these mixtures. To simplify our discussion,
we assume that S

[1:D,1:D]
ii and S

[1:D,1:D]
jj do not contain

zeros. Correlations that are zero matrices will be handled
soon, in Case 2. Given this assumption, we now apply The-
orem V.1 to this smaller JISA problem that consists only of
datasets 1 to D. By Theorem V.1, if (S

[1:D,1:D]
ii ,S

[1:D,1:D]
jj )

satisfy (14), {span(A[k]
i )}Dk=1 cannot be distinguished from

{span(A[k]
j )}Dk=1. By Definitions II.1 and II.2, in this case,

the overall JISA model is not identifiable.

Based on Case 1, we obtain the following result, which
proves Scenario 2 in Theorem V.2.

Proposition V.4. If the direct sum structure in (16) holds with
D = 1 for some pair (i, j), the JISA model is not identifiable.

Proof. Case 1 states that if, w.l.o.g., (16) holds with D = 1,
we should apply Theorem V.1 to the JISA sub-problem that
now consists only of the single mixture indexed by k = 1.
Proposition V.3 states that in this case, mi = 1 = mj . Since
any two non-zero scalars are always proportional, (14) always
holds and, by Theorem V.1, the overall JISA model is not
identifiable.
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The following result, together with Case 2, proves Sce-
nario 1 in Theorem V.2, and therefore concludes our proof
of Theorem V.2.

Case 2. Assume that for some pair (i, j), j 6= i, there exists
a pair (k′, l′) such that S

[k′,l′]
ii = 0 and S

[k′,l′]
jj 6= 0. Then,

these Sii and Sjj cannot satisfy (14) with nonsingular Ψ[k]

∀k. If, however, all zero blocks in Sii and Sjj are in the same
locations, they do not impose any constraints, and thus the
equivalence relation (14) may still hold.

We further discuss and exemplify Theorem V.2 in Sec-
tions VI and VII.

VI. DISCUSSION OF JISA IDENTIFIABILITY RESULTS –
INTERPRETATION OF THEOREMS V.1 AND V.2

We identify in Theorems V.1 and V.2 two types of scenarios
associated with non-identifiability. Scenario 1 in Theorem V.2
implies that the model is not identifiable if in D ≥ 2 datasets
there exist at least two independent random processes of the
same size (i.e., mi = mj) that are not correlated with any of
the other (K−D) datasets, and whose covariances satisfy (14)
or (17). One can readily verify that the transformations in (14)
and (17) represent an equivalence relation. Therefore, the type
of non-identifiability in Theorem V.1 and Scenario 1 in The-
orem V.2 is associated with equivalence relations between
covariances. A similar notion of equivalence has already been
observed by [17] in the one-dimensional case, of IVA. The
use of equivalence relations in formalizing the identifiability
of blind estimation problems is well known (e.g., [51]).

If we define “diversity” as any property of the data that
contributes to identifiability (e.g., [13]), then, since pairs of
multivariate random processes with different dimensions (i.e.,
mi 6= mj) are always identifiable in the JISA framework,
we suggest regarding block-based models with distinct multi-
variate (or block) dimensions as containing more “diversity”
w.r.t. models in which all random processes (or blocks) have
the same dimension.

Scenario 2 in Theorem V.2 implies that the model is not
identifiable if in D ≥ 1 datasets there exist at least two
independent random variables that are not correlated with
any random variables in any of the other (K − 1) datasets.
It follows from Proposition V.3 that for any pair (i, j) sat-
isfying Scenario 2 in Theorem V.2, mi = 1 = mj . This
scenario can be regarded as a multiset parallel to the well-
known result in classical BSS, that one cannot separate random
processes when more than one of them is i.i.d. Gaussian,
without additional constraints (e.g., [7]).

From a data fusion perspective, Theorems V.1 and V.2
motivate using all the available datasets, as this may reduce
the risk of non-identifiable scenarios.

