A Distributed Collaborative Filtering Algorithm Using Multiple Data Sources - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

A Distributed Collaborative Filtering Algorithm Using Multiple Data Sources

Résumé

Collaborative Filtering (CF) is one of the most commonly used recommendation methods. CF consists in predicting whether, or how much, a user will like (or dislike) an item by leveraging the knowledge of the user's preferences as well as that of other users. In practice, users interact and express their opinion on only a small subset of items, which makes the corresponding user-item rating matrix very sparse. Such data sparsity yields two main problems for recommender systems: (1) the lack of data to effectively model users' preferences, and (2) the lack of data to effectively model item characteristics. However, there are often many other data sources that are available to a recommender system provider, which can describe user interests and item characteristics (e.g., users' social network, tags associated to items, etc.). These valuable data sources may supply useful information to enhance a recommendation system in modeling users' preferences and item characteristics more accurately and thus, hopefully, to make recommenders more precise. For various reasons, these data sources may be managed by clusters of different data centers, thus requiring the development of distributed solutions. In this paper, we propose a new distributed collaborative filtering algorithm, which exploits and combines multiple and diverse data sources to improve recommendation quality. Our experimental evaluation using real datasets shows the effectiveness of our algorithm compared to state-of-the-art recommendation algorithms.
Fichier principal
Vignette du fichier
DBKDA2018_v2.0.pdf (935.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01911684 , version 1 (03-11-2018)

Identifiants

Citer

Mohamed Reda Bouadjenek, Esther Pacitti, Maximilien Servajean, Florent Masseglia, Amr Abbadi. A Distributed Collaborative Filtering Algorithm Using Multiple Data Sources. DBKDA: Advances in Databases, Knowledge, and Data Applications, May 2018, Nice, France. ⟨hal-01911684⟩
186 Consultations
168 Téléchargements

Altmetric

Partager

More