VII. ILLUSTRATION AND VALIDATION

The following examples provide some further theoretical
insight into Theorems V.1 and V.2. Theorems V.1 and V.2
were stated with emphasis on the statistically-motivated JISA
model. The following examples emphasize the role of the
algebraic aspect of our results, via CBD. In all the following

examples, we assume that the data satisfies assumptions (A1)
to (A7), unless specified otherwise.

Example VII.1. In this example, we show that if the equiv-
alence relation (14) holds, achieving exact CBD (9) does
not necessarily result in signal separation. Let the number of
independent elements in each mixture be R = 2 such that

S[k,l] ,

[
S
[k,l]
11 0

0 S
[k,l]
22

]
∀k, l (19)

and assume that (14) holds. Let

B[k] ,
1√
2

[
I −Ψ−[k]

I Ψ−[k]

]
A−[k] ∀k . (20)

Using (8) and (20), we achieve exact CBD:

B[k]X[k,l]B[l]> =

[
S
[k,l]
11 0

0 S
[k,l]
11

]
6=

[
S
[k,l]
11 0

0 S
[k,l]
22

]
∀k, l

(21)

where the RHS of (21) has the same block-diagonal structure
as (19), even though the bottom right block of (19) is different
than that of (21). By Definition II.2, the CBD of {X[k,l]} is
not unique. In this case,

B[k]x[k] =
1√
2

[
s
[k]
1 −Ψ−[k]s

[k]
2

s
[k]
1 + Ψ−[k]s

[k]
2

]
∀k (22)

which does not separate s
[k]
1 from s

[k]
2 ∀k, and hence, this

JISA model is not identifiable. One can readily verify that
this example equally hold if we replace mi with m

[k]
i ∀i, k.

We mention that a structure similar to (20) of an unmixing
matrix was used in [52, Chapter 4.5], in an example for non-
identifiability of piecewise stationary ISA. In Section VIII, we
elaborate on the link between these two models.

Example VII.2. In this example, we illustrate Scenario 2
in Theorem V.2. Let K = 3, R ≥ 3, and

Sii =

S
[1,1]
ii 0 S

[1,3]
ii

0 S
[2,2]
ii 0

S
[3,1]
ii 0 S

[3,3]
ii

 , Sjj =

S
[1,1]
jj 0 S

[1,3]
jj

0 S
[2,2]
jj 0

S
[3,1]
jj 0 S

[3,3]
jj

 (23)

for some i 6= j. This setup is not identifiable, because we can
permute the block rows and columns of Sii and Sjj using the
same permutation to obtain the structure in (18) with D = 1
(by Proposition V.3, we also have mi = mj = 1). However,
if we replace one of these zero blocks with a nonsingular
matrix (recall symmetry), we obtain a setup that is identifiable
by Theorem V.2.

Example VII.3. The following structure, with K = 3 and
R = 2, does not satisfy any scenario in Theorem V.2 and is
thus always identifiable.

Sii =

S
[1,1]
ii S

[1,2]
ii 0

S
[2,1]
ii S

[2,2]
ii 0

0 0 S
[3,3]
ii

 , Sjj =

S
[1,1]
jj 0 0

0 S
[2,2]
jj S

[2,3]
jj

0 S
[3,2]
jj S

[3,3]
jj

 (24)

Furthermore, by Proposition V.3, the blocks of these matrices
are scalars, i.e., mi = 1 = mj .
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VIII. DISCUSSION

In this section, we discuss several implications of Theo-
rem V.1, in a broader context.

A. A Link between JISA and ISA

There exist various types of links between JISA and ISA. In
this section, we focus only on one of these links. More specif-
ically, we now show that previous results on the identifiability
of piecewise stationary ISA can be obtained as a special case
of Theorem V.1. In what follows, we assume that the data
satisfies assumptions (A1) to (A7).

Let all A[k] be identical, i.e., A[k] , A ∈ RM×M ∀k. Let
each pair of indices (k, l) be mapped into a single index, i.e.,
(k, l) 7→ q. In this case, (8) and (9) rewrite, respectively, as

X(q) = AS(q)A> =

R∑
i=1

AiS
(q)
ii A>i q = 1, . . . , Q (25)

and A−1X(q)A−> = S(q) q = 1, . . . , Q (26)

where S(q) , ⊕Ri=1S
(q)
ii , S

(q)
ii ∈ Rmi×mi , A = [A1| · · · |AR],

Ai ∈ RM×mi , and Q is the number of distinct equa-
tions in (26). The factorization in (26) is often referred
to as JBD (e.g., [25]). In analogy to (10), each summand
in (25) remains invariant if a pair (Ai,S

(q)
ii ) is replaced

with (AiZ
−1
ii ,ZiiS

(q)
ii Z>ii) for an arbitrary nonsingular Zii.

In analogy to Definition II.2 (see also, e.g., [19], [46]),

Definition VIII.1. If, for given {X(q)}Qq=1, and given
{mi}Ri=1, any choice of A and {S(q)}Qq=1 that satisfy (25)
yields the same R summands AiS

(q)
ii A>i ∀q, we say that the

decomposition in (25) (and the JBD (26), if applicable) is
essentially unique.

Alternatively, we can restate Definition VIII.1 by replacing
the R summands with the R mi-dimensional signal subspaces
span(Ai). Similarly, Definition III.1 simplifies as:

Definition VIII.2. A sequence {S(q)
ii }

Q
q=1 of mi×mi matrices

is said to be reducible by simultaneous congruence if there
exists a transformation (nonsingular matrix) T ∈ Rmi×mi

such that

TS
(q)
ii T> =

[
S
(q)
i1i1

0

0α×β S
(q)
i2i2

]
∀q , (27)

where α and β , mi−α are positive integers. Otherwise, the
sequence is said to be irreducible by simultaneous congruence.

One can readily verify that if Sii is irreducible by
coupled congruence (Definition III.1), then the sequence
S
[1,1]
ii ,S

[1,2]
ii , . . . ,S

[K,K]
ii consisting of its blocks is irreducible

by simultaneous congruence (Definition VIII.2). However, the
converse does not necessarily hold. Applying the same sim-
plification procedure to (14), such that Ψ[k] , Φ ∈ Rmi×mi

is an arbitrary nonsingular matrix ∀k, we obtain

S
(q)
jj = ΦS

(q)
ii Φ> ∀q . (28)

Equation (28) is an equivalence relation between {S(q)
ii }

Q
q=1

and {S(q)
jj }

Q
q=1. Next, due to the symmetry of the congruence

transformation, we impose symmetry on X(q) and S(q) ∀q.
Finally, in accordance with Theorem V.1, the nonsingularity
of S

[k,l]
ii translates into assuming that S(q), and thus also X(q),

are positive-definite. Given these assumptions, one can readily
verify that (26) summarizes the sufficient statistics of ISA,
when each of the underlying signals is a piecewise stationary
multivariate (mi-variate) Gaussian process with uncorrelated
samples. In this case, S

(q)
ii is the covariance of the ith random

vector in the qth stationary interval [26], [47].
Applying all these simplifications to Theorem V.1, we

obtain the following theorem:

Theorem VIII.3. Consider an ISA model whose sufficient
statistics are given by (25), where A ∈ RM×M is a nonsingu-
lar matrix, and {S(q)

ii }
Q
q=1 a sequence of positive-definite real-

valued symmetric mi×mi matrices, irreducible by simultane-
ous congruence (Definition VIII.2), for any i = 1, . . . , R. Then
this ISA is not identifiable, and the JBD (26) is not unique iff
there exists at least one pair (i, j) that satisfies (28) for some
nonsingular mi ×mi matrix Φ.

The key point is that Theorem VIII.3, which we have just
obtained by simplifying Theorem V.1, is indeed identical to
the theorem on the identifiability of ISA, and the uniqueness
of JBD, as previously derived in [19] (see also [26], [27]).
To conclude, we have shown that the uniqueness and identi-
fiability of JBD (26) and of piecewise stationary ISA can be
regarded as special cases of the uniqueness and identifiability
of CBD (9) and stationary JISA.

B. Implications on Block-Based Decompositions

The Q matrices {X(q)} can be stored in a single three-
dimensional M ×M × Q array, sometimes referred to as a
third-order tensor. In this case, the decomposition in (25) is
nothing but a special case of a decomposition of a tensor
in a sum of R low-rank block terms [46]. BTD is a class
of tensor decompositions that attract increasing interest, due
to their ability to model various latent structures in data.
Accordingly, Theorem VIII.3 is a special case of more general
results on the uniqueness of BTD. The decompositions in (8b)
and (9) cannot be written compactly as a decomposition of
single tensor in a sum of low-rank terms. This is not a flaw:
this is simply because our model is more general. The fact that
certain results on the uniqueness of tensor decompositions are
special cases of results on the uniqueness of a more general
class of coupled block decompositions (8) hints that other
fundamental concepts in the analysis of the uniqueness of
tensor decompositions, such as Kruskal’s rank [53], generalize
as well. We point out that the concept of Kruskal’s rank was
generalized in [46] for matrices partitioned column-wise into
blocks, however, not for block elements such as {S(q)

ii }
Q
q=1

in (25), which are mi×mi×Q tensors and not matrices. We
leave further discussion of this topic to future publications.

C. Can JISA Identifiability be Obtained from the GEVD?

In Section IV, we mentioned that when K = 2, we can
write JISA as GEVD, and if the generalized eigenvalues are
distinct, then the one-dimensional subspaces associated with
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each column of A[1] and A[2] are guaranteed to be unique. One
may wonder if we can use this result to obtain the uniqueness
results of JISA with K ≥ 3 datasets, by observing the
generalized eigenvalues, for each pair of datasets. The answer
is as follows. Indeed, if all the pairwise generalized eigenval-
ues are distinct, then all the one-dimensional subspaces are
distinct and unique, and therefore, also if we collect them into
subspaces of a higher dimension, these higher-dimensional
subspaces will remain distinct and thus uniquely identifiable.
Therefore, this is a sufficient condition. However, when these
generalized eigenvalues are not distinct, we can still have
identifiability: this follows directly from Equation (14). One
can readily verify that even if each pair of datasets has some
non-distinct generalized eigenvalues, (14) will not necessarily
be satisfied, as soon as K ≥ 3, and mi ≥ 2 for at least one i.

D. Noise

We now briefly discuss our identifiability results in the
presence of additive noise, when assumptions (A1) to (A7)
hold. A prerequisite for identifiability is that the constraints
imposed by the observations be no fewer than the number of
free model parameters. In the noise free case, the inequality
was strict at K = 2, and satisfied for K ≥ 2, for any
value of mi [1]. Clearly, when the noise parameters have to
be estimated as well, the case K = 2 is never identifiable.
Furthermore, the results now depend both on the specific noise
model, as well as on the values of mi. Hence, in the noisy
case, this prerequisite has to be tested individually for each
noisy JISA model. As we already know from our analysis in
the previous sections, a sufficient number of d.o.f. does not
guarantee identifiability, and, as we have shown in this paper,
characterizing all the cases of non-identifiability is not a simple
task, even in the absence of noise. Nevertheless, it is easy to
see that additive noise cannot improve the identifiability of the
model: in the presence of additive noise, x[k] = A[k]s[k]+n[k]

∀k, n[k] being the noise random process, (22) will have an
additive term B[k]n[k] on the RHS ∀k. Clearly, the non-
identifiable mixed sources with arbitrary Ψ[k] remain non-
identifiable and mixed. The same conclusion will apply even
if we use another filtering approach with better signal to noise
ratio (SNR), instead of B[k]. It remains to see whether the
noise can add non-identifiable cases when the noise-free model
is identifiable by Theorems V.1 and V.2. This question cannot
be answered using our existing results, and requires a new
analysis, for example, by derivation of the FIM explicitly for
the noisy case (see, e.g., [54], [55]). Such derivations are
beyond the scope of this paper. Algorithms and analysis for
JISA, in the presence of perturbation due to finite sample size
and/or additive noise, are described, e.g., in [1], [2], [10], [11].

IX. CONCLUSION

In this paper, we fully characterized the uniqueness and
identifiability of JISA in a setup in which each dataset is not
identifiable individually. We proved that this JISA model is
generally identifiable, except when the SOS of two or more of
its underlying sources belong to the same equivalence class.
Since two multivariate random processes that have different

dimensions cannot satisfy this equivalence relation, their pres-
ence implies that they are always identifiable within our JISA
framework. This result implies that the presence of terms of
different dimensions enhances identifiability, and thus can be
regarded as a new type of diversity in the data. This result
further motivates models in which the data can be represented
in block form, instead of rank-1 elements. We explained
how this result generalizes and extends known results on
the identifiability and uniqueness of nonstationary ISA and
JBD [19]. We conjectured that insights from these results can
be applied to more general types of block-based decompo-
sitions, and, in particular, extend the concept of Kruskal’s
rank to more elaborate types of coupled matrix and tensor
block decompositions. From a data fusion perspective, we
provided new theoretical evidence that a link among datasets
can achieve uniqueness and identifiability in cases where each
dataset is not unique or identifiable individually. Our results
provide further evidence that the concept of irreducibility is
a key factor in subspace-based BSS and in decompositions in
sum of low-rank block terms. We have shown that analysing
the identifiability of new signal processing models that are
inspired by data fusion leads to the development of new
theoretical results. These include the identities in Appendix A
on block partitioned matrices. The solutions to the system of
coupled matrix equations in (59) were derived in a separate
publication [23], [24].

APPENDIX A
SOME ALGEBRAIC PROPERTIES

For any matrices A,B,X,Y (with appropriate dimensions),

(B⊗A)(Y ⊗X) = BY ⊗AX (29a)

(B⊗A)> = B> ⊗A> (29b)

vec(AXB>) = (B⊗A)vec(X) (29c)

For any two matrices AM×P and BN×Q,

TM,N (B⊗A) = (A⊗B)TP,Q (30)

where the commutation matrix TP,Q ∈ RPQ×PQ satisfies

vec(M>) = TP,Qvec(M) (31)

for any P × Q matrix M [56]. Equations (29) and (30) can
be found, e.g., in [56], [57].

Definition A.1 (vecd Operator). For any square matrix X of
size K ×K with entries xkk′ , where k, k′ = 1, . . . ,K,

vecd(X) ,
[
x11 · · · xKK

]>
. (32)

The vecd(·) operator can be found, e.g., in [58, Eq. (7)].

Definition A.2 (vecbd Operator). For any matrix X of size
α × β, partitioned into K × K blocks such that its (k, k′)th
block Xkk′ has size αk × βk′ , where k, k′ = 1, . . . ,K, α =
[α1, . . . , αK ]>, β = [β1, . . . , βK ]>, α =

∑K
k=1 αk, and β =∑K

k=1 βk,

vecbdα×β{X} ,
[
vec>(X11) · · · vec>(XKK)

]>
. (33)
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vecbdα×β{X} is a vector of length α>β, consisting only of
the (vectorized) entries of the block-diagonal of X, where the
rows of X are partitioned according to α and the columns by
β. If α = β then we can write vecbdα{X} , vecbdα×α{X}.
The vecbdα{·} operator can be found, e.g., in [59].

Identity A.3.

(A � B)>(C � D) = A>C�B>D . (34)

for any A, B, C, and D, such that all products are defined.

Proof. Let A and B be partitioned column-wise in K blocks,
and C and D in L blocks. Using (29b) we can write

(A � B)>(C � D) =
A>1 ⊗B>1

...

A>K ⊗B>K

 [ C1 ⊗D1 · · · CL ⊗DL

]
(35)

whose (k, l)th block A>k Cl ⊗ B>k Dl, obtained via (29a), is
exactly the (k, l)th block of A>C�B>D.

Remark A.4. In [18, Identity 6.1], we introduced a special
case of Identity A.3:

(A�B)>(C�D) = A>C ∗B>D (36)

The more familiar identity (e.g., [60]–[63]),

A>A ∗B>B = (A�B)>(A�B) , (37)

is thus a special case of Identity A.3 and [18, Identity 6.1].

Identity A.5. Let A ∈ Rµ×α and B ∈ Rν×β be two matrices
partitioned column-wise into K blocks of dimensions µ×αk
and ν × βk, respectively, α =

∑K
k=1 αk, β =

∑K
k=1 βk, α =

[α1, . . . , αK ]>, β = [β1, . . . , βK ]>, as follows,

A =
[

A1 · · · AK

]
, Ak ∈ Rµ×αk

B =
[

B1 · · · BK

]
, Bk ∈ Rν×βk (38)

and X = ⊕Kk=1Xkk ∈ Rα×β , Xkk ∈ Rαk×βk . Then,

(B � A)vecbdα×β{X} = vec(AXB>) , (39)

where the operator “vecbdα×β{·}” was defined in Defini-
tion A.2.

Proof. Identity A.5 is a special case of [59, Theorem 4.17],
when the partition is only column-wise. Alternatively, set K =
1 and N = 1 in [46, Equation (2.14)].

If we set K = 1 in Identity A.5, that is, X has only
one block, we obtain (29c). If we set αk = 1 = βk ∀k
in Identity A.5, that is, X is a diagonal matrix, we obtain

(B�A)vecd(X)=(B⊗A)vec(X)=vec(AXB>) (40)

where the RHS of (40) is by (29c) and the operator “vecd(·)”
was defined in Definition A.1. Identity (40) can be found, e.g.,
in [58, Table III, T3.13] and [60, Equation (27)].

We briefly explain the link to tensor decomposition. Our
proof of Identity A.5 states that (39) is a vector representation
of a decomposition in terms with multilinear rank (αr, βr) [46]

of a second-order tensor (i.e., a matrix). Identities (29c)
and (40) are thus two special cases thereof: (29c) and (40) can
be regarded, respectively, as a vectorization of a decomposition
in sum of rank-1 terms, and as a vectorization of a Tucker
format [64], of a second-order tensor. This is not surprising,
because both types of tensor factorizations are special cases
of the decomposition in low multilinear rank terms [46].

APPENDIX B
ANALYZING THE SINGULARITY OF THE FIM

In [1], we have shown (see Footnote 3) that asymptotically,
that is, when the number of samples drawn from the random
variables goes to infinity, for every pair (i, j) with i 6= j, the
estimation error of the parameters in the model that we have
just defined is proportional to the inverse of the symmetric
positive semi-definite 2m>i mj × 2m>i mj matrix

H =

[
Sjj � S−1ii ⊕Kk=1Tm[k]

j ,m
[k]
i

⊕Kk=1Tm[k]
i ,m

[k]
j

Sii � S−1jj

]
(41)

where the commutation matrix TP,Q ∈ RPQ×PQ was defined
in (31), and Sjj � S−1ii is an m>i mj ×m>i mj matrix whose
(k, l)th block has size m[k]

i m
[k]
j ×m

[l]
i m

[l]
j . Using Identity (30)

in Appendix A, we can write

H =

[
I 0
0 ⊕Kk=1Tm[k]

i ,m
[k]
j

]
H

[
I 0

0 ⊕Kk=1T
>
m

[k]
i ,m

[k]
j

]
(42)

where

H =

[
Sjj � S−1ii I

I S−1jj � Sii

]
. (43)

Matrix H is always well-defined because it is derived (in [1])
based on the assumption that Sii and Sjj are positive-definite
covariance matrices. Matrix H and its inverse are the main
ingredients in the closed-form expression for the CRLB and
FIM, as explained in [1]. Therefore, model identifiability boils
down to characterizing all the cases in which H is singular.

For H to be positive-definite4, we require that for any vector
x of length 2m>i mj ,

0 < x>Hx = x>V>Vx (44)

where V is such that H = V>V. Conversely, for H not to
be positive-definite, there must exist some non-zero vector x
of length 2m>i mj such that

0 = x>Hx = x>V>Vx (45a)
⇔ Vx = 0 . (45b)

Based on (44) and (45), we now look for a meaningful
factorization of the Gram matrix H = V>V. We propose

H =

[
(S

1
2>
jj � S

− 1
2

ii )>

(S
− 1

2
jj � S

1
2>
ii )>

] [
S

1
2>
jj � S

− 1
2

ii S
− 1

2
jj � S

1
2>
ii

]
(46)

where

V ,
[
S

1
2>
jj � S

− 1
2

ii S
− 1

2
jj � S

1
2>
ii

]
(47)

4The derivations in Appendix B are valid also for complex-valued variables,
when > is replaced with H, wherever applicable.
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has size (m>i 1K)(m>j 1K)× 2m>i mj . Matrix S
1
2
ii is defined

such that Sii = S
1
2
iiS

1
2>
ii ; this factorization may be obtained,

e.g., via SVD. The equality in (46) follows from Identity A.3
in Appendix A. A prerequisite for the nonsingularity of H
is that the number of rows of V be equal to or larger
than the number of its columns. One can readily verify that
when assumption (A7) holds, this condition is satisfied as soon
as K ≥ 2, because (m>i 1K)(m>j 1K) = Kmi · Kmj ≥
2Kmimk = 2m>i mj . The fact that this does not hold for K =
1 is yet another proof that a single dataset is not identifiable.
Otherwise, satisfying this inequality depends on the specific
sizes of the blocks. For example, if mi = [1, 1, 5]> = mj ,
this inequality does not hold, and this case is not identifiable.
In what follows, we consider only data whose dimensions
satisfy the desired inequality. In these cases, the rank of H
may be equal to 2m>i mj . In this paper, our goal is thus
to determine the additional structural conditions on H and
V such that this rank will be smaller, in the special case
where assumptions (A1) to (A7) hold.

Next, we look for a non-zero vector x such that Vx = 0.
W.l.o.g., we look for x in the form

x =
[
µ> −ν>

]>
. (48)

Substituting this in (45b), we obtain[
S

1
2>
jj � S

− 1
2

ii S
− 1

2
jj � S

1
2>
ii

] [
µ
−ν

]
= 0 (49)

for some non-zero µ and/or ν. We now turn to finding these
µ and ν. As we shall see soon, it is useful to rearrange the
elements of µ and ν in the following structure:

µ ,
[
vec>(M[1]) · · · vec>(M[K])

]
(50a)

ν ,
[
vec>(N[1]) · · · vec>(N[K])

]
(50b)

where the size of each M[k] and N[k] is m[k]
i ×m

[k]
j . Equa-

tion (50a) can be rewritten more compactly as

µ = vecbdmi×mj
{M} , ν = vecbdmi×mj

{N} (51)

where the “vecbd” operator was described in Definition A.2
in Appendix A, M , ⊕Kk=1M

[k], N , ⊕Kk=1N
[k], and the

row × column partition of both M and N is mi ×mj . Let
us rewrite (49) as

(S
1
2>
jj � S

− 1
2

ii )µ = (S
− 1

2
jj � S

1
2>
ii )ν . (52)

Applying Identity A.5 in Appendix A to (52) yields

vec(S
1
2>
ii NS

− 1
2>

jj ) = vec(S−
1
2

ii MS
1
2
jj) . (53)

Removing the “vec” notation, (53) rewrites as

S
1
2>
ii NS

− 1
2>

jj = S
− 1

2
ii MS

1
2
jj . (54)

Since Sii and Sjj are positive-definite, (54) rewrites as

SiiN = MSjj ⇔ S
[k,l]
ii N[l] = M[k]S

[k,l]
jj ∀k, l . (55)

Hence, our task of finding µ and ν has been recast into
finding {M[k],N[k]}Kk=1, not all zero, for which equality (55)
holds. The matrix equation (55) can further be simplified if

we normalize Sii and Sjj such that their blocks on the main
diagonal are equal to the identity,

S̃
[k,k]
ii = I

m
[k]
i

and S̃
[k,k]
jj = I

m
[k]
j
∀k . (56)

We do so using the transformation

S̃
[k,l]
ii = (S

[k,k]
ii )−

1
2 S

[k,l]
ii (S

[l,l]
ii )−

1
2> ∀k, l , (57)

which is absorbed by the arbitrary factors discussed in Sec-
tion II-A, and thus does not alter the identifiability of the JISA
model in question. Substituting (57) in (55), we obtain

(S
[k,k]
ii )−

1
2 M[k](S

[k,k]
jj )

1
2︸ ︷︷ ︸

L[k]

S̃
[k,l]
jj

= S̃
[k,l]
ii

L′[l]︷ ︸︸ ︷
(S

[l,l]>
ii )

1
2 N[l](S

[l,l]>
jj )−

1
2 . (58)

Substituting (56) in (58) for l = k implies L[k] = L′
[k] ∀k.

Problem (55) can now be restated as characterizing the non-
trivial solutions of

S̃iiL = LS̃jj ⇔ S̃
[k,l]
ii L[l] = L[k]S̃

[k,l]
jj ∀k, l (59)

where L[k] are m[k]
i ×m

[k]
j matrices and L , ⊕Kk=1L

[k]. For
fixed (k, l), the RHS of (59) is a Sylvester-type homogeneous
matrix equation. When all the indices k, l are considered at
once, the RHS of (59) is a system of coupled Sylvester-type
homogeneous matrix equations, in K unknowns {L[k]}Kk=1.
The left-hand side (LHS) of (59) can be described as a
single structured Sylvester-type homogeneous matrix equation,
in a single structured unknown L. Problem (59) is simpler
than (55) because L replaces both M and N, reducing by half
the number of unknowns. The JISA identifiability problem can
now be restated as characterizing the minimal set of additional
conditions on S̃ii and S̃jj such that {L[k]}Kk=1 are not all zero
and (59) holds, given the rank and irreducibility constraints
imposed by assumptions (A1) to (A7).

APPENDIX C
NON-TRIVIAL SOLUTIONS TO (59)

Here, we characterize the non-trivial solutions of (59) when
S
[k,l]
ii ∈ Rmi×mi are nonsingular matrices ∀i, k, l, and assump-

tions (A1) to (A7) hold. The generalization to zero-valued
blocks is explained in detail in Section V. Hence, we can
assume that Sii and Sjj , as well as their normalized forms S̃ii
and S̃jj , are irreducible by coupled unitary transformations,
as follows from Section III. The solutions are given by the
following lemma, whose proof can be found in [23] (the
lemma in [23] is more general, here we adapt it for the specific
data in hand).

Lemma C.1. Let S̃jj ∈ RKmj×Kmj and S̃ii ∈ RKmi×Kmi ,
i 6= j, K ≥ 2, be two symmetric matrices, irreducible
by coupled unitary transformations, whose (k, l)th blocks,
S̃
[k,l]
jj ∈ Rmj×mj and S̃

[k,l]
ii ∈ Rmi×mi , k, l = 1, . . . ,K, are

nonsingular matrices. Let L[k] ∈ Rmi×mj be fixed matrices
such that (59) holds. Then either L[k] = 0mi×mj

∀k, or
L[k] = νO[k] ∀k with ν ∈ R and O[k] orthogonal ∀k
(implicitly, mi = mj).
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By Lemma C.1, a non-trivial solution to (59) exists iff

S̃
[k,l]
jj = O[k]S̃

[k,l]
ii O−[l] ∀k, l , (60)

which is possible only if mi = mj ∀k. It remains to
restate Lemma C.1 in terms of the unnormalized covariances
S[k,l]. Substituting (57) in (60),

S
[k,l]
jj = ((S

[k,k]
jj )

1
2 O−[k](S

[k,k]
ii )−

1
2 )·

· S[k,l]
ii ((S

[l,l]
ii )−

1
2>O[l](S

[l,l]
jj )

1
2>) , (61)

and setting

Ψ[k] , (S
[k,k]
jj )

1
2 O−[k](S

[k,k]
ii )−

1
2 , (62)

we obtain (14). Finally, Proposition III.2 guarantees that
irreducibility by coupled unitary transformation of S̃jj and
S̃ii (which is a prerequisite in Lemma C.1) is a necessary and
sufficient condition for their unnormalized forms Sjj and Sii
to be irreducible by coupled congruence. This concludes the
proof of Theorem V.1.
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